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MODELING OF THERMOELASTIC WAVES IN ROTATING CYLINDRICAL
PANEL BY USING MATRIX FROBENIUS METHOD

HARJIT SINGH

ABSTRACT: In this paper, free vibrations are investigated in a homogeneous transversely isotropic, rotating
cylindrical panel, in context of the linear theory of thermoelasticity. Three displacement potential functions have
been introduced in the equations of motion and heat conduction in order to decouple purely shear and
longitudinal motions. The purely transverse wave is not affected by thermal field. By using the method of
separation of variables, the system of governing partial differential equations is reduced to four second order
coupled ordinary differential equations in radial coordinate. The Matrix Frobenius method of extended power
series is employed to obtain the solution in radial direction. The secular equations are obtained by using traction
free and thermally insulated boundary conditions. In order to illustrate the analytic results, the numerical
solution of various relations and equations has been carried out to compute the lowest frequency, phase velocity,
frequency shift and damping factor of vibrations in a rotating cylindrical panel of zinc material with MATLAB
software programming. The computer simulated results have been presented graphically.
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1. INTRODUCTION

As one of the common structural element in many engineering fields such as
aerospace, civil, chemical, mechanical, naval and nuclear etc. cylindrical panel has been of
interest to large number of researchers. The effect of rotation on cylindrical panel has its own
important in the design of high speed steam, gas turbine, rotation rate sensors etc. It is also
well known that, when a structure is exposed to high rate of thermal loading, the induced
displacement and temperature field cannot analyze independently. In this case, thermo
mechanical coupling must be taken into account in analysis. However, the analysis of
vibrations characteristics of thermo elastic rotating cylindrical structures is more complex
because of the equation of motion together with boundary conditions. The  previous
collection of works on vibrations of isotropic curved panels was published in [7, 10, 12, 24].
An iterative approach to predict the frequencies of isotropic cylindrical shells and panels
based on three-dimensional elasticity was employed by Soldatos and Hadhgeorgiou [20].
Leissa [6] investigated the vibrations of thick cylindrical panel using the Ritz Method.
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Thermal stresses and deflections that occurred in a composite cylinder due to a uniform rise in
temperature were studied by Hallam and Ollerton [5] and they compared the obtained results
by a special application of the frozen stress technique of photo elasticity. The theory of
thermoelasticity is well established by Nowacki [11]. MacQuillen and Brull [9] investigated
the coupled thermoelasticity of thin shell by using Galerkin Method. They considered the first
order shell theory, based on love assumptions, and essentially ignored normal stress,
transverse stress and rotary inertia, but assumed a non-linear temperature distribution across
the shell thickness. The behavior of multilayered cylinder subjected to high rate of thermal
loading was studied by Wang et al [23]. GaoC and Noda [4] presented clear investigations on
the thermal-induced interfacial cracking of magneto electro elastic materials under uniform
heat flow. The point temperature solution for a penney-shaped crack in an infinite transversely
isotropic thermo-piezo-elastic medium subjected to a concentrated thermal load was analyzed
by Chen et al [1]. Wang [22] studied the vibration of functionally graded multilayered
orthotropic cylindrical panel under thermo mechanical load. Martin and Berger [8] analyzed
the propagation of waves in woods, especially free vibrations in a wooden pole. A three-
dimensional vibration of a simply supported, homogeneous transversely isotropic coupled
thermoelastic cylindrical panel was examined by Sharma [17]. Sharma and Sharma [19]
extended the analysis [17] to study the vibration of transversely isotropic thermoelastic
cylindrical panel in the context of generalized thermoelasticity. Wave propagation in a
generalized thermoelastic solid cylinder of arbitrary cross section was studied by Ponnusamy
[13]. Suhubi and Erbey [21] investigated longitudinal wave propagation in thermoelastic
cylinder. Sharma et al. [18] presented the clear investigation of the vibrations of a
thermoelastic cylindrical panel with voids. Selvamani and Ponnusamy [15] analysed the three-
dimensional wave propagation in a homogeneous isotropic rotating cylindrical panel in the
context of three dimensional linear theory of elasticity. Ponnusamy and Selvamani [14]
extended the analysis [15] to study the flexure wave propagation in a homogeneous isotropic
rotating cylindrical panel in the context of three dimensional linear theory of elasticity.

The objective of the present paper is to investigate the three dimensional vibrations in
a simply supported, homogeneous transversely isotropic, rotating cylindrical panel. Three
displacement potential functions are employed for solving the equation of motion and heat
equation. The purely transverse waves get decoupled from the rest of motion and are not
affected by thermal field. By using the method of separation of variables the model of instant
vibration problem is reduced to a system of four second order coupled ordinary differential
equations in radial coordinate. The secular equation which governs the three dimensional
vibration of rotating cylindrical panel has been derived by using Matrix Frobenius method.
The numerical solution of secular equation has been carried out by MATLAB programming to
compute lowest frequency, frequency shift, phase velocity and thermoelastic damping factor
which have been presented graphically with respect to the various parameter for first two
modes of vibrations.

2. FORMULATION OF THE PROBLEM AND FORMAL SOLUTION

We consider a homogeneous transversely isotropic, thermal conducting elastic
cylindrical panel of length L at uniform temperature T, in the undisturbed state, initially,

96


Galaxy
Text Box
96


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2015, VOLUME 5, ISSUE 1, p.95-117

with rotational speedQ’. The inner and outer radius of the cylinder is given by a andb,
respectively with thicknessh . The basic governing equations of motion and heat conduction
of three-dimensional linear coupled thermoelasticity for homogeneous, transversely isotropic,
materials with rotation speed Q' about z-axis in cylindrical co-ordinates (r,H,z) system, in

the absence of body forces and heat source, are given by [15]

1 O — Oy , _ 0%
Otrr + ~Orp0 + Oy, + "+ png u =p 2r

r r ot

20,, ) o%u,

Orgr +=Cppg + 0, + —+pQ"U,=p—r 1)

r r ot

rz — aZUZ
Orr +F091,9 +O_zz,z + r =p 8’[2
1 2 O . . .

Kl (T,rr +r T,r +r T,HH)+ KST,ZZ _pCeT = TO [ﬂl(err + e69)+ﬂ3ezz (2)

The stress-strain relations for homogeneous, transversely isotropic, thermo elastic material in
cylindrical co-ordinate system is

O, =C .8, +C1,8y, +C3€,, — OiT

Ogo = Cio8 +Ci48yp +Cis8,, — BT

O, = Ci€y +Ci3€yy +Cy3€,, — T 3)
=2C,,e,,

rz

Org = Zceserel Op =2C484, O

The relation between strain and displacement are

ou, lou, u, ou, 1(ou, 1oau,
err=_’eee=__ B 7 = T s e&z:_ - Tt
or rog r 0z 2\ 0z r o8
er‘g:i 1%_}_%_[]_9 ’ erzzi 8ur +ai (4)
2\r 08 or r 2\ oz or
c,,—C
Cee = MTlZ b= (011 + ClZ)al +Cas, Py = 2C150; +Cy02, (5)

Here u:(ur, Uy, uz) is the displacement vector; T(r, &, z,t)is the temperature change;
C..» Cp Ci3Cyy and c,, are five elastic constants; o, a,and K, , K, are the coefficients of

linear thermal expansion and thermal conductivities along and perpendicular to the axis of
symmetry respectively; p and C, are the mass density and specific heat at constant strain

respectively, e;the strain tensor ; o the stress tensor. The comma notation is used for

spatial-derivatives and superimposed dot denotes time derivatives.

We consider the free vibrations of a right circular cylindrical panel with rotation speed
Q' subjected to traction free and thermally insulated boundary conditions on the surfaces
r =a,b and which is simply supported on the edges z=0 and z=L.

Here we have used the following non-dimensional quantities

r Z v, t u u u T
=_,Z=_, =_2,U =_F’U =—0’U =_Z’®:_
- R L' "R R ‘R * R T,
1 1
(Tﬁf’re‘g’rzz):_( I'I"O-HH’O-ZZ)’(THZ’sz'Tﬁﬁ):_(O-ezio-rz’o-re)
11 Cpy
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R = IC]_ 1 CZ = ' 3 1 4 =
2 11 11 Cy Cy
K:&1 B=2 5 _AT
K, B Cpy
2 *
g = T, ,AR=E1Q*:CO_R (6)
pCeCyy L V2

« C. R - oo
where @ =—2 v, = fcﬂ and Q=" are the characteristics frequency of vibrations,
1 P vV,

velocity of purely elastic shear wave in medium and the non dimensional circular frequency,
respectively.

Fig.1. Geometry of problem
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Upon using non-dimensionless quantities (6) in equations (1) to (2), we get

? 10 1 1 & o2
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In order to facilitate the solution, we introduce potential functions w, G, W as used by
Sharma [17]
_loy oG 106G oy oW
Rl A U,=—-"—"-"2, U, =A, — 8
fTE00 oes Y foo oF Ut ARaz ®)

Using equation (8) in equations (7.1)-(7.4) we find that G,W,y,® as used by satisfies the
equations

o o’ 2W

ViHCA =0 TR G- AL+ f0=0 1)
oL or?

, » G A 62

~C,VZG +¢,| V2 +C— ~-pp©=0 (9.2)
2

V? + KA az—wczRi ®+£ﬁi ViG - BA; aZV\zl =0 (©.3)
oz v, ot g ot oz

o> ¢, 0° T

V2+— 4 -2 4+ —Q%y=0 9.4
( h"ar T, }/’ 64

where
2 2 RZ
¢ 10,10 L R
o¢° ¢o¢ ¢ o0 Cyy
The equation (9.4) represents purely transverse wave, which is not affected by the temperature
change. This wave is polarized in planes perpendicular to z-axis. We consider the free
vibrations of a cylindrical panel with simply supported edge and rotating with speed Q'

V2= (10)
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subject to traction free and thermally insulated boundary conditions at the surfacesr =a,b.
Therefore, we assume solution for three displacement functions and temperature change as

G(&,0,2,7) =G (&)sin(maZ )exp {i (n—”e—Qr j}
(04
W (&,6,Z,7) =W (&)sin(mzZ )exp {i (n—ﬂe—Qr J}
(94

O(&,0,2,7) = O(&)sin(maz Jexp {i (n—ﬁQ—Qz— j}

(04

(24

w(&,0,2,7) = W(é)Sin(mﬂZ)em{i (”—”9 -Qr )} (11)
The solution are applicable to both closed hollow cylinder and open ones (panels), depending
upon whether nz is an integer and not.
(24

On using solutions (11) in equations (9), we get

(V2+0,)G +g,W+5©=0 (12.1)
—,V2G+C,(V2+ g, W - BB O =0 (12.2)
0:(V2G + W )+ (V2 +g,)@ =0 (12.3)
(Vi+k?)w =0 (12.4)

where
Vis dds; %5_{?—5 &

g, = cZ[QZ(1+ VSRZFZ)—tE] .0, =CtZ, g, =Q° —z—ltf

2

H 42 ) 2
0.~ %o K g 00 o [Q{lﬂrzj_tg}
@ c, 1o} c, c,

R (14)
w Q

Clearly in the transformed domaln, the cyllndrical panel encloses the region 7, <r<mn,,

0<Z<land0< @< a,where 771:% and 772:2.

R
The equation (12.4) is a Bessel’s equation and its possible solutions are
E,J 5 (k,r)+EpY,;(k,r) , kZI>0
g(r)={E,r’ +Eir” ,  kZ=0 (15)
E, 1, (kir)+ E;K,(kr) , kZ<0

where k;* =-k>. Here E, and E; are two arbitrary constants, and Jyand Y, are Bessel

functions for first and second kind and Iﬂ and Kﬁ are modified Bessel functions for the first
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and second kind respectively. Generally k/ =0 , so we go on with our derivation by taking

the form of & fork’ <0, the derivation for k? >0 is obviously similar. Therefore the
solution valid in case of cylindrical panel is taken here as

w7 (r)=E;1,(kir)+ E;K, (kir) (16)
The equations (10.1)-(10.3) are system of coupled differential equations, which can be written
in matrix form as

AViZ =-BZ (17)
1 0 O 0, 9, B G G

whereA=|-c,c, 0 B=|0 c¢g, -88 | Z=|W | Z=|W (18)
95 0 /' 0 gt pu, © ©

3. MATRIX FROBENIUS METHOD

A standard technique for solving ordinary differential equations is the method of
Frobenius, in which the solutions are in the form of power series. Clearly £ =0 is a regular

singular point of the matrix differential equations (14) and hence, we take the solution of type

2(s,)= > 2,(s)6™ (19)
G(s,¢) L (s)
where  Z(s,&)=|W(s,&)| , Z,(s)=| M, (s)].
@(S,(f) Nk(s)

Here the coefficients L (s),M,(s),N,(s) and the parameter s (real or complex) are to be
determined. On substituting expressions (19) in equations (17), we get

AZ (52— p?)e 2 + AZ, (s +1) - g2 e + kf:[Az |5 +k+2) - g2+ BZ, Je* =0 (20)

Equating to zero the coefficients of lowest power r*?

equation, we obtain

in the resulting coupled differential

Als? - %)z, =0 (21)
The system of equations (21) will have non-trivial solution if and only if
A(s?-p7) =0
This implies that  (s? — 52 J'|A|=0 (22)

Because the matrix A is non singular, therefore the above condition (22) results in the
following indicial equation

(s>-p%f =0 (23)
The roots of indicial equation (23) are given by
j=12,3
s, = {ﬂ j

-p =456 (24)
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For this choice of the roots of indicial equation, the system of equations (19) leads to the
eigenvector

;
c, -—a
Z, =11 =2 —|L 25
0 |: C2 ﬂ* :| 0 ( )
Again equating to zero the coefficient of next lowest power £, we obtain
Al(s+17 - p?*1Z, =0 (26)

The choice of s; (j =1 to 6)given by equation (24) provides us
[(s+1) - B°1%|Al =0
Sothat Z, =0 (27)

s+k

for each s; (j=1to 6). Now equating to zero the coefficient of £ , we get the recurrence

relations of Z,(s;) for k> 2 as

[(s+k+2)-p*1AZ ,+BZ =0 (28)
On simplification this provides us
1
Z..,= CzZ, k=2 29
k+2 [(S+k+2)2—ﬂ2] k ( )
where the matrix C is given by
-0, -0, T ﬂ*
Co_ap) | %€ (00 00) (Boc)p (30)
C, C2_ C,
959, gs(gz _,Btf) (95 _ 94)
B B
The successive use of recurrence relations (29) along with equation (27) provides us
1
Z,(s)= c*z,, vk=1,2,... (31
k) [(s+2) - 1l(s +4) - p21---[(s+ 2k - p°1 ey
Z,., =0, A k=0, 1, 2, 3... (32)

Thus the solution (19) becomes
Z(s,r)= iZZK(s)rS+2k (33)
k=0

where Z,, is defined in equation (31). The convergence of series (33) must of course consider.

4. CONVERGENCE ANALYSIS
According to Cullen [2], the matrix series f(C)= Zaka, C being a square matrix is
k=0
convergent if p(C)< p’ where f(z) is a function defined by a convergent power series

f(z)= iakzk for|z| < p’
k=0
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Here p(C) is the spectral radius defined by p(C)< max Z‘a”‘ where C=(a;)is a square

matrix of orderm’, of the disk D'=1{z ¢ : |z|< p(C)} which encloses all the eigen values

of the matrix C according to Gerschgorian circle theorem. Moreover, the function f(C)

being analytic, the series can be differentiated term by term and derived series also have same
radius of convergence. For the square matrix C defined in the equation (27), we have

C) < max zsl‘aij‘ (34)
=1
where i‘a”‘ = ‘gl +0, + ﬁ*‘ ,

|9,C5 + 9,85+ 9:C, + BB —C. 5
‘aZJ‘_‘ c, |

ag, +ag, +a —apt’

Z‘aS]‘ _| 0, g, ﬂ ﬂ 0,4 ﬂ | (35)
5 |

The equation (33) Wlth the help of equation (31) and (32) can be rewritten as

> Z, () =2,y a, CX
k=0 k=0

r2k

[(s+2) - p*1l(s +4) - p*1--[(s +2k) - p°]
_iim |[(s+2k+2 A _,

k—)oo‘ é: ‘ N

where a,, =

ay,
Thus, we have p' = lim|—=—
k—o a2k 2

This shows that the power series converges in the entire plane and its radius of convergence is
given by

3
p(C)< max Z‘aij‘<pl (36)
=

Using above facts, we note that the power series of matrix C is convergent for all finite and
non-zero value of “ &,

Case I: When the roots of indicial equation are distinct and differ by integer
The general solution of equation (19) has the form

- ZEiZ(ﬂ,é) (37)

d i-1
and the quantities E; (i =1to6) are arbitrary constants to be evaluated by using boundary

condition. Hence, the functions G (&), W(é) T(&) can be written as

GEWw(e)e(s)= ZE{ W,(5,£).6,(8,£)) (38)

where

i-1 ©
where  Z(s, & _d {522% } . i=1,2,34,56
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S6a- S exL | i im1234s0
vvi(s,g)ngi: ésiMZK(s)gzﬂ : i=12,34,56
@i(s,§)=gsiill §SiN2k(S)§2k} © 1=1,2,34,56 (39)

The potential functions G, W,®, v written from equations (11) by using equations (39)
along with equation (18) as under

W {ZE{ W(5.£). iw,f)}}sin(mﬂz)exp{i (p0-02c)}

w(&.6.2,7)= {E7Iﬁ(k1§)+ = Kﬁ(klf) }sm(mn Z)ep{i (60 -Q1)} (40)
Case I1: When the roots of the indicial equation are distinct and do not differ by integer
Thus the general solution of equation (19) has the form

3 _ 3 _
=D EZ(B.6)+ 2 EZ(-5.¢) (41)
i=1 i=1
Here E/ (i=1, 2, 3) are arbitrary constants to be evaluated by using boundary conditions.
Hence, the functions G (&), VV(;‘) O(£) can be written as

Gew()e()= ZE{ W,(8,£).6,(8.)}+ ZE{ W (- 5,£).8,(- 5.2)} (42)

The potential functions G, W,®,  written from equations (11) by using equations (42)
along with equation (18) as under

GEw(e) @(5)}=
{ZE G.(8.e)W(8.€).6,(8.)}+ ZE G- 8. EW(-8.6)8,(-5 5)}}sin(mn2)exp{i (B6-Q7))
w(&,6,2,7)= {E7 | ﬂ(k1§)+ E/K ﬂ(klg) }sm(m;r Z)expd{i (B0 —Q1)} (43)

Thus we have derived a convergent formal solution of the model for both cases of the roots of
indicial equation.
5. BOUNDARY CONDITIONS

We consider the free vibrations of a cylindrical panel which is subjected to two types
of boundary condition at the lower and upper surfaces (¢ =7, ,7,)
(a) Mechanical condition: The surfaces (5 = 771,772) of panel have been assumed to be
traction free, so that
T =Ty =Tg= 0 (44)
(b) Thermal condition: The surfaces (& =7,,7,) of panel are either to be thermally
insulated or isothermal. This leads to the conditions:
Insulated: 0,=0 (45.1)

Isothermal: ©®=0 (45.2)
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6. SECULAR EQUATIONS

In this section we shall derive secular equations for thermoelastic cylindrical panel,
subjected to traction free, thermally insulated and traction free, isothermal at lower and upper
surface (& =17, ,7,).

The displacement and stresses are obtained as

ué—( X +§ jsm(mﬂz)exp{ i (50-Q0))

U, (-2 6 sinmaz)emi (p0-c2c)

U, =t W cos(mzZ Jexp i (80 —-Qr)} (46)

‘. {glc—n%c—;'_zcgfz G- Z‘Eﬂ (—' z j+c2 2w}.n(mﬂz)exp{ i (p0-07)

cu=e| - 2La 26 g Lo o 7 Jsinmaz)e i (50 -0}
— t,_[—C_S’—§1/7+VV’}Sin(m7rZ)exp i (po—0r)) (47)

Case I: Upon using the equations (38) and (16), with the help of equations (40), (46) and (47),
the stresses and temperature gradient are obtained as

Ty = {26: EF+E F, +E F;} sin(mzZ )exp i (B0 -Qr)}
T = {ZG:Ei F A E F+E)F, } sin(mzZ )exp i (80— Q1))
i=1

- {i EF"+E,F,+E. Ff*l} cos(mzZ )exp i (B0 —-Qr)}

6

®, = Z{EiFim}sin(mer)em{i (B0 -Qr)} (48)

i=1
where

- {2? gl y jc: (ﬂ,g)mztfvv—i(ﬂ,g)}

ST

3
G (5.0 W (3.8)] 7 =| £,2)
B.¢) (49)

|
{ 25 515 2§ﬁ (%, 5)} Fr - { k217 (kE) + ;l'ﬁ(kif)—?—j'ﬂ(kiéz)}
[
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Employing the boundary conditions (44) and (45), we again get a systems of eight
simultaneous equations in E,,E,,E, ,E, ,E;,E;,E, ,E; , which will have a non-trivial

solution if the determinant of coefficients vanishes. This requirement of non trivial solution
leads to secular equation

|py|=0 Vi, j=12,34,56,78 (50)
204 ' 4:8
plj:n_Gj(ﬁ ) (gl j (ﬂm)+0tW(ﬂ7h) =12,34,56
1 l
2c, 8K, ., 2C ,
17 = _L Iﬂ(kl 771)"'—42’8 Iﬁ'(kl 771)
h m
_2c,Bk , 2C ,
Pig = ﬁ LK) (kl 771) 4IB K (kl 771)
i 771
2 .
0, =—2L&1(B.n)+ 2L 5, (B.m,) Vj=123456
i T
! /4 k’ 1 2 !
P,; = —k; I (k1771) -1, (k1771) ,32 I (k1771)
i i
1 k' ’ 1
Pas = —K; °K (k1771) 7 Kﬂ(klnl) ﬂ_Kﬂ(kml)
1 1
Ps; :_éj'(ﬁ! 771)+VVj,(ﬂ' 771) v j=123456
Ps; = ﬁ Iﬂ(kl’ﬂl)i P3g = ﬁ Kﬁ(kl'nl)
i m
Insulated:
P =0|(Bm) ¥V i=123456
P,;=0, Pas =0
Isothermal
P =0;(Bm) V ji=123456 (51)
while p; ,1=5,6,7,8 can be obtained by just replacing 7, in p; by, .
a_, ¢ b_..q _(b-a)
H =212 g, =— =141, q=
EmERT Iy T T 45

is the thickness to mean radius ratio of the cylindrical panel.
Case I1: Upon using the equations (41) and (16), with the help of equations (43), (46) and
(47), the stresses and temperature gradient are obtained as
3
| SlER - ER L R e i )Joo i (50-00)

i=1

Ts

- {i{Ei F+E/ Fi*’ }+ E,F, +E; |:7*' } sin(mzZ )exp i (86 -Qr)}

i=1

il o K _
ry = {;{E F™+E'F }+ E,F,+EF, } cos(mazZ Jexpi (86— Q7))
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®, = ZG:{Ei F™ +E Fi*"*'} sin(mzZ )exp i (B0 -Q1)} (52)

i=1

Fi'=[2—4cs-'< 5.0+ (0~ 2L G et m)}

4
<[ 25 )|+ 22 )|
N [—ka;<k;¢>+ﬁK;(k;e)—ﬁ—imk;f)}
g &£ $ g
R =[-8/ 0+ 5] F - L@ Kﬁ(sz)}
R =8 5,¢) (53)

Upon employing the boundary conditions (44) and (45), we obtain systems of eight

simultaneously equations in unknownsE, ,E, ,E, ,E, ,E;,E; ,E,,E, , which will provide us

a non-trivial solution if the determinant of their coefficients vanishes. This requirement of
non trivial solution leads to secular equation for cylindrical panel as

=0 Vi, j=1 234,586,738 (54)
p:{j:plj v j=1. 2,318

= 25 g+ 0,226, ) o8- ) v =45 6

1 1

péjszJ v J:]" 27 37718

o, =—2LG1 (- pn)+ 2L 5, (- o) Vj=4,56
i h
p;,-zp3j vi=12 378
pi; ==G;(= Bom)+W/(= B.m,) Vj=4,56
P4 = Pa; vij=12 378
Insulated:
p;;=0)(-pm) Vj=456
Isothermal:
P, =0;(8m) Vi=4586 (55)

while pj, i=5,6,7,8 can be obtained by just replacing 7, in pj; by 7,.

7. SPECIAL CASES
In this section we shall discuss following particular cases of the secular equation in

case of axisymmetric thermoelastic cylinder, transversely isotropic elastic cylinder and
isotropic elastic cylinder and isotropic thermoelastic cylinder.
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7.1 Axisymmetric thermoelastic cylinder
The analysis in case of an axisymmetric cylinder can be obtained by setting =0 in
the present study throughout.
7.2 Homogeneous isotropic thermoelastic cylinder
In case of homogeneous isotropic material cylinder, we have

Yz, A+ u — _
c,=1, c,= , Cq=—7T, =1, K=1 56
=1oe= M e 7 (56)

where A, u being the Lame’s parameters. The analysis in the case of both axisymmetric

cylinder and non-axisymmetric cylinder can be obtained from the present one by using
relation (56) throughout.

7.3 Uncoupled thermoelastic cylinder

The analysis in case of uncoupled thermoelasticity can be obtained by taking & =0

throughout in present one.
8. NON-ROTATING CYLINDRICAL PANEL

The analysis in the case of non-rotating thermo elastic or elastic cylindrical panel can
be obtained by setting rotational speed Q" = Othroughout the present one.

9. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate and verify results obtained in previous sections, we present some
numerical simulation results. For the purpose of numerical computation, we considered the
closed circular cylindrical shell with central angle « =27 and integer n must be even since
the shell vibrates in full circumferential wave. We have considered zinc-crystal like material
whose physical data is given below (Dhaliwal and Singh [3]).

¢, =1.628x10" Nm~ , ¢, =0.362x10"* Nm~ , ¢, =0.508 x10"' Nm™

Cys = 0.627 x10* Nm?, ¢,, =0.770x10" Nm™ , B, =5.75x10° Nm~ deg™

B, =5.75x10° Nm*deg™, K, =1.24x10° Wm~?deg™, K, =1.24 x10° Wm™ deg™

" =5.01x10"s™, p=7.14x10°%kgm= , T, =296K

The frequency equation for closed cylindrical shell can be obtained by setting
(B=1=123...), where g circumferential wave number. Due to presence of dissipation term

in heat conduction equation, the frequency equation in general complex transcendental
equation provides us complex value of frequency (Q) For fixed value of g and k, the

lowest frequency (Q, ) and dissipation factor (D) are defined as

1 1
2 2
Q, = mRR(ﬁj . D=o R[ﬁj
C44 C44

where @, =Re(w) and @, = Im(w). The phase velocity (c,,) and frequency shift (Awy)
due to rotational are defined as:
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Awy, = |a)R () — g (0)| (57)
Wr (O) |
where @, (€') is the frequency in thermoelastic cylindrical shell with rotational speed Q'

The thermoelastic damping factor is given by

Q=2

Im(w)
Re(w)
The numerical computation has been carried out for #>0 , k>0 with the help of

MATLAB files .The secular equations (50) and (54) has been expressed in the form of
Q= g(Q) and the fixed point iteration numerical technique as outlined in Sharma [16] has

_o|?

(58)

R

been used to find approximate solution of Q= g(Q) near to the initial guess of the root with

tolerance (107°). The variations of computer simulated Lowest frequency, phase shift,
frequency shift and thermoelastic damping factor of fixed value of circumferential wave
number (5 =1,2), have been plotted versus different parameters in Figs 2 to 8.

Figs 2 and 3 represent the variations of phase velocity c,, of first two modes of
vibrations(f =1, 2), versus parameter ' of the simply supported cylindrical shell of zinc-

crystal like material, respectively. It is observed that the phase velocity increases
monotonically with parameter T" for I'<1 to attain maximum value at I'=1 and the
decreases for T'<1 in both first and second modes of vibrations. Moreover, it has been
noticed that the magnitude of phase shift to be larger in second mode of vibrations as
compared to that of first mode of vibrations. Fig 4 shows the variations of lowest frequency
versus rotational speed (") of simply supported cylindrical shell of zinc-crystal like material

for (A, =10) of the cylindrical shell in case of two different modes of vibrations (3 =1,2). It
is observed that the lowest frequency for each considered modes of vibrations(f =1,2)
increases monotonically with increasing the values of rotational speed (2") which is attributed

to increase of coupling effect of various interacting fields due to increase of rotation of
cylindrical shell. The magnitude of lowest frequency in case of second mode of vibrations is
noticed to be large as compared to that of the first mode of vibrations. Figs 5 and 6 represent
the variations of frequency shift due to rotation (Aw,) for each considered modes of

vibrations (3 =1,2), versus axial wave number t,_ for different values of rotational speed
(Q' :0.2,0.4,0.6,0.8) of the simply supported cylindrical shell, respectively. It is observed
that the magnitude of frequency shift due to rotation (Aw, ) increases to attain extreme values
at lower value of axial wave number t, and then decline to become steady and uniform at
higher values of axial wave numbert, .
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Fig.2. Phase velocity (c,,, ) of circumferential wave number (8 =1) versus parameter (T").
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Fig. 3. Phase velocity (cg,, ) of circumferential wave number (3 =2 ) versus parameter (I").

110


Galaxy
Text Box
110


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2015, VOLUME 5, ISSUE 1, p.95-117

1.8

1.6

14

1.2

0.8

Lowest frequency
[SY

0.6

0.4

0 0.2 0.4 0.6 0.8

Rotationa Speed

Fig. 4. Lowest frequency (Q,) of circumferential wave number (£ =1,2) versus rotational
speed (Q').
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Fig. 5 Frequency shift (A, ) of circumferential wave number (3 =1) versus parameter (t, )
for different values of rotational speed Q'.
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Fig. 6 Frequency shift (Awy ) of circumferential wave number (8 =2 ) versus parameter (t, )
for different values of rotational speed Q'
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Fig. 7 Thermoelastic damping factor (Q‘l) of circumferential wave number (,B =12 ) Versus
parameter (t, ) for different values of rotational speed €' .
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Fig. 8 Thermoelastic damping factor (Q‘l) of circumferential wave number (8 =1,2 ) versus
length to mean radius ratio (L/R) for different values of rotational speed Q' .

Fig. 7 shows the variations of the thermoelastic damping factor (Q’l) of each mode of
vibrations (3 =1,2) versus axial wave number t,_ for different values of rotational speed
(Q' = 0.2,0.4,0.6,0.8). It is observed that the thermoelastic damping factor (Q‘l) of

each mode of vibrations ( =1,2) increases monotonically with the increasing values of axial
wave number t, for different rotational speed (Q'=0.2,0.4,0.6,0.8) of the simply supported
cylindrical shell. It is also noticed that the magnitude of thermoelastic damping factor (Q‘l) of
higher mode is larger as compared to that of smaller mode. Moreover, the magnitude of
thermoelastic damping factor (Q‘l) for each mode of vibrations(ﬁzl,z) increases
monotonically with the increasing value of the rotation speed Q'of cylindrical shell. Fig. 8
displays the variations of the thermoelastic damping factor (Q’l) of each mode of vibrations
(8 =1,2) versus length to mean radius ratio (L/R) for different values of rotational speed
(Q’:0.2,0.4,0.6,0.8). It is observed that the magnitude of thermoelastic damping factor
(Q’l) of each mode of vibrations (8 =1,2) decreases monotonically with the increasing the
value of length to mean radius ratio (L/R) and increases monotonically with the increasing
value of the rotation speed Q' of cylindrical shell. It is also observed that the magnitude of
thermoelastic damping factor (Q’l) in case of first mode of vibrations is large as compared to
that of the second mode of vibrations. Table 1 represents the variations of lowest frequency
versus axial wave number (t ) in simply supported cylindrical shell of zinc-crystal like
material for rotational speed (Q'=0.2) for two modes of vibrations(f =1,2). It is noticed
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that the lowest frequency for each considered mode of vibrations(# =1,2) increases
monotonically with axial wave number (t, ). Moreover, it has been noticed that the magnitude

of lowest frequency of second mode of vibrations is noticed to be large as compared to that of
the first mode.

Table 1 The frequency parameter Q of a thermoelastic cylindrical shell versus axial wave
number t, for(Q'=0.2 )and (B =1, 2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 ]0.0223 | 0.1001 | 0.3016 | 0.3897 | 0.5819 | 0.7115 | 0.8417 | 0.8917 | 1.1314 | 1.2657

2 10.1851 | 0.2899 | 0.4842 | 0.5391 | 0.6816 | 0.8701 | 0.9216 | 0.9816 | 1.2140 | 1.3506

Table 2 Comparison of frequency parameter QQ = a)Rw/il— V2 5p/E for a simply supported
cylindrical shell form=1, v=0.3 and A, =20.

h Jij Reference[25] Present
R

0.05 1 0.0161 0.0162

2 0.0393 0.0394

0.01 1 0.0161 0.0162

2 0.0093 0.0094

0.002 1 0.0161 0.0162

2 0.0054 0.0055

In order to check the validity of present analysis, we have used MATLAB codes to
compute the non-dimensional frequency parametersQ = caRwlil—vz ip/E for non-rotating
elastic simply-supported cylindrical shell made of steel with mass density p = 7850kgm™2, the
Poisson’s ratio v =0.3 and Young’s modulus E = 2.1x10"Nm~with thickness to mean
radius ratio (% =0.002, 0.01, 0.05] and (m =1 v=0.3 %: 20) for selected mode
(,B =1,2). The obtained results have been compared with those available in literature [25].

The computed results have been presented in Table 2, which exhibit excellent agreement with
lowest frequency given in Table 1 and 3 of Ref [25]. Moreover, the computation of non-
dimensional frequency (Q) in a rotating and simply-supported elastic cylindrical shell made
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of copper material, have also been carried out for rotational speed Q' =0.4,0.6,0.8in case of
L =12 and t_ =1.The material propertie: 84 e given as [15]:
0 =8.96x10%kgm™>, 1 =8.20x10"kgms 2, u = 4.20x10"kgms?, v =0.3

E =2.139x10"*Nm™
The computed results have been presented in Table 3, which reveal a quite fair agreement
with the natural frequency estimation plotted in Fig.1 of Ref [15].

Table 3 The frequency parameter QQ = caR,/il— V2 ip/E for a simply supported isotropic
rotating elastic cylindrical shell (t, =1).

Rotational speed (') B Lowest frequency (Q)
0.4 1 1.5984
2 2.0913
0.6 1 1.6108
2 3.0713
0.8 1 2.1014
2 4.2013

10. CONCLUSIONS

The matrix Frobenius method in conjunction with modified Bessel functions have
been successfully employed to study the vibrations of a homogeneous, transversely isotropic
cylindrical panel based on three-dimensional thermoelasticity after decoupling the basic
governing equations of motion and heat conduction with the use of potential functions to
obtain the formal solution of simply supported rotating cylindrical panel. The convergence
analysis of matrix Frobenius method has been successfully carried out and proved. The
decoupled purely transverse mode is found to be independent of rest of the motion and
temperature change. The various thermal, rotational and mechanical parameters have
significant effects on the natural frequency, thermoelastic damping factor, and frequency shift
of the cylindrical panel and results are presented as dispersion curves. The thermoelastic
damping factor increases monotonically with axial wave number but decreases with length to
mean radius ratio of the cylindrical panel. The variation of lowest frequency has been found to
increase monotonically with rotational speed which is attributed to dissipation of energy,
thermo-mechanical coupling and random behavior of molecules due to thermal and rotational
variations. The magnitude of frequency shift attains extreme values at lower value of axial
wave number and falls down to become steady and uniform at higher value of axial wave
number. Resonance phenomenon has been found to occur because of increase of energy in
vibrations which is attributed to random behavior of molecules due rotational variations. The
present method may be robust and has computational suitability in addition to rapid
convergence as compared to other methods available in literature.
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