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Abstract. In this paper, the authors using two inequalities and Ricatti type transfor-
mation obtained some new oscillation results for the second order nonlinear neutral type
difference equations of the form

∆(an∆(xn + cnxn−k)) + pnf(xn+1−l)− qng(xn+1−m) = 0,

and
∆(an∆(xn − cnxn−k)) + pnf(xn+1−l)− qng(xn+1−m) = 0.

The obtained results improve, extend and generalize some of the known results. Further
examples are provided to illustrate the importance of the main results.
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1. Introduction

Neutral type difference and differential equations arise in many areas of applied mathematics, such as
population dynamics [5], bifurcation analysis [2], circuit theory [3], dynamic behavior of delayed network
systems [20], and so on. Hence these equations have attracted a great interest during last few decades.
Therefore, in this paper we study the oscillation of solution of the neutral type difference equations of
the form

(1.1) ∆(an∆(xn + cnxn−k)) + pnf(xn+1−l)− qng(xn+1−m) = 0

and

(1.2) ∆(an∆(xn − cnxn−k)) + pnf(xn+1−l)− qng(xn+1−m) = 0

where n ∈ N(n0) = {n0, n0 + 1, ...}, n0 is a nonnegative integer k, l,m are nonnegative integers,
{an}, {cn}, {pn}, {qn} are real sequences, f and g : R → R are continuous and nondecreasing functions
with uf(u) > 0, and ug(u) > 0 for u 6= 0.

Let θ = max{k, l,m}. By a solution of equation (1.1)((1.2)), we mean a real sequence {xn} which
is defined for all n ≥ n0 − θ, and satisfies equation (1.1)((1.2)) for all n ∈ N(n0). It is well known
that equation (1.1)((1.2)) has a unique solution {xn} if an initial sequence {x0(n)} is given to hold for
xn = x0(n), n = n0− θ, n0− θ+ 1, ..., n0. A nontrivial solution {xn} of equation (1.1)((1.2)) is said to be
oscillatory if it is neither eventually positive nor eventually negative, and it is nonoscillatory otherwise.

In [4, 6, 7, 10, 11, 8, 9, 18, 17, 19], the authors obtained some sufficient conditions for the existence of
nonoscillatory solutions and oscillation of all solutions of equations (1.1) and (1.2) when f(u) = g(u) = u,
and an ≡ 1. In [15], the authors established some sufficient conditions for the oscillation of equations
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(1.1) and (1.2) with f ≡ g, and f(u)
u ≥ M1 > 0 for u 6= 0, and in [13], the authors discussed oscillatory

behavior of solutions of equations (1.1) and (1.2) with an ≡ 1.
Motivated by these results, in this paper we established sufficient conditions for the oscillation of

all solutions of equations (1.1) and (1.2) without these types of restrictions. Our results extend and
generalize some of the results in [1, 4, 7, 8, 9, 10, 11, 13, 15, 17], and the references cited therein.

In Section 2, we present our main results for equations (1.1) and (1.2), and in Section 3, we present
some examples to illustrate our theorems.

2. Oscillation Results

In this section, we obtain some oscillation criteria for equations (1.1) and (1.2), subject to the following
conditions:

(H1) {an} is a positive real sequence such that
∑∞
n=n0

1
an

=∞;

(H2) {cn}, {pn} and {qn} are nonnegative real sequences;

(H3) there exists β, ratio of odd positive integers, and a positive constant M1 such that f(u)
uβ
≥ M1 for

u 6= 0;

(H4) there are positive constants M and M2 such that 0 ≤ g(u)
u ≤M2, and 0 < g(u)

f(u) ≤M for u 6= 0;

(H5) there is a constant M3 such that pn −Mqn−m+l ≥M3 > 0 for all n ∈ N(n0).

Lemma 2.1. If b1 and b2 are nonnegative, then (b1 + b2)β ≤ 2β−1(bβ1 + bβ2 ) for β ≥ 1, and (b1 + b2)β ≤
(bβ1 + bβ2 ) for 0 < β < 1.

Proof. The proof can be found in [16]. �

Theorem 2.2. Let assumptions (H1) − (H5) hold. Further assume that there are constants α1 and α2

such that 0 ≤ α1 ≤ cn ≤ α2 for all n ∈ N(n0). If l ≥ m+ 1 ≥ k, and

(2.1)

∞∑
n=n0

1

an

(
n−1∑

s=n−l+m

qs

)
<∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume that {xn} is a nonoscillatory solution of equation (1.1). Without loss of generality, we
may assume that xn > 0 and xn−θ > 0 for all n ≥ n1 ∈ N(n0). The proof for the case xn < 0 is similar
and is omitted. Choose an integer N > n1 so that

(2.2)

∞∑
n=N

1

an

(
n−1∑

s=n−l+m

qs

)
<

α1

M2
.

Set

(2.3) zn = xn + cnxn−k −
n−1∑
s=N

1

as

s−1∑
t=s−l+m

qtg(xt+1−m)

for all n ≥ N. Then from equation (1.1) and conditions (H3) and (H4), we have

∆(an∆zn) = ∆(an∆(xn + cnxn−k))− pnf(xn+1−m) + qn−l+mg(xn+1−l)

= −pnf(xn+1−l) + qn−l+mg(xn+1−l)

≤ −M1[pn −Mqn−l+m]xβn+1−l

≤ −M3M1x
β
n+1−l ≤ 0(2.4)

for all n ≥ N. Hence {an∆zn} is eventually nondecreasing. So either ∆zn < 0 or ∆zn ≥ 0 for all n ≥ N1

for some integer N1 ≥ N.
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If ∆zn < 0 for all n ≥ N1, then (2.4) and (H1) imply limn→∞ zn = −∞. We claim that {xn} is
bounded from above. If this is not the case, then there is an integer N2 ≥ N1 + k such that

(2.5) zN2 < 0, and max
N1≤n≤N2

xn = xN2 .

Then, we have

0 > zN2
= xN2

+ cN2
xN2−k −

N2−1∑
s=N

1

as

s−1∑
t=s−l+m

qtg(xt+1−m)

≥ α1xN2−k −M2xN2−k

N2−1∑
s=N

1

as

s−1∑
t=s−l+m

qt

≥ [α1 −M2

∞∑
n=N

1

an

n−1∑
t=n−l+m

qs]xN2−k ≥ 0.

This contradiction shows that {xn} must be bounded so there exists a constant L > 0 such that xn ≤ L
for all n ≥ N1. It follows from (2.3) that

zn ≥ −LM2

n−1∑
s=N1

1

as

s−1∑
t=s−l+m

qt ≥ −Lα1 > −∞,

which contradicts the fact that limn→∞ zn = −∞. Therefore, we have ∆zn ≥ 0 for all n ≥ N1. Now,
summing (2.3) from N1 to n− 1, we obtain

∞ > aN1
∆zN1

≥ −an+1∆zn+1 + aN∆zN ≥M3M1

n−1∑
s=N1

xβs+1−l,

and therefore {xβn} is summable for n ∈ N(N1). Then, by Lemma 2.1, we have

yβn = (xn + cnxn−k)β ≤ 2β−1(xβn + αβ2x
β
n−k) for β ≥ 1,

and

yβn = (xn + cnxn−k)β ≤ (xβn + αβ2x
β
n−k) for 0 < β < 1,

so {yβn} is also summable. On the other hand, from equation (2.3), we obtain

∆yn = ∆zn +
1

an

n−1∑
s=n−l+m

qsg(xs+1−m) ≥ 0

so that ∆yn is nondecreasing for all n ≥ N1. But then yβn ≥ yβN1
for all n ≥ N1 implies that {yβn} is not

summable, a contradiction. This completes the proof of the theorem. �

Remark 2.3. If f(u) = g(u), then Theorem 2.2 reduced to Theorem 2.1 of [15].

Next, we establish an oscillation result for equation (1.1) when l = m, and for this case the condition

0 < g(u)
u ≤M2 is not required.

Theorem 2.4. Let assumptions (H1)− (H4) hold. Further assume that β ≥ 1, and l = m,

(2.6) 1− cn+1−l > 0 for all n ∈ N(n0),

and

(2.7) Qn = pn −Mqn > 0 for all n ∈ N(no).
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If there exists a positive and nondecreasing sequence {ρn} such that

(2.8) lim
n→∞

sup

n−1∑
s=N

[
M1ρsQs(1− cs+1−l)

β − (∆ρs)
2as−l

4Lβρs

]
=∞

for any L > 0, then every solution of equation (1.1) is oscillatory.

Proof. Assume that {xn} is a nonoscillatory solution of equation (1.1). Without loss of generality, we
may assume that xn > 0 for all n ≥ n0 + θ. The proof for the case xn < 0 is similar and is omitted.
Define

zn = xn + cnxn−k, n ≥ N ∈ N(n0),

then zn > 0, and from equation (1.1), and conditions (H3) and (H4), we have

(2.9) ∆(an∆zn) +M1Qnx
β
n+1−l ≤ 0, n ≥ N.

From (2.7) and (2.9), we obtain ∆(an∆zn) ≤ 0 for all n ≥ N1. Therefore ∆zn ≤ 0 or ∆zn > 0 for all
n ≥ N.

If ∆zn ≤ 0 for all n ≥ N1 ≥ N then by (H1), we obtain zn → −∞ as n→∞, which is a contradiction.
Hence ∆zn > 0 for all n ≥ N. From the definition zn, we obtain xn ≥ (1− cn)zn, and using this in (2.9)
we have

(2.10) ∆(an∆zn) +M1Qn(1− cn+1−l)
βzβn+1−l ≤ 0, n ≥ N.

Define

wn =
ρnan∆zn

zβn−l
, n ≥ N,

then wn > 0, and from (2.10), we obtain

(2.11) ∆wn ≤ −M1ρnQn(1− cn+1−l)
β +

∆ρn
ρn+1

wn+1 − Lβ
ρn

ρ2n+1an−l
w2
n+1, n ≥ N

where we have used {an∆zn} is positive and nonincreasing and L = zβ−1N−l. Summing the inequality (2.11)
from N to n− 1 and using completing the square, we have

n−1∑
s=N

[
M1ρsQs(1− cs+1−l)

β − (∆ρs)
2as−l

4Lβρs

]
≤ wN − wn ≤ wN .

Taking lim sup in the last inequality, we obtain a contradiction with (2.8), and the proof of the theorem
is complete. �

Remark 2.5. Let qn ≡ 0 in equation (1.1). Then Theorem 2.2 reduced to the known oscillation criterion
for the equation

∆(an∆(xn + cnxn−k)) + pnf(xn+1−l) = 0

given in [1], and the references cited therein.
In the following we establish oscillation results for equation (1.2).

Theorem 2.6. Let assumptions (H1)− (H5) hold. Further assume that there is a constant α3 such that
0 ≤ cn ≤ α3 < 1, for all n ∈ N(n0). If l ≥ m+ 1, and

(2.12) α3 +M2

∞∑
n=N

1

an

n−1∑
s=n−l+m

qs ≤ 1

then any solution {xn} of equation (1.2) is either oscillatory or satisfies limn→∞ xn = 0.
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Proof. Suppose that {xn} is a nonoscillatory solution of equation (1.2), say xn > 0 for n ≥ N ≥ n0 + θ.
Define

(2.13) wn = xn − cnxn−k −
n−1∑
s=N

1

as

s−1∑
t=s−l+m

qtg(xt+1−m).

Then as in the proof of Theorem 2.2, we have

(2.14) ∆(an∆wn) ≤ −M3M1x
β
n+1−l ≤ 0

for all n ≥ N, and conclude that {an∆wn} is eventually nonincreasing. Therefore ∆wn < 0 or ∆wn ≥ 0
for all n ≥ N1 ≥ N.

Assume that ∆wn < 0 for all n ≥ N1, then by (H1) we have limn→∞ wn = −∞. We claim that {xn}
is bounded from above. If not, there exists an integer N2 ≥ N1 + k such that

(2.15) wN2 < 0, and max
N1≤n≤N2−k

xn = xN2−k,

and we have

0 > wN2
= xN2

− cN2
xN2−k −

N2−1∑
s=N

1

as

s−1∑
t=s−l+m

qtg(xs+1−m)

≥

[
1− α3 −M2

N2−1∑
s=N

1

as

s−1∑
t=s−l+m

qt

]
xN2−k ≥ 0.

This contradiction shows that {xn} must be bounded from above, so there exists a constant L > 0 such
that xn ≤ L for all n ≥ N1. It follows from (2.12) and (2.13) that

wn ≥ −L

[
α3 +M2

N2−1∑
s=N

1

as

s−1∑
t=s−l+m

qt

]
≥ −L > −∞,

which contradicts the fact that limn→∞ wn = −∞. Hence ∆w > 0 for n ≥ N1.
In this case, we see that L is a nonnegative constant , where L = limn→∞ an∆wn. Summing (2.14)

from N1 to ∞, we obtain

∞ > aN1
∆wN1

− L ≥M3M1

∞∑
n=N1

xβn+1−l

which implies that {xβn} is summable, and thus limn→∞ xn = 0. This completes the proof. �

Finally we obtain oscillation results for equation (1.2) when l = m, and for this case the condition

0 < g(u)
u ≤M2, is not needed.

Theorem 2.7. Let assumptions (H1)− (H4) hold. Further assume that l ≥ k + 1,

(2.16) 0 ≤ cn ≤ α3 < 1 for n ∈ N(N0),

(2.17) 0 < β ≤ 1,

(2.18)

∞∑
n=N

Qn =∞,

and

(2.19) lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt =∞.

Then every solution of equation (1.2) is oscillatory.
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Proof. Let {xn} be a nonoscillatory solution of equation (1.2). Without loss of generality, we may assume
that xn > 0 and xn−θ > 0 for all n ≥ n1 ∈ N(n0). The proof for the case xn < 0 is similar and is omitted.
Define

zn = xn − cnxn−k, n ≥ n1.
From equation (1.2), and conditions (H3) and (H4) we have

(2.20) ∆(an∆zn) ≤ −M1Qnx
β
n+1−l ≤ 0, n ≥ N ≥ n1.

Hence {zn} and {an∆zn} are eventually of one sign for all n ≥ N. Then by Lemma 2.1 of [12], and (H1)
the sequence {zn} satisfies one of the following two cases for all n ≥ N :

(i) zn > 0, an∆zn > 0,∆(an∆zn) ≤ 0;
(ii) zn < 0, an∆zn > 0,∆(an∆zn) ≤ 0.

Case (i): From the definition of zn, we have xn ≥ zn, and using this in (2.20), we obtain

(2.21) ∆(an∆zn) +M1Qnz
β
n+1−l ≤ 0, n ≥ N.

Define

wn =
an∆zn

zβn−l
, n ≥ N,

then wn > 0 for n ≥ N, and from (2.21), we obtain

∆wn = −M1Qn −
an∆zn

zβn+1−lz
β
n−l

∆zβn−l

≤ −M1Qn −
−βan∆zn

zβn−lz
β
n+1−l

∆zn−l

≤ −M1Qn, n ≥ N.
Summing the last inequality from N to n− 1, we have

M1

n−1∑
s=N

Qs ≤ wN − wn ≤ wN .

Letting n→∞, we obtain a contradiction with (2.18).
Case(ii): From the definition of zn and (2.16), we have

(2.22) xn−k ≥
(
−zn
α3

)
.

Using (2.22) in (2.20), we obtain

∆(an∆zn)− M1Qn

αβ3
zβn+1−l+k ≤ 0, n ≥ N.

Summing the last inequality from s to n− 1 for n > s+ 1, we have

(2.23) an∆zn − as∆zs −
M1

αβ3

n−1∑
t=s

Qtz
β
t+1−l+k ≤ 0.

Summing again the last inequality from n− l + k to n− 1 for s, we have

zn−l+k − zn ≤
M1

αβ3
zβn−l+k

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt

or

zn−l+k

zβn−l+k
≥ M1

αβ3

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt.
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If β = 1, then from the last inequality, we obtain

α3

M1
≥ lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt

which is a contradiction with (2.19). Next, assume 0 < β < 1. Since zn is negative and increasing, we
have limn→∞ zn = δ ≤ 0. If δ = 0, then from (2.23), we obtain

lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt ≤ 0

since 1− β > 0, which is a contradiction with (2.19). Now assume that δ < 0. From (2.23) we have

∆zs +
M1z

β
n

αβ3as

n−1∑
t=s

Qt ≥ 0.

Summing the last inequality from N to n− 1, and rearranging we obtain

αβ3 zN

M1z
β
n

≥
n−1∑
s=N

1

as

n−1∑
t=s

Qt.

In view of δ < 0,
αβ3 zN

M1z
β
n

has an upper bound, so

lim
n→∞

n−1∑
s=N

1

as

n−1∑
t=s

Qt <∞

which again contradicts (2.19). This completes the proof of the theorem. �

Remark 2.8. Let qn ≡ 0 in equation (1.2), then Theorem 2.5 reduced to the known oscillation criteria
for the equation

∆(an∆(xn − cnxn−h)) + pnf(xn+1−l) = 0

given in [1, 14], and the references cited therein.

3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the second order nonlinear neutral difference equation of the form

(3.1) ∆ (n∆ (xn + 2xn−1)) +

(
2n+ 1 +

1

3n

)
x3n−2

(
1 + x2n−2

)
− 4

3n
x3n

(1 + x2n)
= 0, n ≥ 2.

Here an = n, cn = 2, pn = 2n + 1 + 1
3n , qn = 4

3n , k = 1, l = 3, m = 1, f(u) = u3(1 + u2), and

g(u) = u3

1+u2 . By taking β = 3, and M1 = M2 = M = 1, we see that conditions (H1)−(H4) hold. Further,

pn − qn−m+l = 2n+ 1 +
1

3n
− 4

3n+2
> 1,

and
∞∑
n=2

1

n

n−1∑
s=n−2

4

3s
=

∞∑
n=2

4

n

(
1

3n−2
+

1

3n−1

)
<∞.

Therefore all the conditions of Theorem 2.2 are satisfied, and hence every solution of equation (3.1) is
oscillatory. In fact, {xn} = {(−1)n} is one such oscillatory solution of equation (3.1).
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Example 3.2. Consider the second order nonlinear neutral difference equation of the form

(3.2) ∆

(
n

(
∆

(
xn +

1

2
xn−1

)))
+

(
n+

1

2
+

1

2n+2

)
x
5/3
n−1

(
1 + x4n−1

)
− 1

2n
x
5/3
n−1

(1 + x2n−1)
= 0, n ≥ 1.

Here an = n, cn = 1
2 , pn = n+ 1

2 + 1
2n+2 , qn = 1

2n , f(u) = u5/3(1 + u4), g(u) = u5/3

1+u4 , k = 1, and l = 2.

With β = 5
3 , M = 1, and M1 = 1 we see that the conditions (H1) − (H4) are satisfied. Further we see

that

1− cn+1−l =
1

2
> 0,

and

Qn = pn −Mqn = n+
1

2
− 3

2n+2
≥ 9

8
> 0.

By taking ρn ≡ 1, we see that the condition (2.8) becomes

lim
n→∞

sup

n−1∑
s=1

[
Qs (1− cs+1−l)

β
]

=

∞∑
1

(
1

2

)5/3(
n+

1

2
− 3

2n+2

)
=∞.

Hence all conditions of Theorem 2.4 are satisfied, and therefore every solution of equation (3.2) is oscil-
latory. In fact, {xn} = {(−1)n} is one such oscillatory solution of equation (3.2).

Example 3.3. Consider the second order nonlinear neutral difference equation of the form

(3.3) ∆

(
n∆

(
xn −

1

2
xn−2

))
+

1

3

(
4n+ 2− 1

4n+3

)
x3n−1

(
2 + x2n−1

)
(1 + x2n−1)

− 1

4n+3

x3n
(1 + x2n)

= 0, n ≥ 1.

Here an = n, cn = 1
2 , pn = 1

3 (4n + 2 − 1
4n+3 ), qn = 1

4n+3 , f(u) = u3(2+u2)
(1+u2) , g(u) = u3

(1+u2) , k = 2, l =

2, m = 1. With β = 3, M1 = 1, M2 = 1, and M = 1, we see that the conditions (H1) − (H5) hold.
Further we see that

∞∑
1

1

an
=

∞∑
1

1

n
=∞

and

α3 +M2

∞∑
n=1

1

an

n−1∑
s=n−l+m

qs =
1

2
+

∞∑
1

1

n
(

1

4n+2
)

<
1

2
+

1

48
< 1.

Hence by Theorem 2.4, every solution of equation (3.3) is either oscillatory or tends to zero as n → ∞.
In fact {xn} = {(−1)n} is one such oscillatory solution of equation (3.3).

Example 3.4. Consider the second order nonlinear neutral difference equation of the form

(3.4) ∆

(
n∆

(
xn −

1

2
xn−1

))
+ (2 + 2n)

(
15

8
(3n+ 2)2

2n+1
3 +

1

4
n
3

)
x

1
3
n−1

(1 + |xn−1|)
− 2

4
n
3
x

1
3
n−1 = 0.

Here an = n, cn = 1
2 , pn = (2 + 2n)[ 158 (3n + 2)2

2n+1
3 + 1

4
n
3

], qn = 2
4n/3

, k = 1, l = 2, and Qn =

(2 + 2n)( 15
8 (3n+ 2)2

2n+1
3 + 1

4n/3
)− 2

4
n
3
> 0. Further, we see that

∞∑
n=1

Qn =

∞∑
n=1

[
15

8
(2 + 2n)(3n+ 2)2

2n+1
3 + 2

n
3

]
=∞,

and

lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

Qt = lim
n→∞

sup(
1

n− 1
)[

15

8
(2 + 2n−1)(3n− 1)2

2n−1
3 + 2

n−1
3 ] =∞.
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Hence all conditions of Theorem 2.7 are satisfied, and therefore every solution of equation (3.4) is oscil-
latory. In fact {xn} = {(−1)n2n} is one such oscillatory solution of equation (3.4).

4. Conclusion

In this study, we have obtained new sufficient conditions for the oscillation of all solutions of equations
(1.1) and (1.2) via Ricatti transformation and inequalities. Further the oscillation criteria obtained here
are applicable to deduce oscillation results for the equations (3.1) to (3.4). The same cannot be deducible
for equations (3.1) to (3.4) from any previously known oscillation criteria given in [4, 7, 8, 9, 10, 11, 13,
15, 17], since an 6≡ 1, and f 6= g. Therefore the results obtained here improve, extend and generalize the
existing results.
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