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ABSTRACT. A regular form (linear functional) u is said to be semi-classical, if it
satisfies the distributional equation (®u) + Wu = 0. Recently, all the symmetric
semi-classical forms of class s < 1 and all the symmetric semi-classical forms
of class s = 2 when ®(0) = 0 are determined. In this paper, by means of the
quadratic decomposition, we carry out the complete description of the symmetric
semi-classical forms of class s = 3, when ¥(0) = 0. Essentially, four canonical
cases appear.
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1. INTRODUCTION

Semi-classical orthogonal polynomials were introduced in [27]. They are a natural generalization of
the classical polynomials. Maroni [19, 21] has worked on the linear form of moments and has given a
unified theory of this kind of polynomials. A semi-classical form u satisfies the distributional equation
(®u) + Wu = 0 where ®(z) is a monic polynomial and ¥(x) is a polynomial with deg(¥) > 1. Since the
system of Laguerre- Freud equations corresponding to the problem of determining all the semi-classical
forms of class s > 1 becomes non-linear, the problem was only solved when s = 1 and for the symmetric
case [2]. Thus, several authors use different processes in order to obtain semi-classical forms of class s > 1.
For instance, we can mention the addition of either a Dirac mass or its derivative to semi-classical forms
[3, 12, 15], the product and the division of a form by a polynomial [1, 6, 11, 17, 22, 23, 25, 26]. So, some
examples of semi-classical forms are given in terms of classical ones. But, they are just few examples.
The aim of this work is to approach the problem of determining all the symmetric semi-classical forms
of class s = 3 when ¥(0) = 0. The second section is devoted to the preliminary results and notations
used in the sequel. In the third section, we find a relation between the symmetric semi-classical forms of
class s = 3 and the classical forms (see theorem 3.2). Using this relation, we give, in Section 3, all the
forms which we look for. Four canonical cases for the polynomial ® arise: ®(z) = z , ®(x) = z(2? — 1),
®(x) = 2(2% — 1)? and ®(z) = z(z* — 1). As it turned out, we obtained explicitly four nonsymmetric
semi-classical forms of class s = 1.

2. NOTATIONS AND PRELIMINARY RESULTS

Let P be the vector space of polynomials with coefficients in C and let P’ be its dual. We denote
by (v, f) the action of v € P’ on f € P. In particular, we denote by (v), := (v,2™),n > 0, the
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moments of v. For any form v and any polynomial h let Dv = v/, hv, dp and z~'v be the forms
defined by: (o', f) i= — (v, '), (hv, f) i= (0,hf), (S0, f) := F(0), and (z~1v, f) i= (v,00f) where

(o)) = IO ep
Then, it is straightforward to prove that for v € P/, we have
(2.1) 7 (zv) = v — (v)odo .

Let us define the operator o : P — P such that (o f)(z) = f(2%). Then, we define the even part ov by
(ov, f) := (v,0f). Therefore, we have [9, 20]

(2.2) f(@)(ov) = a(f(a*)v) ,

(2.3) ov = 2(cav) .

A form v is called regular if there exists a sequence of polynomials {S,},>0 (degS, < n) such that
(0, 808m) =Tn0nm » Tn#0, n>0. Then, degS, =n,n > 0 and we can always suppose each S,, is
monic. In such a case, the sequence {5, },>0 is unique. It is said to be the sequence of monic orthogonal
polynomials with respect to v. In the sequel it will be denoted as MOPS. It is a very well known fact
that the sequence {S,,} >0 satisfies the recurrence relation (see, for instance, the monograph by Chihara

[9)

(2.4) Sn+2($) = (I - §n+1)Sn+1($) - pn+1Sn(17) , n>0,

Sl({E) =T — f() 5 So({I?) =1.
with (&, pnt1) € Cx (C—{0}) , n>0. By convention we set py = (v)g = 1.

In this case, let {S,(Ll)}nzo be the sequence of associated polynomials of first kind for the sequence
{Sn}n>0 satisfying the three-term recurrence relation

25) Suta(#) = (2 = €n12) 8,51 (%) = puraSi (@), 020,
S =e-a,  SP@=1, (Y@ =0).

Another important representation of Sr(ll)(:r) is, (see [10])

(2.6) SO (z) = <v, S”“(“"”; — f”“(g)> = (V06Sp11)()

where the right-multiplication of a form by a polynomial is defined by

R (== ED Sl D IO P gx |

m=0 “j=m

Also, let {S,,(., ) }n>0 be co-recursive polynomials for the sequence {S),},>0 satisfying [9]
(2.8) Sn(x, 1) = Sn(w) — Sy (x), n>0.

We recall that a form v is called symmetric if (v)a,+1 = 0,n > 0. The conditions (v)2,+1 = 0,n >0
are equivalent to the fact that the corresponding MOPS {S,,},>0 satisfies the recurrence relation (2.4)
with &, = 0,n > 0 [9].

Proposition 2.1. [9, 20] If the form v is symmetric, then v is regular if and only if ov and xov are both
reqular.

Let v be a regular, normalized form (i.e. (v)o =1) and {Sy,}n>0 be the corresponding MOPS. For a
A € C — {0}, we can define a new symmetric form u as following:

(2.9) zou=—-M, ocxu=0, (u)p=1.
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From (2.1), we have
(2.10) ou= - x"tv+d .

When u is regular let {Z,},>0 be its corresponding sequence of polynomials satisfying the recurrence
relation
(2.11) Znt2(x) = 2Zn41(T) = Ynt1Zn(x) , n >0,
' Zi(z)=x, Zp(x)=1.

Let us consider the quadratic decomposition of {Z,, }n>0 (see [19])
(2.12) Zon(x) = Po(2?),  Zoni1(x) = 2R, (2?) .

The sequences {P,}n>0 and {R,}n>0 are, respectively, orthogonal with respect to ou and xou. For
instance, we have

(2.13) Prya(@) = (& = B1) Pas1(2) = vy Palz) , >0,
. Pl(x):x_ﬁg)» Py(x)=1,

with

(2.14) B =, Brii="on+2 +V2nt3s  Vher = Vent1Y2ns2, 1> 0.
From (2.9), we get

(2.15) R,(z)=Sp(x), n>0.

Then, we deduce the following result. The proof can be found in [14].

Proposition 2.2. The form u defined by (2.9) is regular if and only if S, (0,A) #0, n>0.
In this case, the corresponding MOPS {Z,},>0 satisfies (2.11) with

(2.16) T1==A, Yent2=0an, Yont3 = Pril ;, n=>0,
where
Sn+1 (Oa )‘)

2.17 =2l >,
(2.17) ¢ S, "
Remarks 2.3. (1). w is reqular if and only if X # X\, , n > 0 where

Ao =0, /\n:%;i(o), n>1.

Sn-1(0)

(2). If w is the symmetrized form associated with the formv (i.e. (w)2n = (v)y and (W)2py1 =0,n>0),
then (2.9) is equivalent to x*u = —A\w. Notice that w is not necessarily a regular form in the problem

under study. In [1, 6], the authors have solved it only when w is regular.

Corollary 2.4. [24] When the form v is symmetric, then u is reqular for every X # 0.

Moreover,
Y1=—72=-A,
TP
1 2k+1
VYan+3 = —Van+4 = T )
(2.18) " A kl;[o pa
n
P2k
VYan+5 = —Van+6 = AP2n+2 H ,m>0.
o P2k+1

Proposition 2.5. If we We suppose that the form v has the following integral representation:
—+oo —+oo
(v, ) = V(z)f(z)dz , f € P, with (v)g = V(z)de =1,

— 00 — 00
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where V' is a locally integrable function with rapid decay and continuous at the point x = 0, then

(2.19) (ou, f(2)) = FO) {1+ AP /:O @daz} AP /:O @f(x)dz ,
a0 (. f(@)) = FO) {1+ AP /:O @dx}Jr
| +)\P/+OO Vi = )f(ix)dx - )\P/_Jm V|(;|2)f(x)d:c ,
where
p/:o Vg(f)f(x) ~ 1im { /OO %z)f(m)dx + [OO @f(x)dx} .

Proof. From (2.10), we can easily deduce (2.19).
Now, we decompose the polynomial f as follows

fla) = fo(2?) +afo(a?) .
Because u is symmetric, we get (u, f(x)) = (u, f¢(2?)) = (ou, f(z)).
Using (2.19) and taking into account that f¢(0 ) = f(0), we obtain

(u, f) Zf(O){H—)\P/ V@) o }—/\P/+Oo Mfe(x)dx

oo T oo T

Using the fact that f¢(x) = w and f¢(—z) = u for x > 0 and making the change
of variables t = y/z, we get the desired result (2.20). O

Definition 2.6. [21] The regular form v is called a semi-classical form if exist two polynomials ® and ¥
such that

(2.21) (®v) + Vv =0, deg(¥)>1, &monic.
The corresponding MOPS {Sy,}n>0 is called semi-classical.

Remarks 2.7. (1). The semi-classical character is invariant by shifting. Indeed, the shifted linear form
0= (hg-101—p)v, a € C—{0}, beC satisfies

(2.22) (®0) + U0 =0,
with
(2.23) b(z) = a t®(az +b), V() =a "Tlaz+0b), t=deg(®).

Where the linear forms T_pv ( translation of v ) and hqv ( dilatation of u ) are defined by
<’7—va f> = <1),T,bf> = <’U, f(x + b)> ’ <havv f> = <Uv haf> = <Uv f(am)) ) f EP.
The sequence {Sp(z) = ™Sy (ax + b) }n>o is orthogonal with respect to o and fulfils (2.4) with

z n_b A n
(2.24) £ =S e =L >0,
a a

(2). The semi-classical form v satisfying (2.21) is of class § = max (deg (¥) — 1,deg (®) — 2) if and only
if
(2.25) [T {1#(c) + B(e)] + |(v, 620 + 0.9)| } #0,
ceEZ
where Z denotes the set of zeros of ® [21].
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(3). When § =0, the form v is usually called classical (Hermite, Laguerre, Bessel and Jacobi ) [18].

We can state characterizations of semi-classical orthogonal sequences. {Sy }n>0 s semi-classical of class
S if and only if one of the following statements holds:

(a) The formal Stieltjes function of v, namely

(2.26) SW)(z) =~ Z(:)ﬁ

satisfies a linear non-homogeneous first order differential equation [7, 21]

(2.27) B(2)S (v)(2) = Co(2)S(v)(2) + Do (2) ,
where

(2.28) Colz) = —® (2) — ¥(x)

and

(2.29) Do(z) = —(v0p®) (z) — (v6¥)(z) ,

with ® and U are the same polynomials as in (2.21).

(b) {Sn}rn>0 fulfills the following structure recurrence relation (written in a compact form,):

/ Crsi(x) — Co(x)

(2.30) é(x)Sn_H(x) = 9 Snt1(z) — pn+1Dn+1(x)Sn(x) ,n=0,

where (forn >0)
C~'n-&-l(x) = _én(x) +2(z — fn)f)n(x) )
(231) prs1 Dus1 (2) = ~8(2) + pu D1 (2) — (& — €0)Co2)+
+(& = &) Da(2)
d, U, Cy and Dy are the same polynomia}s introduced in (q); &n , pn are the coeﬁﬁcients of the three
term recurrence relation (2.4). Notice that D_1(x) =0, deg(Cy) <5+ 1 and deg(D,) < 3§, n > 0. [21]
In the sequel the form v will be supposed semi-classical of class § satisfies (2.21) and (2.25).

Proposition 2.8. [24] If v is a semi-classical form and satisfies (2.21), then for every A € C— {0} such
that S, (0,\) # 0,n > 0, the form u defined by (2.9) is reqular and semi-classical. It satisfies

(2.32) (Pu) +Pu =0,
where
(2.33) O(x) = 2®(2?), U(z)=222V(z?),

and u is of class s < 25 + 3.
Proposition 2.9. [24] The class of u depends only on the zero x =0 of ®.

According to proposition 2.8, the form wu is also semi-classical and its MOPS {Z,},,>o satisfies a
structure relation. In general, {Z,},>¢ fulfils

Crt1(z) — Co()

(2.34) (2) 2,11 (2) = D)

with

Znt1(®) = Ynt1Dny1(2) Zn(z) ;0 >0,

(2.35) { Ynt1Dng1(z) = =@(2) + Y Dn—1(x) — xCyp(x) + 22Dy (2),

Cpi1(z) = =Cp(z) + 22Dy (), ,n >0,

60


Galaxy
Text Box
60


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2017, VOLUME 7, ISSUE 1, p.56-71

where

(2.36) { Co(z) = =@ () — ¥(z) = —B(a?) + 22°Co(a?) ,

Do(z) = —(ubo®) (z) — (uboV0)(z) = —2 xDy(22) + 20:Co(2?) .

We are going to establish the expression of C,, and D,, , n > 0 in terms of those of the sequence {S,, }n>0.
Proposition 2.10. [24] The sequence {Zy }n>0 fulfils (2.30) with (for n >0)

(2.37) Conya1(x) = (i)(xQ) + QxQOn(xz) + 4’)’2n+1$2Dn(x2) )
' Dopny1(z) = 223D, (22) .

(2.38) { Conta(z) = —®(2?) + 22°Crry1(2?) + 42272042 D (22)

Doni2(7) = 2072042 Dn (%) + 2292013 D1 (%) + 22C 41 (22)
Co(z) and Do(x) are given by (2.36) and vn+1 by (2.16).
Proposition 2.11. We have

’

20°®(x) P, 4 (¢°) = (32”(02n+2($) — Co(z)) — ’72n+2D2n+2($)>Pn+1($2)—

(2.39) v 1 Dapy2(7)Po(2?), n>0.

Proof. In the relation (2.34), replace n by 2n + 1 and then multiply it by z, so that
2®(2) Zay 4o (w) = 0 L2228 =C0@ 7,1 () — Yant22Dang2(z) Zons1 (z), but

T Zon+1(x) = Zont2(x) + Yant+1Zan(2) according to (2.11), then

2®(x) Zy,, 1 o(7) = (»’UCQ"”(Z)CO(I) - ’an+2D2n+2(fﬁ)) Zonya(x) —

—Y2n+272n+1Dant2(2) Zon (2).
Finally, from (2.12) and (2.14) we get (2.39). O

3. SYMMETRIC SEMI-CLASSICAL FORMS OF CLASS s = 3 WHEN ¥(0) =0
We begin recalling an important result in our work [2].

Proposition 3.1. [2] Let u be a symmetric semi-classical form of class s, satisfying (2.32), then if s is
even, ® is even and ¥ is odd; if s is odd, ® is odd and V is even.

In the sequel, we will assume that u is a symmetric semi-classical form of class s = 3 satisfying (2.32)
with ¥(0) = 0. Then, according to proposition 3.1 and (2.25), u satisfies (2.32) with

®(z) = asx® + azz® + a1z,
(31) \IJ(I) = b4I4 + bQI’Q y
ar(as| + [bal) £0

In this particular case, it is possible to characterize the involved semi-classical forms of class s = 3:

Theorem 3.2. The following statements are equivalent

(a) u is a symmetric semi-classical normalized form of class s = 3 satisfying (2.32) with U (0) = 0.
(b) There exist a classical normalized form v and
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(a3, a1 , ao , by , bo) € C® such that:

2 sou=-Xo, A=—(u)z.

(3.3) { (a2* + vz + do)v) + (br +bo)o =0,
o] + [b1] # 0.

(3.4) o £ 0.

Proof. (a)=(b) We have u is symmetric, then v is regular according to (3.2) and proposition 2.1.
From (2.32) and (3.1), we obtain

’

(3.5) ((a5x5 + azx® + alx)u> + (baz* + boz®)u =0.

On account of (2.2) and (2.3), it follows that

’

((a5m2 + aszx + al)v> + =(bgz+b2)v=0.

N =

Hence, we have

((dgxz +ai1x + (~10)’U) + (?)1%‘ + 50)’0 =0,
with
az=as, G =az, ao=ai,
(3.6) - N
by=1bs, bo=1by.
Finally, we have |® (0) + U (0)| 4 |(u, 02® + o¥)| = a; # 0 according to (2.25). Then, using (3.6), we
obtain (3.4).

(b)=(a). From (3.3), v satisfies (2.21) with ®(2) = asa? + a1 + do and ¥(z) = byx + by . Then, thanks
to proposition 2.8 and (2.25), we deduce that u satisfies (2.32) with

(3.7) ®(z) = dox® + ara® + aozr , V(z) = 2(byz* + box?) .
By virtue of (3.4) and proposition 2.9, it is not possible to simplify the equation (3.7) and the class of u
is s = 3. O

Determination of the canonical cases

From (2.22), proposition 3.1 and theorem 3.2., we distinguish four canonical cases for ®:
Oz)=z, ®)=z@@?-1), &) =z@*-1)?%, &) =z@'-1)
associated with the four canonical cases for ®:

dz)=1, Px)=x—-1, ®@)=@x-172, ®@)=2>-1.

First case: ®(z) = z. In this case , ®(z) = 1.
Thus, v is the Hermite form. We have [8, 21]

(3.8) £, =0, an:%(n—kl), n>0,
(3.9) d(z)=1, V(z)=2z,
(3.10) Co(x)=—2x, Dy(x)=-2, n>0.
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In accordance with corollary 2.4 and (2.18), u is regular for every A # 0 and we have

=Y = A
(3.11) Vints = Vit = —} g
Van+5 = —Van+6 = 2%“1;((75:?21;(”“) ,n>0.
For (2.33) and (2.36), we have
(3.12) d(z) =z, U(z)=4a*, Co(z)=—4a*—1, Dy(r)=—42>+4)\z.

According to proposition 2.10, (3.10) and (3.11), we have, for n > 0,

Con = —4z* — 8y9 1122 + 1
(3.13) { 2 +1(l‘) €T Von+1L

where 7,,, n > 1 are given by (3.11).

)

an+2($) = —41’4 — 8’)/2n+2$2 -1 s

Dopi1(x) = =423, Dapia(z) = —42® — 4(Yant+1 + Yonss)T

The form v has the following integral representation [21]

I
(3.14) (U,f)zﬁ/_oo e f(x)dx , feP.
Therefore, for A # 0 and f € P, (2.20) becomes
(3.15) )= 50) - Z=p [ () - ) e

Next, the focus will be put on cu: the even part of u.

The form w verifies the functional equation

(zu) + 4z*u =0,

Applying the operator o for the above equation and using (2.2) and (2.3), we deduce that cu is a
semi-classical form and satisfies the functional equation

(3.16) (®F (z)ou) + P (2)ou=0,

where
" (z) ==,

UP(z) = 227 .

Here, we have (®F)'(0) + UF(0) = 1. Then, the class of ou is equal to 1.
From (2.14), the coefficients {85, 77,1 }n>0 of {P,}n>0 are given by

P P P
By =7 5n+1 =Yon+2 T V20435 VYnt1 = V2n+1V2n+2, n =0,

where 7, , n > 1 are given by (55).

According to proposition 2.11 and (3.13) where z
differential recurrence equation (for n > 0)

: Oy (@) = CP (@)

2

— x, the sequence {P,},>¢ satisfies the following

(3.17) O () Pl () = 22

with

P P
CP(a) =222 —1, Gen@G®

Pn+1(1') - 75+1D5+1(37)Pn(55) s

= 4yant2(Yont1 + Yonts) , >0

Df(x)=—=2(z—X). DF(z) =—42 —4(yans1 +y2n13) , n >0

Finally, we give the integral representation of ou.
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From (2.19) and (3.14), we get

+oo e—r2
<ou7f(x)>=f(0)—\>7»rP / " faydr

In the three other cases, we are going to proceed with the same stages and techniques.
Second case: ®(z) = (x> — 1). In this case, ®(z) = z — 1.

Thus, v = 71 L(a) where L() is the classical Laguerre form.

Here [18, 21]

(3.18) &n=2n+a+2, ppra=m+n+a+l), n>0,
the regularity condition is @ # —n, n > 1.

(3.19) dr)y=z-1, VU(@)=z-a-2,

(3.20) Co(x)=—x+2n+a+1, Dy(x)=-1, n>0.

Using the relation (2.11) in [9], we get

= DI(n+a+1)

21 )" .
(3:21) kZ:()Fn—k+1F(a+k+1)F(k+l)’ 0
From (2.6) and the relation (2.11) in [9], we obtain for n > 0,

n+1
+2)I'(n+a+2)

29 (1) _ n+1 n 0]
(322) S (0) Zrn—k+2r(a+k+1)r(k+1) b
where

n—1
MNa+k+1)
Qo = Q, =- L L A >1.
0 0 ) n kZ:O( ) F(a + 1) ) n =

By virtue of (2.8), (3.21) and (3.22), we deduce

(3.23) Sn(0,A) = (-1)"T(n+a+1)I'(n+1)d,(a) , n >0,

where
- 1 — A\
= >0.
dn(@) kZ:()F(nfk+l)F(a+k+l)F(k+l) 120

The regularity conditions are a # —n , d,(a) #0, n>1.
(2.17) and (3.23) give

apn, = (n+a+1)(n+1)dd
Then, with (2.16), we get

"=-A,
(3.24) Yonts = 7285,

Yoniz = (n+a+1)(n+ 1)d;:(lo(f;) ,n>0.

Taking into account that the form v is semi-classical and by virtue of proposition 2.8, the form wu is also
semi-classical. It satisfies (2.32) with

(3.25) O(x) = z(2® — 1), ¥U(z) =222 (2% —a - 2) .
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Now, we are going to give the elements of the structure relation of the sequence {Z,},>0
Co(z) = —22* + R+ 12?2 +1, C(z)=—22*+(2a+4)+3)2? -1,

Conys(w) = =22 + (dn+20 +7 - 47205022 =1, n>0,

(3.26) Conga() = =20 + (4n+ 20+ 5 — 4(n+a+ 1)(n+ 1) )22 41, n >0,
Do(z) =2x(—2> +a+A+1), Daypyi(x)=-223, n>0,

Dopio(z) = 223 +wux, n>0,

where i, () dr ()
n{& n+1(&
o, =22n+a+3————-(n+a+1)(n+1)————=), n>0.
( Ty )+ )5S
The form v has the following integral representation [21]
1 e a, l—z

Then, using (2.20), we obtain the following integral representation of

-1 (.’22 . 1)0‘617””2 A 400 (.’E2 _ 1)a617w2
wf) = e | g M

x MNa+1 x
+oo T — aelfa:
(3.28) +f(0){1+ I‘(cy>\4—1)/1 %dw} , Rla) > -1, feP.

The form cu is a semi-classical form and satisfies the functional equation (3.21) with
() =a(x—-1), V(@)=2@-a—-2).
From (2.14), the coefficients {37, 75+1}n20 of {P,}n>0 are given by
B =71, Bhii =142+ %2043, Yeg1 =Vent1Veng2, n =0,
where 7, , n > 1 are given by (3.24).

From proposition 2.11 and (3.26), the sequences {P, },>0 satisfies (3.17) with
Cr1 () =C7 ()
2

:2(n+1)x7(n+1)(n+a+1)dgzzé‘;‘)wn, n>0,
D5+1(x)=—2x+wn, n>0,
Cl(x)=-2>4+azx+1, Df(x)=-z+A+a+1.

Finally, we give the integral representation of ou.
From (2.19) and (3.27), we get

7 by +oo (1. - 1)&6171 A +oo (IL‘ - 1)&6171
(ou. 1) = O+ 5 S} - s | S
Third case: ®(z) = z(22 —1)2. In this case, ®(z) = (x — 1)2.

Thus, v = 71 B(a) where B(«) is the classical Bessel form.

Here [18, 21]
— 1 _ l1—a
) So=1-3, & =14 Gramiarn -
(3 9) _ (n+1)(n+2a—1) >0
Prt1 = (2n+2a—1)(n+a)?(2n+2a+1) n ’

the regularity condition is a # —5 , n.> 0.
(3.30) d(z)=(x—1)?2, ¥(z)=-2r+1-a),

a—1

(831)  Cu@)=2n+a-1@-1)+2——0,

Dyp(z)=2n+4+2a—1, n>0,
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By applying the same process as we did to obtain (3.23) and using the above results, we get after some
straightforward calculations

I'(n+1)

N n i = " n bl Z bl
(3.32) Sp(0,\) =2 F(2n+—|—2a—1)e (), n>0
where

- 1= AT (n+k+2a—1)
n _ 1 k:( >
en(@) ;)( Sy e L
and
Ag=0 Z oF Oé n>1.
k+2a -

The regularity conditions are e, (a) #0, a# -5, n>0.
From (2.17) and (3.32) we get

(3:33) B (o a)(z: +1 2 — 1) eZIEfff) E
Using (2.16) and (3.33), we obtain

M=-A,
(3.34) V2n+3 = (n+o7)J(r227?+_21a+1) eii(l(a) )

Yontr = ~ et ey ity 120

According to proposition 2.8, the form w is also semi-classical. It satisfies (2.32) with
(3.35) d(z) =x(2® - 1)?, U(z) = —da*(az® +1—a) .

Now, we are going to give the elements of the structure relation of the sequence {Z,,},>0
Co(r) = (4o — 5)z* +2(5 — 2a)z? — 1,

Ci(z) = (4o — 3)z* + (6 — 4o — 4N — 1))2% + 1,

Conya(r) = (4n + 4o + 1)zt + 2( 20420=1 enl@) 4 ga—l

n+a  ept1(a)

2
+a—2n—2a—1>w +1,

(3:36) Conga(w) = (4n +4a — Dat +2( —2mtlenttl@) gasl _9p _9q 4 1) 2?1,
Dy(z) =22(2(a — 1)2* + 2(2 — ) + A\(1 — 20))
Dopi1(z) = 2(2n + 2a — 1)23
Dopia(x) =22(2(n+ a)z? + g,) ,

where

n+len+1(a)+n+2a—1 en(a) +2a—1
n+a e,(a) n+a eppi() n+a«
The form v has the following integral representation [21]

) ) =d@ [ oot ([0 s R > -1, e

z—1

+oo tt
J(a) = 4/ $3—8ag tsmt(/ $2a_26_2d$>dt7
0 0

0, =<0,
s(x):{

1
e *tsinxs, x>0.

Sn = —

with

NH
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Then, using (2.20), we obtain the following integral representation of u

w.5) =101+ [ oy e (/ +°° et s(Q)dc o f+

x 1
-1(,.2 _ 1\20-2,— 27 +00 ,
(3.38) () [ ) ("= 1) e < / 21(20‘645(0(1() f(x)da—
+o0 1}2 _ 2&7267ﬁ +oo 2
aae [ SR T (T eeta(ac ) o

The form ou is a semi-classical form and satisfies (2.21) with
P (z)=zx(z-1)?2, ¥P(z)=-2z(az+1-a).
From (2.14) the coefficients {8 , vF | },>0 of {P,}n>0 are given by
B =7, Bhii="n42+ %2043, Vo1 = Venr1Vont2, n >0,
where v, , n > 1 are given by (3.34).
The sequence {P, },>o satisfies (3.17) with (for n > 0)

P _ Pm e, o e [e%
W:Q(n+l)x2+2(°‘l—n+1 ni1(@) 4 o ngl engal )—n—2>x+

n+ao n+a  e,(a) 2n+2a—1 en(a)

n+1 ent1()
+2(n+a)(2n+2a—l) e:(a) Sn s

DEi () = 2(2(n + a)z + <)

Cl(z)=(2a-3)22+2B8-a)z -1,

DE(z) =2(a — 1)z + A1 —2a) +2(2 —a) .

Finally, we give the integral representation of ou.

From (2.19) and (3.37), we have

(ou, f(z)) = f(O){l +AJ(a)! /+°O (o D* e </+°° g?aefs(g)d<> dx}—
1 ©

T -1

~ara [ " a1t T ( / - c-zae?s<<>d<)f<w>dx .

x -1

Fourth case: ®(z) = z(z? —1). In this case, we have ®(z) = 22 — 1.

Thus, v = J(«, 8) where J(a, 8) is the classical Jacobi form.

Here [18, 21]
_ _a—B _ o?—p?

(3.39) o = atB+2 Ent1 = GnTatAts) antatsry 0 V2 0,

’ _ (n+1)(nd+a+p+1)(n+a+1)(n+p+1)

Prt1 = A et B GntatBr2? ntatprs 0 120
the regularity conditions are «, 8 #-n, a+8#-n—-1,n>1.
(3.40) d(x)=2a>-1, U(r)=—(a+B+2z+a—43,
_ o? — B2 .

41 w(x) = (2 ————, Dy(xr)=2 1, >0,

(3.41) Cn(z)=0C2n+a+ p)x S T— (2) n+aoa+p+ n>0

By applying the same process as we did to obtain (3.23) and using the above results, we get after some
straightforward calculations
ZTn+1D(n+8+1)

(342) Sn(0,4) =2 T2n+a+B+1)

fn(a7/8)7n205
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with
s (-DFT(n+k+a+pB+1)
Jnla, B) = kZ:O 26T (k+ 1)I'(n —k+ D)T(k+ B+ 1)

(17)\@]@)7””20,

and (for n > 1)

n—1

_ an+1 Qu— 1F(a+5+2)
e il k+1 ZF/J-Fl k—M+1)F(u+a+ﬂ+2)Fkau(avﬁ)7
h
o Fon(a,B) = (_1)n—kw+(_l)kw
n, k&, - F(O["‘l) F(ﬂ+1)

The regularity conditions are o, f# —n, a+p#-n—1, fo(a,)#0, n>1.
(2.17) and (3.42) give

(n+1)(n+B8+1) fnt1(a, B) n>0
CntatB+)2n+a+tB+2) fula,B) = —

Ay — —

Then, with (2.16), we get
"= - ’

9 (n+a+1)(n+a+p+1) fn(a,)

(3.43) V2043 = TL@ntatB+2) 2ntatB3) Fasi(,B)
— (n+1)(n+5+1) fn 1(0‘7[—3)
V2nt2 = ~2 GnTat At @ntatBFY)  fulag) 020

Remark 3.3. If a = 3, (3.43) becomes

M=—72=-A
14+ a)l(n+3T(n+a+2)
dn + 20+ 3)y/aT (3 + )T (n+ DI (n+a + 1)’
oy VLG + )+ 2)0(n+a +2)
(4n+2a+5)0(1+a)l(n+ 5)T(n+a+3)

2
Yan+3 = —Van4+4 = X(

Yan+5 = —Van4+6 = —

Taking into account that the form v is semi-classical and by virtue of proposition 2.8, the form u is also
semi-classical. It satisfies (2.32) with

(3.44) (z)=2(z — 1), ¥(z) =22°(— (@ +B+2)2° +a—p) .
Now, we are going to give the elements of the structure relation of the sequence {Z,,},>0

Co(r) = 2a+28—1)a* +2(8 —a)z? +1,
Ci(z) = 2a+28+ 12t +2(-2X\(a+ B+ 1)+ B —a)r? -1,

02n+3(1') = (4n + 2a + 2,6 + 5)%‘4 - m (Oé2 - ,62+

Hn+a+D(n+a+pf+ 1)ff:(l°(‘fg)>x2 -1,

4
(3.45) Conia(n) = (4n+20+ 23 + )t — 52 (a2 paa

+4(n+1)(n+5+1)m>x2+1,
Do(z) = Dy(z) = 2x((a—|—6)x2 +08—a—-XMa+p+ 1)) ,
Dopii(z) =22n+a+ B+ 1)a3
Donyo(x) =2(2n+ a+ f+2)2° + v,z ,
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where(for n > 0)

— _ 2 2_ 32 fn+1(aaﬂ) fn(a»ﬂ) >
U i pro <O‘ Pt Dt B )7 o gy PRnratDintat ST s )
The form v has the following integral representation [21]

1
(3.46) (v, f) = A/ (1—2)%(x+1)*f(z)dz , R(a), R(B) > -1, feP,

-1
with

A Na+ 5 +2)

T 20T (a+ I(B+ 1)
Then, using (2.20), we obtain

1 — )8 (x «
(u,f):f(o){lJr)\AP/_ (1 >; DY

+AAP /11 (+ 2970 - x2)af(ix)dx — MAP /1 (= o) + 1)° f(x)dz .

X _1 T

(3.47)

ou is a semi-classical form and satisfies (3.21) with
P (z) =2 1), ¥P@)=a(-(a+B+2zx+a—7).
From (2.14) the coefficients {8}, 72 1 }n>0 of {P,}n>0 are given by
B =7, BEii=1on42+ %2043, Vg1 = Vent1Vont2, n >0,
where 7, , n > 1 are given by (3.43).
The sequence {P, },,>o satisfies (3.17) with (for n > 0)

Cryr(2)=Cg (z) _ 2 2_p? (n+1)(n+B8+1) Fri1(,B)
g =2nt+ 1) + (B-a - 2nia+B+2)x T 2 Grrat B @ntathTD) f:(la(,xﬁ)

Un
DF (z)=22n+a+ B+2)z+v,,

Ci(x)=(a+B-12>+(B-a)z+1,

Df(z)=(a+B)(z—N+B—-a—-X.

Finally, we give the integral representation of ou.

From (2.19) and (3.46), we get

(348) (o, f(z)) = FO){1 + )\AP/_l (1= ””)z(“’” D - )\AP/_l (1+ ””)ax(l =9 ¢y

Remarks 3.4. (1). If 8 = a — 1, then from (3.48), we get
1

(Uu,x2"+2 _ x2n+3> — —)\A/ (1 + l‘)a(l _ x)a—l(x2n+1 _ .’L‘2n+2)dl‘
-1

= —)\A/ (1 — 2>z g

Hence, if A = —1, we obtain

(cuw)an+1 = (ou)an,, m>0.
Therefore, from the Lemma 2.2 in [1], ou verifies (2.13) and (3.16) with [8, 16]
55:(_1)71’ n=>0,

P _ __2(n+a)(2n+2a-1) P _ 2(n+1)(2n+1) n>0
P2n+1 = T @nt2a—1)(@nt2a+D) ° 12042 T T @nt2a+1)(dnt20+3)

oP(x) =2 -2, VP(2)=-Qa+1)2%+z.

)
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(2). Theorem 3.2 is the main result of our paper. From it, we carry out the complete description of the
symmetric semi-classical forms of class s = 3, when U(0) = 0. Unfortunately, the case when ¥(0) # 0 is
not covered by this theorem and the description of these forms remains open. Some illustrative examples
of symmetric semi-classical forms of class s = 3 related to the last case are given in [4, 5].

(3). In [13], Marcellan et al. made use of this approach to provide a full description of all symmetric
semi-classical forms of class s = 3.

(4). The above four canonical cases, can be determined by symmetrization of the semi-classical form of
class one and verify (2.21) with $(0) = 0 and & (0) + 2¥(0) # 0. [4]

Acknowledgment. Thanks are due to the referee for his valuable comments and useful suggestions
and for his careful reading of the manuscript.
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