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Abstract. In this work, necessary and sufficient conditions for oscillations of the solu-
tions of a class of nonlinear neutral first-order differential equations of the form

d

dt

[
x(t) + p(t)x(t− τ)

]
+ q(t)G

(
x(t− σ)

)
= 0

are established under various ranges of the neutral coefficient p. Our main tools are
Knaster-Tarski fixed point theorem and Banach’s fixed point theorem. Finally, two
illustrating examples are presented to show that feasibility and effectiveness of main
results.
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1. Introduction

Consider a class of first-order nonlinear neutral delay differential equation

d

dt

[
x(t) + p(t)x(t− τ)

]
+ q(t)G

(
x(t− σ)

)
= 0,(1.1)

where
τ, σ ∈ R+ = (0,+∞), p ∈ PC([0,∞),R), q ∈ C(R+,R+),

and G is nondecreasing with

G ∈ C(R,R) with uG(u) > 0 for u 6= 0.

In [1], Ahmed et al. have studied the oscillation properties of a linear differential equations of the form

(E1)
d

dt

[
r(t)(x(t) + p(t)x(t− τ)

]
+ q(t)x(t− σ) = 0,

for the cases p(t) ≤ −1, −1 ≤ p(t) < 0 and p(t) ≡ p 6= ±1 and established sufficient conditions so that
every solution of (E1) is oscillates. In [2], Ahmed et al. considered the first order nonlinear neutral delay
differential equations with variable coefficients of the form

(E2)
d

dt

[
r(t)

(
a(t)x(t) + p(t)x(t− τ)

)]
+ q(t)G

(
x(t− σ)

)
= 0,

and obtained some new sufficient conditions for the oscillation of all solutions of (E2) by employing the
Riccati transformation. In [4], Candan have obtained sufficient conditions for existence of nonoscillatory
solutions of first order neutral differential Equations having both delay and advance terms (known as
mixed equations) by using Banach contraction principle. In [8], Graef et al. considered (E2) when
a(t) = 1 = r(t) and developed some sufficient conditions for the oscillation of all solutions of (E2). Unlike
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the work in [1], [2] and [8] an attempt is made here to establish necessary and sufficient conditions for
oscillations of (1.1) under various ranges of p(t).

Recently, an increasing interest in obtaining sufficient conditions for oscillatory or non-oscillatory
behavior of different classes of differential and functional differential equations has been manifested. In
particular, investigation of neutral differential equations is important since they are encountered in many
applications in science and technology and are used, for instance, to describe distributed networks with
lossless transmission lines, in the study of vibrating masses attached to an elastic bar, as well as in some
variational problems.

Definition 1.1. By a solution of (1.1) we understand a function x ∈ C
(
[−ρ,∞),R

)
such that x(t) +

p(t)x(t− τ) is once continuously differentiable and (1.1) is satisfied for t ≥ 0, where ρ = max{τ, σ} and
sup{|x(t)| : t ≥ t0} > 0 for every t0 ≥ 0. A solution of (1.1) is said to be oscillatory if it has arbitrarily
large zeros; otherwise, it is called nonoscillatory.

2. Necessary and Sufficient Condition for Oscillation

In this section, sufficient and necessary conditions are obtained for oscillation of solutions of the
equation (1.1). We need the following assumptions for our work in the sequel:

(A1) there exists λ > 0 such that G(u) +G(v) ≥ λG(u+ v) for u, v > 0;
(A2) G(uv) = G(u)G(v) for u, v ∈ R;

(A3)
∫ ±c2
c1

dη
G(η) <∞, c1, c2 > 0;

(A4)
∫∞
τ
Q(η)dη =∞, where Q(t) = min

{
q(t), q(t− τ)

}
;

(A5)
∫ ±∞
±c

dη
G(η) <∞, c > 0;

(A6)
∫∞
0
q(η)dη =∞.

Remark 2.1. Assumption (A2) implies G is a odd function. Indeed, G(1)G(1) = G(1) and G(1) > 0

imply that G(1) = 1. Further, G(−1)G(−1) = G(1) = 1 implies that
(
G(−1)

)2
= 1. Since G(−1) < 0,

we conclude that G(−1) = −1. Hence,

G(−u) = G(−1)G(u) = −G(u).

On the other hand, G(uv) = G(u)G(v) for u > 0 and v > 0 and G(−u) = −G(u) imply that G(xy) =
G(x)G(y) for every x, y ∈ R.

Remark 2.2. We may note that if x(t) is a solution of (1.1), then y(t) = −x(t) is also a solution of
(1.1) provided that G satisfies (A2).

Lemma 2.3. [7] Let r, x, z ∈ C([0,∞),R) be such that z(t) = x(t) + p(t)x(t − τ), t ≥ τ > 0, x(t) > 0
for t ≥ t1 > τ , lim inft→∞ x(t) = 0 and limt→∞ z(t) = L exists. Let p(t) satisfy one of the following
conditions:

i) 0 ≤ p(t) ≤ p3 < 1, ii) 1 < p4 ≤ p(t) ≤ p5 <∞, iii) −∞ < −p6 ≤ p(t) ≤ 0,

where p > 0, 3 ≤ i ≤ 6. Then L = 0.

Remark 2.4. If, in the above lemma, x(t) < 0 for t ≥ τ > 0, lim supt→∞ x(t) = 0 and limt→∞ z(t) =
L ∈ R exists, then L = 0.

Theorem 2.5. Let −1 < −p ≤ p(t) ≤ 0, t ∈ R+ and p > 0. Assume that (A2) and (A3) hold. Then
every solution of the equation (1.1) oscillates if and only if (A6) hold.

Proof. Suppose for contrary that x(t) is a nonoscillatory solution of equation (1.1). Then there exists
t0 ≥ ρ = max{τ, σ} such that x(t) > 0 or x(t) < 0 for t ≥ t0. Assume that x(t) > 0 for t ≥ t0. We set

z(t) = x(t) + p(t)x(t− τ),(2.1)
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it follows from (1.1) that

z′(t) = −q(t)G
(
x(t− σ)

)
≤ 0(2.2)

for t ≥ t1 > t0. Consequently, z(t) is monotonic on [t2,∞), where t2 > t1. We have the following two
possible cases.
Case 1. Let z(t) > 0 for t3 > t2. From (2.1), it follows that z(t) ≤ x(t) on [t3,∞). Consequently, (2.2)
becomes

z′(t) + q(t)G
(
z(t− σ)

)
≤ 0.

Because of nonincreasing z(t), the last inequality becomes

z′(t)

G(z(t))
+ q(t) ≤ 0.

Note that limt→∞ z(t) exists. Integrating the last inequality from t3 to t, we get∫ t

t3

q(η)dη ≤ −
∫ z(t)

z(t3)

dζ

G(ζ)
<∞, as t→∞,

due to (A3), we get a contradiction to (A6).
Case 2. Let z(t) < 0 for t3 > t2. From (2.1), it is easy to verify that x(t) < x(t− τ) on [t3,∞), t3 > t2.
Further we can write

x(t) < x(t− τ) < x(t− 2τ) < · · · < y(t3),

that is, x(t) is bounded on [t3,∞). Consequently, z(t) is bounded and limt→∞ z(t) exists. From (2.1), it
follows that z(t+ τ − σ) > p(t+ τ − σ)x(t− σ). Hence, (2.2) becomes

z′(t) +
q(t)

G(−p)
G
(
z(t+ τ − σ)

)
≤ 0,(2.3)

due to (A2). Since z(t) is decreasing, then there exist t4 > t3 and c > 0 such that z(t) ≤ −c for t ≥ t4.
Therefore, the inequality (2.3) can be viewed as

z′(t) +
G(−c)
G(−p)

q(t) ≤ 0(2.4)

for t ≥ t4. Integrating (2.4) from t4 to t, we obtain

G(−c)
G(−p)

∫ t

t4

q(η)dη ≤ −
[
z(η)

]t
t4
<∞, as t→∞,

which is a contradiction to (A6).
If x(t) < 0 for t ≥ t0, then we set y(t) = −x(t) for t ≥ t0 in (1.1). Using (A2) and Remark 2.1, we find

d

dt

[
y(t) + p(t)y(t− τ)

]
+ q(t)G

(
y(t− σ)

)
= 0.

Then, proceeding as above, we find the same contradiction.
For the necessary Part, we suppose that (A6) does not holds. Then there exist t1 > 0 such that∫ ∞

t1

q(η)dη <
1− p

15G(1)
, t ≥ t1.

For t2 > t1, we let Y = BC([t2,∞),R) be the space of all real valued bounded continuous functions
defined on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.
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Let L = {y ∈ Y : y(t) ≥ 0, t ≥ t2}. Then, Y is a partially ordered Banach space (see for e.g. [7], p. 30).
For u, v ∈ Y , we define u ≤ v if and only if u− v ∈ L. Let

S =
{
u ∈ Y :

1− p
15

≤ u(t) ≤ 1, t ≥ t2
}
.

If u0(t) = 1−p
15 , then u0 ∈ S and u0 = g.l.b S. Further, if Φ ⊂ S∗ ⊂ S, then

S∗ =
{
u ∈ Y : λ ≤ u(t) ≤ µ, 1− p

15
≤ λ, µ ≤ 1

}
.

Let v0(t) = µ0, t ≥ t2, where µ0 = sup{µ : 1−p
15 ≤ µ ≤ 1}. Then v0 ∈ S and v0 = l.u.b S∗. For t3 = t2+ρ,

define T : S → S by

(Tx)(t) =

{
(Tx)(t3), t ∈ [t2, t3],

−p(t)x(t− τ) + 1−p
15 +

∫∞
t
q(η)G

(
x(η − σ)

)
dη, t ≥ t3.

For every x ∈ S, (Tx)(t) ≥ 1−p
15 and

(Tx)(t) ≤ p+G(1)
[ ∫ ∞

t

q(η)dη
]

+
1− p

15
<

2 + 13p

15
< 1

implies that Tx ∈ S. For x1, x2 ∈ S, it is easy to verify that x1 ≤ x2 implies that Tx1 ≤ Tx2. Hence by
Knaster-Tarski fixed point theorem (see for e.g. [7], Theorem 1.7.3), T has a unique fixed point x0 ∈ S.
Hence x0 is a positive solution of (1.1) such that lim inft→∞ x0(t) > 0. This completes the proof of the
theorem. �

Theorem 2.6. Let −∞ < −p1 ≤ p(t) ≤ −p2 ≤ −1, t ∈ R+, p1, p2 > 0 and τ > σ. Assume that (A2)
and (A5) hold. Furthermore, assume that G is Lipschitzian on interval of the form [a, b], 0 < a < b <∞.
Then every solution of the equation (1.1) oscillates if and only if (A6) holds.

Proof. On the contrary, we proceed as in the proof of the Theorem 2.5 to obtain z(t) is monotonic on
[t2,∞), t2 > t1. We claim that z(t) < 0 for t ≥ t2. If not, let z(t) ≥ 0 for t ≥ t2 > t1. Consequently,

x(t) ≥ −p(t)x(t− τ) ≥ x(t− τ) ≥ x(t− 2τ) ≥ x(t− 3τ) ≥ · · · ≥ x(t2)

implies that x is bounded from below by b > 0. Integrating (2.2) from t2 to t(> t2), we obtain

z(t)− z(t2) +

∫ t

t2

q(η)G
(
x(η − σ)

)
dη = 0,

that is,

z(t)− z(t2) +G(b)

∫ t

t2

q(η)dη ≤ 0.

Therefore,

z(t) ≤ z(t2)−G(b)

∫ t

t2

q(η)dη → −∞, as t→∞,

due to (A6), which is a contradiction because of boubded z(t) (or z(t) > 0) on [t2,∞). So, our claim
holds. From (2.1), it follows that z(t+ τ − σ) > p(t+ τ − σ)x(t− σ). Hence, (2.2) becomes

z′(t) +
q(t)

G(−p1)
G
(
z(t+ τ − σ)

)
≤ 0.(2.5)

Since z is decreasing on [t2,∞), then

z′(t) +
q(t)

G(−p1)
G
(
z(t)

)
≤ 0.

Galaxy
Text Box
101



Integrating the last inequality from t2 to t(> t2), we get∫ t

t2

z′(η)

G
(
z(η)

)dη +
1

G(−p1)

∫ t

t2

q(η)dη ≥ 0,

that is, ∫ t

t2

q(η)dη ≤ −G(−p1)

∫ z(t)

z(t2)

dζ

G(ζ)
<∞, as t→∞,

due to (A5), we get a contradiction to (A6). The case where x is eventually negative is very similar and
we omit it here.

For the necessary part of the theorem, let (A6) does’t hold. Then it is possible to find a t1 > 0 such
that ∫ ∞

t1

q(η)dη <
p2 − 1

2K
,

where K = max{K1,K2} and K1 is the Lipschitz constant of H on [a, b] and K2 = G(b) such that

a =
2λp2 − p1(p2 − 1)

2p1p2

b =
λ

p2 − 1
, λ >

p1(p2 − 1)

2p2
> 0.

Let Y = BC([t2,∞),R) be the space of real valued bounded continuous functions on [t2,∞). Clearly, Y
is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S = {u ∈ Y : a ≤ u(t) ≤ b, t ≥ t2} .
It is easy to verify that S is a closed convex subspace of Y . Let T : S → S be such that

(Tx)(t) =

{
(Tx)(t2 + ρ), t ∈ [t2, t2 + ρ],

−x(t+τ)p(t+τ) −
λ

p(t+τ) + 1
p(t+τ)

[ ∫∞
t+τ

q(η)G
(
x(η − σ)

)
dη
]
, t ≥ t2 + ρ.

For every x ∈ S,

(Tx)(t) ≤ −x(t+ τ)

p(t+ τ)
− λ

p(t+ τ)
≤ b+ λ

p2
=

λ

p2 − 1
= b

and

(Tx)(t) ≥ G(b)

p(t+ τ)

[ ∫ ∞
t+τ

q(η)dη
]
− λ

p(t+ τ)

≥ − 1

p2

p2 − 1

2
+

λ

p1

=
2λp2 − p1(p2 − 1)

2p1p2
= a

implies that Tx ∈ S. For y1, y2 ∈ S

|(Ty1)(t)− (Ty2)(t)| ≤ 1

|p(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
K

|p(t+ τ)|

[ ∫ ∞
t+τ

q(η)|y1(η − σ)− y2(η − σ)|dη
]
,
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that is,

|(Ty1)(t)− (Ty2)(t)| ≤ 1

p2
||y1 − y2||+

K

p2
||y1 − y2||

[ ∫ ∞
t+τ

q(η)dη
]

<
( 1

p2
+
p2 − 1

2p2

)
||y1 − y2||

implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction, where µ =
(

1
p2

+ p2−1
2p2

)
< 1. Hence by the Banach’s fixed point theorem, T

has a unique fixed point which is a nonoscillatory solution of the equation (1.1) on [a, b]. Thus the proof
of the theorem is complete. �

Theorem 2.7. Let −∞ < −p1 ≤ p(t) ≤ −p2 ≤ −1, t ∈ R+ and p1, p2 > 0. Assume that (A2) holds.
Furthermore, assume that G is Lipschitzian on intervals of the form [a, b], 0 < a < b < ∞. Then every
bounded solutions of (1.1) oscillates if and only if (A6).

Proof. Suppose for contrary that x(t) is bounded nonoscillatory solution of equation (1.1). We proceed
as in the proof of the Theorem 2.5 to obtain z(t) is monotonic on [t2,∞), t2 > t1. Therefore the cases
z(t) > 0 and z(t) < 0 for t ≥ t2 follows from the Theorem 2.6 and Theorem 2.5 respectively. Necessary
part of the theorem follows from the Theorem 2.6. This completes the proof the theorem. �

Remark 2.8. In Theorem 2.7, H could be linear, sublinear or superlinear.

Theorem 2.9. Let 0 ≤ p(t) ≤ p < ∞, t ∈ R+ and τ ≤ σ. Assume that (A1)–(A4) holds. Then every
solutions of (1.1) are oscillatory.

Proof. On the contrary, we proceed as in the proof of the Theorem 2.5 to obtain z(t) is monotonic on
[t2,∞), t2 > t1. Since z(t) > 0 for t2 > t1. From (2.2)

0 = z′(t) + q(t)G
(
x(t− σ)

)
+G(p)

[
z′(t− τ) + q(t− τ)G

(
x(t− τ − σ)

)]
for t ≥ t2 and because of (A1), (A2) and z(t) ≤ x(t) + px(t− τ) we find that

0 ≥ z′(t) +G(p)z′(t− τ) + λQ(t)
[
G
(
x(t− σ)

)
+G

(
rx(t− τ − σ)

)]
≥ z′(t) +G(p)z′(t− τ) + λQ(t)G

(
z(t− σ)

)
.

Hence, there exists t3 > t2 such that

z′(t)

G
(
z(t− σ)

) +G(p)
z′(t− τ)

G
(
z(t− σ)

) + λQ(t) ≤ 0,(2.6)

Since z(t) is decreasing on [t3,∞) and τ ≤ σ. Then the inequality (2.6) becomes

z′(t)

G
(
z(t)

) +G(r)
z′(t− τ)

G
(
z(t− τ)

) + λQ(t) ≤ 0.

Note that limt→∞ z(t) exists. Integrating the last inequality from t3 to t(> t3), we get∫ t

t3

z′(η)

G
(
z(η)

)dη +G(p)

∫ t

t3

z′(η − τ)

G
(
z(η − τ)

)dη + λ

∫ t

t3

Q(η)dη ≤ 0,

that is,

λ

∫ t

t3

Q(η)dη ≤ −
[ ∫ z(t)

z(t3)

dζ

G(ζ)
+G(P )

∫ z(t−τ)

z(t3−τ)

dζ

G(ζ)

]
<∞, as t→∞,

due to (A3), a contradiction to (A4).
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The case where x is eventually negative can be dealt similarly, and we omit the details here. This
completes the proof. �

Theorem 2.10. Let 0 ≤ p(t) ≤ p3 < 1, t ∈ R+. Let G be Lipschitzian on intervals of the form [a, b],
0 < a < b <∞. Then every solution of (1.1) converges to zero as t→∞ if and only if (A6) hold.

Proof. Suppose that (A6) holds. Let x(t) be a solution of (1.1) on [tx,∞], tx ≥ 0. Let the solution
x(t) > 0 for t ≥ tx. Then proceeding as in Theorem 2.5, we have obtained (2.2) for t ≥ t1 > t0 + σ,
where t0 > ρ > tx. Since, z(t) > 0 for t ≥ t2. So, limt→∞ z(t) exists. Consequently, limt→∞ x(t) exists
and x(t) is bounded. We claim that lim inft→∞ x(t) = 0. If not, then there exists t3 > t2 and α > 0 such
that x(t− σ) ≥ α > 0 for t ≥ t3. Ultimately,∫ t

t3

Q(η)G
(
x(η − σ)

)
dη ≥ G(α)

∫ t

t3

q(η)dη → +∞,

as t→∞, due to (A6). On the other hand, we integrate (2.2) from t3 to t to obtain[
z(η)

]t
t3

+

∫ t

t3

q(η)G
(
x(η − σ)

)
dη = 0

and hence it follows that ∫ t

t3

q(η)G
(
x(η − σ)

)
dη = −

[
z(η)

]t
t3
<∞,

as t→∞, we get a contradiction. So, our claim hold. Consequently, limt→∞ z(t) = 0 due to Lemma 2.3.
As a result,

0 = lim
t→∞

z(t) = lim sup
t→∞

[
x(t) + p(t)x(t− τ)

]
≥ lim sup

t→∞
x(t)

implies that lim supt→∞ x(t) = 0, that is, limt→∞ x(t) = 0. An equivalent procedure can be followed for
x(t) < 0 for t ≥ tx to show that limt→∞ x(t) = 0.

For the necessary part we suppose that (A6) does’t hold. Then it is possible to find a t1 > 0 such that∫ ∞
0

q(η)dη <
1− p3
10L

,

where L = max{L1, H(1)} and L1 is the Lipschitz constant for H on
[
2(1−p3)

5 , 1
]
. For t2 > t1, we set

Y = BC([t2,∞),R), the space of real valued bounded continuous functions on [t2,∞). Clearly, Y is a
Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.
Let us define

S =
{
u ∈ Y :

2

5
(1− p3) ≤ u(t) ≤ 1, t ≥ t2

}
.

Clearly, S is a closed and convex subspace of Y . Let T : S → S be defined by

(Tx)(t) =

{
(Tx)(t2 + ρ), t ∈ [t2, t2 + ρ],

−p(t)x(t− τ) + 2+3p3
5 +

∫∞
t
q(η)G

(
x(η − σ)

)
dη, t ≥ t2 + ρ.

For every x ∈ S,

(Tx)(t) ≤ 2 + 3p3
5

+G(1)
[ ∫ ∞

t

q(η)dη
]
<

2 + 3p3
5

+
1− p3

10
=

1 + p3
2

< 1

and

(Tx)(t) ≥ −p(t)x(t− τ) +
2 + 3p3

5
≥ −p3 +

2 + 3p3
5

=
2

5
(1− p3)
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implies that Tx ∈ S. Now, for y1, y2 ∈ S

|(Ty1)(t)− (Ty2)(t)| ≤ |p(t)||y1(t− τ)− y2(t− τ)|

+ L1

∫ ∞
t

q(η)|y1(η − σ)− y2(η − σ)|dη,

that is,

|(Ty1)(t)− (Ty2)(t)| ≤ p3||y1 − y2||+ L1||y1 − y2||
[ ∫ ∞

t

q(η)dη
]

<
(
p3 +

1− p3
10

)
||y1 − y2||

implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction mapping, where µ = p3 + 1−p3
10 = 1+9p3

10 < 1. Since S is complete and T is a

contraction on S, then by the Banach’s fixed point theorem T has a unique fixed point on
[
2
5 (1− p3), 1

]
.

Hence Tx = x and

x(t) =

{
x(t2 + ρ), t ∈ [t2, t2 + ρ],

−p(t)x(t− τ) + 2+3p3
5 +

∫∞
t
q(η)G

(
x(η − σ)

)
dη, t ≥ t3 + ρ

is a nonoscillatory solution of (1.1) on
[
2
5 (1− p3), 1

]
such that limt→∞ x(t) 6= 0. This completes the proof

of the theorem. �

Theorem 2.11. Let 1 < p4 ≤ p(t) ≤ p5 < ∞, t ∈ R+ and p24 > p5. Let G be Lipschitzian on intervals
of the form [a, b], 0 < a < b < ∞. Then every solution of (1.1) converges to zero as t → ∞ if and only
if (A6) hold.

Proof. Sufficient part of the theorem follows from Theorem 2.10 and the necessary part of the theorem
follows from the proof of the Theorem 2.6. But we need to mention the following:∫ ∞

t1

q(η)dη <
p4 − 1

2K
,

where K = max{K1,K2} and K1 is the Lipschitz constant of H on [a, b], K2 = H(b) such that

a =
2λ(p24 − p5)− p5(p4 − 1)

2p24p5
, b =

p4 − 1 + 2λ

2p4
for λ >

p5(p4 − 1)

2(p24 − p5)
> 0,

and

(Tx)(t) =

{
Tx(t2 + ρ), t ∈ [t2, t2 + ρ],

−x(t+τ)p(t+τ) + λ
p(t+τ) + 1

p(t+τ)

[∫∞
t+τ

q(η)G
(
x(η − σ)

)
dη
]
, t ≥ t2 + ρ.

This completes the proof of the theorem. �

Remark 2.12. In Theorem 2.10 and Theorem 2.11, G could be linear, sublinear or superlinear.

3. Discussion and Examples

We could succeed to establish the necessary and sufficient conditions for oscillation of all solutions
of (1.1) when −∞ < p(t) ≤ 0. But, we failed to obtain the necessary and sufficient conditions for
0 ≤ p(t) <∞. However, we established necessary and sufficient conditions for oscillations of solutions of
(1.1) is either oscillates or converges to zero as t →∞ when 0 ≤ p(t) < 1 and 1 < p(t) < ∞. Hence the
undertaken problem is open for 0 ≤ p(t) < ∞. May be some other method is required to overcome the
problem.
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Remark 3.1. A prototype of the function G satisfying all the assumptions on G is(
1 + α|u|β

)
|u|γsgn(u) for u ∈ R,

where α ≥ 1 or α = 0 and β, γ > 0 are reals. For verifying (A1), we may take help of the well-known
inequality (see [9, p. 292])

up + vp ≥ h(p)(u+ v)p for u, v > 0, where h(p) :=

{
1, 0 ≤ p ≤ 1,
1

2p−1
, p ≥ 1.

Example 3.2. Consider the differential equation

d

dt

[
x(t)− e 3π

2 x

(
t− 3π

2

)]
+ 2eπx(t− π) = 0,(3.1)

where τ = 3π
2 > σ = π. Clearly, all the conditions of Theorem 2.6 are satisfied. Hence, by Theorem 2.6

every solutions of (3.1) oscillates. Indeed, x(t) = et sin(t) is such a solution of (3.1).

Example 3.3. Consider the differential equation

d

dt

[
x(t) + e−πx(t− π)

]
+ 2e2t−6π

(
x(t− 2π)

)3
= 0,(3.2)

where 0 < p(t) = e−π < 1 and G(x) = x3. Clearly, all the conditions of Theorem 2.10 are satisfied.
Hence, by Theorem 2.10 every solutions of (3.2) converges to zero as t→∞. Indeed, x(t) = e−t is such
a solution of (3.2).
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