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1. INTRODUCTION

Recently, the area of the q−analysis has attracted serious attention of the researchers. The great
interest is due to its applications in various branches of mathematics and physics, as for example, in the
areas of ordinary fractional calculus, optimal control problems, q−difference and q−integral equations and
in q−transform analysis. The generalized q−Taylor formula in the fractional q−calculus was introduced
by Purohit and Raina [32]. The application of q−calculus was initiated by Jackson [21, 22]. He was the
first to develop the q−integral and q−derivative in a systematic way. Later, geometrical interpretation of
the q−analysis has been recognized through studies on quantum groups. Simply, the quantum calculus
is ordinary classical calculus without the notion of limits. It defines q−calculus and h−calculus. Here
h ostensibly stands for Planck’s constant, while q stands for quantum. Mohammed and Darus [28]
studied approximation and geometric properties of these q−operators in some subclasses of analytic
functions in compact disk. Recently, Purohit and Raina [32, 33] have used the fractional q−calculus
operators in investigating certain classes of functions which are analytic in the open disk. Also Purohit
[31] also studied these q−operators, defined by using the convolution of normalized analytic functions and
q−hypergeometric functions. A comprehensive study on the applications of q−calculus in the operator
theory may be found in [11]. Ramachandran et al. [34] have used the fractional q−calculus operators in
investigating certain bound for q−starlike and q−convex functions with respect to symmetric points.

Let A denote the class of all analytic function of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n,
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in the open unit disc U = { z : z ∈ C; |z| < 1}. Let S be the subclass of A consisting of functions which
are univalent in U . Also, let P denote the class of functions of the form

p(z) = 1 +

∞∑
n=1

cnz
n (z ∈ U)

which are analytic and convex in U and satisfy the condition

Re (p(z)) > 0, (z ∈ U) .

We denote by S∗, C, K and C∗ the familiar subclasses of A consisting of functions which are respectively
starlike, convex, close-to-convex and quasi-convex in U . Our favorite references of the field are [17, 20]
which covers most of the topics in a lucid and economical style.

The Bieberbach conjecture about the coefficient of the univalent functions in the unit disk was formu-
lated by Bieberbach [13] in the year 1916. The conjecture states that for every function f ∈ S, given by
(1.1), we have | an |≤ n for every n. Strict inequality holds for all n unless f is the Koebe function or one
of its rotation. For many years, this conjecture remained as a challenge to mathematicians. After the
proof of | a3 |≤ 3 by Löwner in 1923, Fekete-Szegö surprised the mathematicians with the complicated
inequality ∣∣a3 − µa22∣∣ ≤ 1 + 2 exp

(
−2µ

1− µ

)
which holds good for all values 0 ≤ µ ≤ 1. Note that this inequality region was thoroughly investigated
by Schaefer and Spencer [39]. For a class functions in A and a real (or more generally complex) number µ,
the Fekete-Szegö problem is all about finding the best possible constant C(µ) so that

∣∣a3 − µa22∣∣ ≤ C(µ)
for every function in A.

In univalent function theory, all geometrically defined subclasses does have beautiful analytic charac-
terization defined in terms of differential inequality. So extending the existing subclasses in q-calculus
has numerous applications. To provide a unified approach to the study of various properties of the cer-
tain subclasses of A, we introduce new classes of (j, k) symmetric functions of complex order involving
q−derivative of f and have obtained the Fekete-Szegö inequality for the classes.

If f and g are analytic in U , we say that the function f is subordinate to g, written as f(z) ≺ g(z) in
U , if there exist a Schwarz function ω(z), which is analytic in U with w(0) = 0 and | w(z) |< 1 such that
f(z) = g(w(z)) for z ∈ U . Furthermore, if the function g(z) is univalent U , then we have the following
equivalence holds( see [14] and [27] ):

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For function f ∈ A given by (1.1) and 0 < q < 1, the q−derivative of a function f is defined by (see
[21, 22])

(1.2) Dqf(z) =
f(qz)− f(z)

(q − 1)z
(z 6= 0),

Dqf(0) = f ′(0) and D2
qf(z) = Dq(Dqf(z)). From (1.2), we deduce that

(1.3) Dqf(z) = 1 +

∞∑
n=2

[n]q anz
n−1,

where

(1.4) [n]q =
1− qn

1− q
.
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As q → 1−, [n]q → n. For a function h(z) = zn, we observe that

Dq(h(z)) = Dq(z
n) =

1− qn

1− q
zn−1 = [n]q z

n−1,

lim
q→1

Dq(h(z)) = lim
q→1

(
[n]q z

n−1
)

= nzn−1 = h′(z),

where h′ is the ordinary derivative.
As a right inverse, Jackson [21] introduced the q−integral

z∫
0

h(t)dqt = z(1− q)
∞∑
n=0

qnf (zqn) ,

provided that the series converges. For a function h(z) = zn, we observe that

z∫
0

h(t)dqt = lim
q→1−

zn+1

[n+ 1]q
=

zn+1

n+ 1
=

z∫
0

h(t)dt,

where
z∫
0

h(t)dt is the ordinary integral.

Making use of Dqf(z), Seoudy and Aouf in [40] introduced the subclsses Sj(α) and Cj(α) of the class
A for 0 ≤ α < 1 which are defined by

(1.5) S∗j (α) =

{
f ∈ A : Re

zDqf(z)

f(z)
> α, z ∈ U

}
,

(1.6) Cj(α) =

{
f ∈ A : Re

Dq(zDqf(z))

Dqf(z)
> α, z ∈ U

}
.

We note that

(1.7) f ∈ Cj(α)⇔ zDqf ∈ S∗j ,

and

lim
q→1−

S∗j (α) =

{
f ∈ A : lim

q→1−
Re

zDqf(z)

f(z)
> α, z ∈ U

}
= S∗(α)

lim
q→1−

Cj(α) =

{
f ∈ A : lim

q→1−
Re

Dq(zDqf(z))

Dqf(z)
> α, z ∈ U

}
= C(α),

where S(α) and C(α) are respectively, the classes of starlike of order α and convex of order α in U (see
Robertson [36]).

Let k be a positive integer and ε = exp(2πi/k). A domain D is said to be k−fold symmetric if a
rotation of D about the origin through an angle 2π/k carries D onto itself. A function f ∈ A is said to
be k−fold symmetric in U if for each z ∈ U

f(εz) = εf(z).

The family of all k−fold symmetric functions is denoted by Sk and for k = 2, we get class of the odd
univalent functions. The notion of (j, k)−symmetric functions (k = 2, 3, . . . ; j = 0, 1, 2, . . . (k − 1)) is
a generalization of even, odd, k−symmetrical functions. Let ε = exp(2πi/k) and j = 0, 1, 2, . . . (k − 1)
where k ≥ 2 is a natural number. A function f : U 7→ C is called (j, k)−symmetrical if

f(εz) = εjf(z), z ∈ U .
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We note that the family of all (j, k)−symmetric functions is denoted by S(j,k). Also, S(0,2),S(1,2) and
S(1,k) are called even, odd and k−symmetric functions respectively.
We have the following decomposition theorem (see [25]).

For every mapping f : D 7→ C, and D is a k−fold symmetric set, there exist exactly the sequence of
(j, k)−symmetrical functions fj,k,

(1.8) f(z) =
1

k

k−1∑
j=0

fj,k(z),

where

(1.9) fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz),

(f ∈ A; k = 1, 2, . . . ; j = 0, 1, 2, . . . (k − 1)).

The decomposition (1.8) is a generalization of the well-known fact that each function defined on a
symmetrical subset U of C can be uniquely represented as the sum of an even function and an odd
function (see Theorem 1 of [25]). From (1.9), we can get

fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz) =
1

k

k−1∑
v=0

ε−vj

( ∞∑
n=1

an(εvz)n

)
,

then

(1.10) fj,k(z) =

∞∑
n=1

ψnanz
n, a1 = 1, ψn =

1

k

k−1∑
v=0

ε(n−j)v =

{
1 n = lk + j;

0 n 6= lk + j
.

Motivated by Ma and Minda [26], we define a subclass of analytic functions of complex order involving
q−derivative of f .

Definition 1.1. A function f ∈ A is said to be in the class Sq,bj,k(φ) if it satisfies the following subordination
condition:

(1.11) 1 +
1

b

(
zDqf(z)

fj,k(z)
− 1

)
≺ φ(z) (b ∈ C− {0};φ ∈ P).

Definition 1.2. A function f ∈ A is said to be in the class Cq,bj,k(φ), if it satisfies the following subordi-
nation condition:

(1.12) 1 +
1

b

(
Dq(zDqf(z))

Dqfj,k(z)
− 1

)
≺ φ(z) (b ∈ C− {0};φ ∈ P).

Remark 1.3. The family Sq,bj,k(φ) and Cq,bj,k(φ) is of special interest for it contains many well-known as well

as many new classes of analytic univalent functions. If we let j = k = 1, the classes Sq,bj,k(φ) and Cq,bj,k(φ)

reduces to classes recently introduced by Seoudy and Aouf in [40]. If we let q → 1−, the class Sq,bj,k(φ) and

Cq,bj,k(φ) reduces to the well-known Janowski starlike function and Janowski convex function of complex

order respectively. We note that the family S∗(α) of starlike function of order α (0 ≤ α < 1)[15, 17], the
family C(α) of convex function of order α (0 ≤ α < 1)[15, 17], k − UCV (α)[12], k − UST (α) and many
other well known subclasses of S (see also the work of Kanas and Srivastava [23], Goodman [18, 19] and

Rønning [37, 38]) can be obtained as special cases of either Sq,bj,k(φ) and Cq,bj,k(φ).
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Lemma 1.4. [26] Let p(z) ∈ P and also let v be a complex number, then

|c2 − vc21| ≤ 2 max {1, |2v − 1|} ,

the result is sharp for functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

Lemma 1.5. [26] Let p(z) ∈ P, then

(1.13) |c2 − vc21| ≤


−4v + 2, if v ≤ 0;

2, if 0 ≤ v ≤ 1;

4v − 2, if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p(z) = (1 + z)/(1 − z) or one of its rotations. If
0 < v < 1, then the equality if and only if p(z) = (1 + z2)/(1− z2) or one of its rotations. If v = 0, the
equality holds if and only if

p(z) =

(
1

2
+

1

2
ϑ

)
1 + z

1− z
+

(
1

2
− 1

2
ϑ

)
1− z
1 + z

, (0 ≤ ϑ ≤ 1),

or one of its rotations. If v = 1, the equality holds if and only if

1

p(z)
=

(
1

2
+

1

2
ϑ

)
1 + z

1− z
+

(
1

2
− 1

2
ϑ

)
1− z
1 + z

, (0 ≤ ϑ ≤ 1).

Also the above upper bound is sharp and it can be improved as follows when 0 ≤ v ≤ 1

|c2 − vc21|+ v|c1|2 ≤ 2, (0 < v ≤ 1/2),

|c2 − vc21|+ (1− v)|c1|2 ≤ 2, (1/2 ≤ v < 1).

In the present paper, we obtain the Fekete-Szegö inequalities for the class Sq,bj,k(φ) and Cq,bj,k(φ). We

employ the technique adapted by Ma and Minda [26] to find the coefficient estimates for our class.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that the function
0 < q < 1, b ∈ C− {0}, φ ∈ P, [n]q is given by (1.4) and z ∈ U .

Theorem 2.1. Let φ(z) = 1 +B1z +B2z
2 + · · · (B1 6= 0). If f(z) ∈ Sq,bj,k(φ), then

(2.1) |a3 − µa22| ≤
|B1b|

[3]q − ψ3
max

{
1;

∣∣∣∣B2

B1
+

B1b

[2]q − ψ2

(
ψ2 −

[3]q − ψ3

[2]q − ψ2
µ

)∣∣∣∣} .
The result is sharp.

Proof. If f ∈ Sq,bj,k(φ), then there exists a Schwarz function ω(z), which is analytic in U with w(0) = 0

and | w(z) |< 1 ∈ U such that

(2.2) 1 +
1

b

[
zDqf(z)

fj,k(z)
− 1

]
= φ(ω(z)).

Define the function p(z) by

(2.3) p(z) =
1 + ω(z)

1− ω(z)
= 1 + c1z + c2z

2 + · · · , z ∈ U .
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Since ω(z) is Schwarz function, we see that Re p(z) > 0 and p(z) = 1.
Therefore

φ (ω(z)) = φ

(
p(z)− 1

p(z) + 1

)
= φ

(
1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 − c1c2 +

c31
4

)
z3 + · · ·

])
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + · · · .(2.4)

Now by substituting (2.4) in (2.3), we have

1 +
1

b

[
zDqf(z)

fj,k(z)
− 1

]
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + · · · .

From this equation, we obtain

[2]q − ψ2

b
a2 =

B1c1
2

[3]q − ψ3

b
a3 −

(
[2]q − ψ2

b
a2

)
ψ2a

2
2 =

B1c2
2
− B1c

2
1

4
+
B2c

2
1

4
,

or equivalently

a2 =
B1c1b

2 ([2]q − ψ2)

a3 =
B1b

2 ([3]q − ψ3)

(
c2 −

c21
2

(
1− B2

B1
− B1bψ2

[2]q − ψ2

))
.

Therefore,

(2.5) |a3 − µa22| ≤
B1b

2 ([3]q − ψ3)

(
c2 − vc21

)
,

where

(2.6) v =
1

2

[
1− B2

B1
+

B1b

[2]q − ψ2

(
ψ2 −

[3]q − ψ3

[2]q − ψ2
µ

)]
.

Our result now follows by an application of Lemma 1.4.
The result is sharp for the functions

zDqf(z)

fj,k(z)
= φ(z2) and

zDqf(z)

fj,k(z)
= φ(z).

This completes the proof of Theorem 2.1. �

Similarly, we can prove the following theorem for the class Cq,bj,k(φ).

Theorem 2.2. Let φ(z) = 1 +B1z +B2z
2 + · · · with B1 > 0. If f(z) given by (1.1) belongs to Cq,bj,k(φ),

then

(2.7) |a3 − µa22| ≤
|B1b|

[3]q ([3]q − ψ3)
max

{
1;

∣∣∣∣∣B2

B1
+

B1b

[2]q − ψ2

(
ψ2 −

[3]q ([3]q − ψ3)

([2]q)
2

([2]q − ψ2)
µ

)∣∣∣∣∣
}
.

The result is sharp.
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Theorem 2.3. Let φ(z) = 1 +B1z +B2z
2 + · · · with B1 > 0 and B2 ≥ 0. Let

σ1 =
([2]q − ψ2)B2

1bψ2 + ([2]q − ψ2)
2

(B2 −B1)

([3]q − ψ3)B2
1b

,(2.8)

σ2 =
([2]q − ψ2)B2

1bψ2 + ([2]q − ψ2)
2

(B2 +B1)

([3]q − ψ3)B2
1b

,(2.9)

σ3 =
([2]q − ψ2)B2

1bψ2 + ([2]q − ψ2)
2
B2

([3]q − ψ3)B2
1b

.(2.10)

If f(z) given by (1.1) belongs to Sq,bj,k(φ) with b > 0, then

(2.11) |a3 − µa22| ≤


B2b

[3]q−ψ3
+

B2
1b

2

[2]q−ψ2

(
ψ2

[3]q−ψ3
− µ

[2]q−ψ2

)
if µ ≤ σ1,

B1b
[3]q−ψ3

if σ1 ≤ µ ≤ σ2,
− B2b

[3]q−ψ3
− B2

1b
2

[2]q−ψ2

(
ψ2

[3]q−ψ3
− µ

[2]q−ψ2

)
if µ ≥ σ2.

Further, if σ1 ≤ µ ≤ σ3, then

(2.12)

|a3 − µa22|+
([2]q − ψ2)2

([3]q − ψ3)B2
1b

[
B1 −B2 −

B2
1b

[2]q − ψ2

(
ψ2 −

[3]q − ψ3

[2]q − ψ2
µ

)]
|a2|2

≤ B1b

[3]q − ψ3
.

If σ3 ≤ µ ≤ σ2, then

(2.13)

|a3 − µa22|+
([2]q − ψ2)2

([3]q − ψ3)B2
1b

[
B1 +B2 +

B2
1b

[2]q − ψ2

(
ψ2 −

[3]q − ψ3

[2]q − ψ2
µ

)]
|a2|2

≤ B1b

[3]q − ψ3
.

The result is sharp.

Proof. Applying Lemma 1.5 to (2.5) and (2.6), we can obtain our results. To show that the bounds are
sharp, we define the functions Kφn(n = 2, 3, 4 . . .) by

1 +
1

b

(
zDqKφn(z)

Kφn(z)
− 1

)
= φ(zn−1), Kφn(0) = 0 = K ′

φn(0)− 1

and the functions Fλ and Gλ(0 ≤ λ ≤ 1) by

1 +
1

b

(
zDqFλ(z)

Fλ(z)
− 1

)
= φ

(
z(z + λ)

1 + λz

)
, Fλ(0) = 0 = F ′λ(0)− 1

and

1 +
1

b

(
zDqGλ(z)

Gλ(z)
− 1

)
= φ

(
− 1 + λz

z(z + λ)

)
, Gλ(0) = 0 = G ′λ(0)− 1.

Clearly, the functions Kφn,Fλ and Gλ ∈ Sq,bj,k(φ). If µ < σ1 or µ > σ2, then the equality holds if and
only if f is Kφ2, or one of its rotations. When σ1 < µ < σ2, the equality holds if and only if f is Kφ3,
or one of its rotations. If µ = σ1, then the equality holds if and only if f is Fλ, or one of its rotations.
If µ = σ2, then the equality holds if and only if f is Gλ, or one of its rotations. �

Similarly, we can obtain the following theorem.
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Theorem 2.4. Let φ(z) = 1 +B1z +B2z
2 + · · · with B1 > 0 and B2 ≥ 0. Let

χ1 =
([2]q)

2 ([2]q − ψ2)
[
bB2

1 + ([2]q − ψ2) (B2 −B1)
]

B2
1b[3]q ([3]q − ψ3)

,

χ2 =
([2]q)

2 ([2]q − ψ2)
[
bB2

1 + ([2]q − ψ2) (B2 +B1)
]

B2
1b[3]q ([3]q − ψ3)

,

χ3 =
([2]q)

2 ([2]q − ψ2)
[
bB2

1 + ([2]q − ψ2)B2

]
B2

1b[3]q ([3]q − ψ3)
.

If f(z) given by (1.1) belongs to Cq,bj,k(φ) with b > 0, then

(2.14) |a3 − µa22| ≤


B2b

[3]q([3]q−ψ3)
+

B2
1b

2

[3]q([3]q−ψ3)([2]q−ψ2)

(
ψ2 − [3]q([3]q−ψ3)

([2]q)2([2]q−ψ2)
µ
)

if µ ≤ χ1,
B1b

[3]q([3]q−ψ3)
if χ1 ≤ µ ≤ χ2,

− B2b
[3]q([3]q−ψ3)

− B2
1b

2

[3]q([3]q−ψ3)([2]q−ψ2)

(
ψ2 − [3]q([3]q−ψ3)

([2]q)2([2]q−ψ2)
µ
)

if µ ≥ χ2.

Further, if χ1 ≤ µ ≤ χ3, then

|a3 − µa22|+
([2]q)

2([2]q − ψ2)2

[3]q([3]q − ψ3)B2
1b

[
B1 −B2 −

B2
1b

[2]q − ψ2

(
ψ2 −

[3]q([3]q − ψ3)

([2]q)2([2]q − ψ2)
µ

)]
|a2|2

≤ B1b

[3]q([3]q − ψ3)
.

If χ3 ≤ µ ≤ χ2, then

|a3 − µa22|+
([2]q)

2([2]q − ψ2)2

[3]q([3]q − ψ3)B2
1b

[
B1 +B2 +

B2
1b

[2]q − ψ2

(
ψ2 −

[3]q([3]q − ψ3)

([2]q)2([2]q − ψ2)
µ

)]
|a2|2

≤ B1b

[3]q([3]q − ψ3)
.

The result is sharp.

If we q → 1−, j = k = 1 and for an appropriate choice φ in Theorem 2.1, we have the following.

Corollary 2.5. Let f(z) ∈ A satisfy the inequality

(2.15) α < Re

{
1 +

1

b

[
zf ′(z)

f(z)
− 1

]}
< β,

then

|a3 − µa22| ≤
|b|(β − α)√

2π

√
1− cos

(
2π(1− α)

β − α

)
max

{
1,

∣∣∣∣B2

B1
+ (1− µ)bB1

∣∣∣∣} ,
where

Bn =
β − α
nπ

i
[
1− e2nπi((1−α)/(β−α))

]
.

Proof. Let

φ(z) = 1 +
β − α
π

i log

(
1− e2πi((1−α)/(β−α)) z

1− z

)
.

Clearly, it can be seen that φ(z) maps U onto a convex domain conformally and is of the form

h(z) = 1 +

∞∑
n=1

Bnz
n
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where Bn = β−α
nπ i

(
1− e2nπi((1−α)/(β−α))

)
. From the equivalent subordination condition proved by

Kuroki and Owa in [24], the inequality (2.15) can be rewritten in the form

1 +
1

b

[
zf ′(z)

f(z)
− 1

]
≺ φ(z).

Following the steps as in Theorem 2.1, we get the desired result. �

Taking q → 1− in Theorem 2.1, we obtain the following result for the functions belonging to the class
Sbj,k(φ).

Corollary 2.6. Let φ(z) = 1 + B1z + B2z
2 + · · · (B1 6= 0). If f(z)given by (1.1) belongs to the class

Sbj,k(φ), then

|a3 − µa22| ≤
|B1||b|
3− ψ3

max

{
1;

∣∣∣∣B2

B1
+

B1b

2− ψ2

(
ψ2 −

3− ψ3

2− ψ2
µ

)∣∣∣∣} .
The result is sharp.

Taking q → 1− in Theorem 2.2, we obtain the following result for the functions belonging to the class
Cbj,k(φ).

Corollary 2.7. Let φ(z) = 1 + B1z + B2z
2 + · · · (B1 6= 0). If f(z) given by (1.1)belongs to the class

Cbj,k(φ), then

|a3 − µa22| ≤
|B1||b|

32 − 3ψ3
max

{
1;

∣∣∣∣B2

B1
+

B1b

2− ψ2

(
ψ2 −

32 − 3ψ3

4(2− ψ2)
µ

)∣∣∣∣} .
The result is sharp.

Taking q → 1− in Theorem 2.3, we obtain the following result for the functions belonging to the class
Sbj,k(φ).

Corollary 2.8. Let φ(z) = 1 +B1z +B2z
2 + · · · with B1 > 0 and B2 ≥ 0. Let

σ4 =
B2

1bψ2(2− ψ2) + (B2 −B1)(2− ψ2)2

B2
1b(3− ψ3)

,

σ5 =
B2

1bψ2(2− ψ2) + (B2 +B1)(2− ψ2)2

B2
1b(3− ψ3)

,

σ6 =
B2

1bψ2(2− ψ2) +B2(2− ψ2)2

B2
1b(3− ψ3)

.

If f(z)given by (1.1) belongs to the class Sbj,k(φ) with b > 0, then

|a3 − µa22| ≤


B2b
3−ψ3

+
B2

1b
2

(2−ψ2)(3−ψ3)

(
ψ2 − 3−ψ3

2−ψ2
µ
)

if µ ≤ σ4,
B1b
3−ψ3

if σ4 ≤ µ ≤ σ5,
−B2b
3−ψ3

− B2
1b

2

(2−ψ2)(3−ψ3)

(
ψ2 − 3−ψ3

2−ψ2
µ
)

if µ ≥ σ5.

Further, if σ4 ≤ µ ≤ σ6, then

|a3 − µa22|+
(2− ψ)2

B2
1b(3− ψ3)

[
B1 −B2 −

B2
1b

2− ψ2

(
1− 3− ψ3

2− ψ2
µ

)]
|a2|2 ≤

B1b

3− ψ3
.

If σ6 ≤ µ ≤ σ5, then

|a3 − µa22|+
(2− ψ)2

B2
1b(3− ψ3)

[
B1 +B2 +

B2
1b

2− ψ2

(
1− 3− ψ3

2− ψ2
µ

)]
|a2|2 ≤

B1b

3− ψ3
.

The result is sharp.
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Taking q → 1− in Theorem 2.4, we obtain the following result for the functions belonging to the class
Cbj,k(φ).

Corollary 2.9. Let φ(z) = 1 +B1z +B2z
2 + · · · with B1 > 0 and B2 ≥ 0. Let

χ4 =
4(2− ψ2)[B2

1bψ2 + (B2 −B1)(2− ψ2)]

B2
1b(3

2 − 3ψ3)
,

χ5 =
4(2− ψ2)[B2

1bψ2 + (B2 +B1)(2− ψ2)]

B2
1b(3

2 − 3ψ3)
,

χ6 =
4(2− ψ2)[B2

1bψ2 +B2(2− ψ2)]

B2
1b(3

2 − 3ψ3)
.

If f(z) given by (1.1) belongs to Cq,bj,k(φ) with b > 0, then

|a3 − µa22| ≤


B2b

32−3ψ3
+

B2
1b

2

(32−3ψ3)(2−ψ2)

(
ψ2 − 32−3ψ3

4(2−ψ2)
µ
)

if µ ≤ χ4,
B1b

32−3ψ3
if χ4 ≤ µ ≤ χ5,

− B2b
32−3ψ3

− B2
1b

2

(32−3ψ3)(2−ψ2)

(
ψ2 − 32−3ψ3

4(2−ψ2)
µ
)

if µ ≥ χ5.

Further, if χ4 ≤ µ ≤ χ6, then

|a3 − µa22|+
4(2− ψ2)2

B2
1b(3

2 − 3ψ3)

[
B1 −B2 −

B2
1b

2− ψ2

(
ψ2 −

32 − 3ψ3

4(2− ψ2)
µ

)]
|a2|2 ≤

B1b

32 − 3ψ3
.

If χ3 ≤ µ ≤ χ2, then

|a3 − µa22|+
4(2− ψ2)2

B2
1b(3

2 − 3ψ3)

[
B1 +B2 +

B2
1b

2− ψ2

(
ψ2 −

32 − 3ψ3

4(2− ψ2)
µ

)]
|a2|2 ≤

B1b

32 − 3ψ3
.

The result is sharp.

Remark 2.10. For the special case j = 1 and k = 1 in Theorem 2.1, 2.2, 2.3 and 2.4, we get the results
similar to those obtained by Seoudy and Aouf (see Theorem 1, 2, 3 and 4 of [40]).

Remark 2.11. For the special case j = 1 and k = 1 in Corollary 2.6, we get the result similar to those
obtained by Ravichandran et al. [35].

Remark 2.12. For the special case j = 1 and k = 1 in Corollary 2.7, 2.8 and 2.9 we get the results
similar to those obtained by Seoudy and Aouf (See Corollary 2, 3 and 4 of [40]).
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