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Abstract. For a connected graph G = (V,E) of order at least three, the monophonic
distance dm(u, v) is the length of a longest u− v monophonic path in G. For subsets A
and B of V , the monophonic distance dm(A,B) is defined as dm(A,B) = min{dm(x, y) :
x ∈ A, y ∈ B}. A u− v path of length dm(A,B) is called an A−B detour monophonic
path joining the sets A,B ⊆ V, where u ∈ A and v ∈ B. A set S ⊆ E is called an
edge-to-vertex detour monophonic set of G if every vertex of G is incident with an edge
of S or lies on a detour monophonic joining a pair of edges of S. The edge-to-vertex

detour monophonic number dmev(G) of G is the minimum order of its edge- to-vertex
detour monophonic sets and any edge-to-vertex detour monophonic set of order dmev(G)
is an edge-to-vertex detour monophonic basis of G. Certain general properties of these
concepts are studied. It is shown that for each pair of integers k and q with 2 ≤ k ≤ q,
there exists a connected graph G of order q + 1 and size q with dmev(G) = k.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q, respectively. For basic
graph theoretic terminology we refer to Harary [1, 5]. For vertices x and y in a connected
graph G, the distance d(x, y) is the length of a shortest x− y path in G. An x− y path of
length d(x, y) is called an x− y geodesic. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if
the subgraph induced by its neighbors is complete.
The detour distance D(u, v) between two vertices u and v in G is the length of a longest

u− v path in G. An u− v path of length D(u, v) is called an u − v detour. It is known
that D is a metric on the vertex set V of G. The closed detour interval ID[x, y] consists
of x, y, and all the vertices in some x − y detour of G. For S ⊆ V, ID[S] is the union of
the sets ID[x, y] for all x, y ∈ S. A set S of vertices is a detour set if ID[S] = V, and the
minimum cardinality of a detour set is the detour number dn(G). The concept of detour
number was introduced in [2, 3] and further studied in [3, 4].
A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is

called monophonic if it is a chordless path. A longest x− y monophonic path is called an
x− y detour monophonic path. A set S of vertices of a graph G is a detour monophonic
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set if each vertex v of G lies on an x − y detour monophonic path for some x, y ∈ S.
The minimum cardinality of a detour monophonic set of G is the detour monophonic

number of G and is denoted by dm(G). The detour monophonic number of a graph was
introduced in [9] and further studied in [10].
An edge detour monophonic set of G is a set S of vertices such that every edge of G

lies on a detour monophonic path joining some pair of vertices in S. The edge detour

monophonic number of G is the minimum cardinality of its edge detour monophonic sets
and is denoted by edm(G). An edge detour monophonic set of cardinality edm(G) is
an edm-set of G. The edge detour monophonic number of a graph was introduced and
studied in [8].
For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v)

from u to v is defined as the length of a longest u − v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}.
The monophonic radius, radmG of G is radm(G) = min {em(v) : v ∈ V (G)} and the
monophonic diameter, diammG of G is diamm(G) = max {em(v) : v ∈ V (G)}. A vertex
u in G is a monophonic eccentric vertex of a vertex v in G if em(v) = dm(u, v). The
monophonic distance was introduced in [6] and further studied in [7].
Throughout this paper G denotes a connected graph with at least three vertices.

2. Edge-to-vertex detour monophonic number

Definition 2.1. Let G = (V,E) be a connected graph with at least three vertices. For
subsets A and B of V , the monophonic distance dm(A,B) is defined as dm(A,B) =
min{dm(x, y) : x ∈ A, y ∈ B}. A u − v detour monophonic path of length dm(A,B) is
called an A − B detour monophonic path joining the sets A and B, where u ∈ A and
v ∈ B. For A = {u, v} and B = {z, w} with uv and zw edges, we write an A−B detour
monophonic path as uv − zw detour monophonic path, and dm(A,B) as dm(uv, zw).
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Figure 2.1: G

Example 2.2. For the graph G given in Figure 2.1, with A = {v1, v2} and B = {v4, v5},
P : v1, v3, v4 is the only v1 − v4 detour monophonic path; Q : v1, v3, v4, v5 and R :
v1, v3, v6, v5 are the only v1 − v5 detour monophonic paths; P ′ : v2, v3, v4 is the only
v2−v4 detour monophonic path, Q′ : v2, v3, v4, v5 and R′ : v2, v3, v6, v5 are the only v2−v5
detour monophonic paths. Hence dm(A,B) = 2 and P : v1, v3, v4 and P ′ : v2, v3, v4 are
the only two A−B detour monophonic paths.
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Definition 2.3. Let G = (V,E) be a connected graph with at least three vertices. A
set S ⊆ E is called an edge-to-vertex detour monophonic set of G if every vertex of G is
incident with an edge of S or lies on a detour monophonic path joining a pair of edges of S.
The edge-to-vertex detour monophonic number dmev(G) of G is the minimum cardinality
of its edge-to-vertex detour monophonic sets and any edge-to-vertex detour monophonic
set of cardinality dmev(G) is an edge-to-vertex detour monophonic basis of G.

Example 2.4. For the graphG given in Figure 2.2, the four v1v2−v4v5 detour monophonic
paths are P1 : v1, v2, v3, v4, P2 : v1, v6, v5, v4, Q1 : v2, v3, v4, v5 and Q2 : v2, v1, v6, v5,
each of length 3 so that dm(v1v2, v4v5) = 3. Since the vertices v3 and v6 lie on the
v1v2 − v4v5 detours monophonic paths P1 and P2 respectively, S1 = {v1v2, v4v5} is an
edge-to-vertex detour monophonic basis of G so that dmev(G) = 2. Also S2 = {v2v3, v5v6}
and S3 = {v3v4, v1v6} are edge-to-vertex detour monophonic bases of G. Thus there can
be more than one edge-to-vertex detour monophonic basis for a graph.

b

b b

b

b b

v1 v2

v3v6

v4v5

Figure 2.2: G

It is clear that an edge-to-vertex detour monophonic set needs at least two edges, and
the set of all edges of G is an edge-to-vertex detour monophonic set of G. Hence the
following proposition is trivial.

Proposition 2.5. For any connected graph G of size q ≥ 2, 2 ≤ dmev(G) ≤ q.

For the star K1, q(q ≥ 2), it is clear that the set of all edges is the unique edge-to-
vertex detour monophonic set so that dmev(K1,q) = q. The set of two end-edges of a path
Pn(n ≥ 3) is its unique edge-to-vertex detour monophonic basis so that dmev(Pn) = 2.
Thus the bounds in Proposition 2.5 are sharp.

Definition 2.6. An edge e in a graph G is an edge-to-vertex detour monophonic edge in G

if e belongs to every edge-to-vertex detour monophonic basis of G. If G has a unique edge-
to-vertex detour monophonic basis S, then every edge in S is an edge-to-vertex detour
monophonic edge of G.

b b
v8 v7

b bv3 v4

b bb b v5v2v1 v6

Figure 2.3: G
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Example 2.7. For the graph G given in Figure 2.3, S = {v1v2, v5v6} is the unique edge-
to-vertex detour monophonic basis of G so that both the edges in S are edge-to-vertex
detour monophonic edge of G. For the graph G given in Figure 2.1, it is easily verified
that no two element subset of E is an edge-to-vertex detour monophonic set of G. Also, it
is clear that S1 = {v1v3, v2v3, v4v5} and S2 = {v1v3, v2v3, v5v6} are the only edge-to-vertex
detour monophonic bases of G so that the edges v1v3, v2v3 are the edge-to-vertex detour
monophonic edges of G.

An edge of a connected graph G is called an extreme edge of G if one of its ends is an
extreme vertex of G.

Theorem 2.8. If v is an extreme vertex of a non-complete connected graph G, then every

edge-to-vertex detour monophonic set of G contains at least one extreme edge that is

incident with v.

Proof. Let v be an extreme vertex of G. Let e1, e2, . . . , ek be the edges incident with v.
Let S be any edge-to-vertex detour monophonic set of G. We claim that ei ∈ S for some
i(1 ≤ i ≤ k). Otherwise, ei /∈ S for any i(1 ≤ i ≤ k). Since S is an edge-to-vertex detour
monophonic set and the vertex v is not incident with any element of S, v lies on a detour
monophonic path joining two elements say x, y ∈ S. Let x = v1v2 and y = vlvm. Then
v 6= v1, v2, vl, vm and since G is non-complete, dm(x, y) ≥ 2. Let u and w be the neighbors
of v on P. Then u and w are not adjacent and so v is not an extreme vertex, which is a
contradiction. Therefore, ei ∈ S for some i(1 ≤ i ≤ k). �

b b
v5 v6

b bv2 v3

bb v4v1

Figure 2.4: G

Remark 2.9. For the graph G given in Figure 2.4, S = {v1v5, v3v4} is an edge-to-vertex
detour monophonic set of G, which does not contain the extreme edge v1v2. Thus all the
extreme edges of a graph need not belong to an edge-to-vertex detour monophonic set of
G.

In the following theorem we show that there are certain edges in a connected graph G

that are edge-to-vertex detour monophonic edges of G.

Corollary 2.10. Every end-edge of a connected graph G belongs to every edge-to-vertex

detour monophonic set of G. Also if the set S of all end-edges of G is an edge-to-vertex

detour monophonic set, then S is the unique edge-to-vertex detour monophonic basis for

G.

Proof. This follows from Theorem 2.8. If S is the set of all end-edges of G, then by the
first part of this corollary dmev(G) ≥ |S|. Since S is an edge-to-vertex detour monophonic
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set of G, dmev(G) ≤ |S|. Hence dmev(G) = |S| and S is the unique edge-to-vertex detour
monophonic basis for G. �

Corollary 2.11. If T is a tree with k end-edges, then dmev(T ) = k.

Corollary 2.12. For any connected graph G with k end-edges, max{2, k} ≤ dmev(G) ≤ q.

Proof. This follows from Proposition 2.5 and Corollary 2.10. �

For a cutvertex v in a connected graph G and a component H of G− v, the subgraph
H and the vertex v together with all edges joining v and V (H) is called a branch of G at
v.

Theorem 2.13. Let G be a connected graph with cutvertices and S an edge-to-vertex

detour monophonic set of G. Then every branch of G contains an element of S.

Proof. Assume that there is a branch B of G at a cutvertex v such that B contains no
element of S. Then by Corollary 2.10, B does not contain any end-edge of G. Hence it
follows that no vertex of B is an endvertex of G. Let u be any vertex of B (note that
|V (B)| ≥ 2). Then u is not incident with any end-edge of G and so u lies on a e − f
detour monophonic path P : u1, u2, . . . , u, . . . , ut where u1 is an end of e, ut is an end of f
and e, f ∈ S. Since v is a cutvertex of G, the u1−u and u−ut subpaths of P both contain
v and so P is not a path, which is a contradiction. Hence every branch of G contains an
element of S. �

Corollary 2.14. Let G be a connected graph with cut-edges and S an edge-to-vertex detour

monophonic set of G. Then every branch of G contains an element of S.

Corollary 2.15. Let G be a connected graph with cut-edges and S an edge-to- vertex

detour monophonic set of G. Then for any cut-edge e of G, which is not an end-edge,

each component of G− e contains an element of S.

Proof. Let e = uv. Let G1 and G2 be the two components of G− e such that u ∈ V (G1)
and v ∈ V (G2). Since u and v are cutvertices of G, the result follows from Theorem
2.13. �

Corollary 2.16. If G is a connected graph with k ≥ 2 endblocks, then dmev(G) ≥ k.

Corollary 2.17. If G is a connected graph with a cutvertex v and the number of compo-

nents of G− v is r, then dmev(G) ≥ r.

Remark 2.18. By Corollary 2.16, if S is an edge-to-vertex detour monophonic set of
a graph G, then every endblock of G must contain at least one element of S. However,
it is possible that some blocks of G that are not endblocks must contain an element
of S as well. For example, consider the graph G given in Figure 2.5, where the cycle
C5 : x, y, t, w, s, x is a block of G that is not an endblock. By Corollary 2.10, every edge-
to-vertex detour monophonic set of G must contain us and tv. Since the us− tv detour
monophonic path does not contain the vertex w, it follows that {us, tv} is not an edge-
to-vertex detour monophonic set of G. Thus every edge-to-vertex detour monophonic set
of G must contain at least one edge from the block C5.
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b bx y

b bbbb tu vws

Figure 2.5: G

Theorem 2.19. Let G be a connected graph with cut-edges. Then no cut-edge which is

not an end-edge in G belongs to any edge-to-vertex detour monophonic basis of G.

Proof. Suppose that S is an edge-to-vertex detour monophonic basis that contains a cut-
edge e = uv which is not an end-edge of G. Let G1, G2 be the two components of G− e
such that u ∈ G1 and v ∈ G2. Then by Corollary 2.15, each of G1 and G2 contains an
element of S. Let S ′ = S−{uv}. We show that S ′ is an edge-to-vertex detour monophonic
set of G. Since S is an edge-to-vertex detour monophonic set of G and uv ∈ S, let s be
any vertex of G that lies on a detour monophonic path P joining the edges, say xy

and uv of S. We may assume that xy ∈ E(G1) and so V (P ) ⊆ V (G1). Let P1 be the
xy−uv detour monophonic path that contains the vertex s and P2 be any uv−wz detour
monophonic path in G, where wz ∈ E(G2) ∩ S. Then, since uv is a cut-edge of G, the
detour monophonic path P1 followed by the edge uv and the detour monophonic path P2

is an xy−wz detour monophonic path which contains the vertex s. Thus we have shown
that a vertex that lies on a detour monophonic path joining a pair of edges xy and uv of
S also lies on a detour monophonic path joining a pair of edges xy and wz of S ′. Hence it
follows that S ′ is an edge-to-vertex detour monophonic set of G. Since |S ′| = |S| − 1, this
contradicts that S is an edge-to-vertex detour monophonic basis of G. Thus the result is
proved. �

3. Edge-to-Vertex Detour Monophonic Numbers of Some Standard

Graphs

Theorem 3.1. For p even, a set S of edges of G = Kp(p ≥ 4) is an edge-to-vertex detour

monophonic basis of Kp if and only if S consists of p/2 independent edges.

Proof. Let S be any set of p/2 independent edges of Kp. Since each vertex of Kp is
incident with an edge of S, it follows that dmev(G) ≤ p/2. If dmev(G) < p/2, then there
exists an edge-to-vertex detour monophonic set S ′ of Kp such that |S ′| < p/2. Therefore,
there exists at least one vertex v of Kp such that v is not incident with any edge of S ′.
Since dm(e, f) = 1 if e and f are independent edges, it follows that v is neither incident
with any edge of S ′ nor lies on a detour monophonic path joining a pair of edges of S ′

and so S ′ is not an edge-to-vertex detour monophonic set of G, which is a contradiction.
Thus S is an edge-to-vertex detour monophonic basis of Kp.
Conversely, let S be an edge-to-vertex detour monophonic basis of Kp. Let S ′ be any

set of p/2 independent edges of Kp. Then as in the first part of this theorem, S ′ is
an edge-to-vertex detour monophonic basis of Kp. Therefore, |S| = p/2. If S is not
independent, then there exists a vertex v of Kp such that v is not incident with any edge
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of S and it follows that S is not an edge-to-vertex detour monophonic set of G, which is
a contradiction. Therefore, S consists of p/2 independent edges. �

Corollary 3.2. For the complete graph Kp(p ≥ 4) with p even, dmev(Kp) = p/2.

For any real x, ⌈x⌉ denotes the smallest integer greater than or equal to x.

Theorem 3.3. For the complete graph G = Kp(p ≥ 3) with p odd, dmev(G) =
p+ 1

2
.

Proof. Let S be any set of
p− 1

2
independent edges of G. Then there exists a unique

vertex v which is not incident with an edge of S. Let S1 be the union of S and an
edge incident with v. Then S1 is an edge-to-vertex detour monophonic set of G so that

dmev(G) ≤
p− 1

2
+ 1. Now, if dmev(G) ≤

p− 1

2
, then let S2 be an edge-to-vertex detour

monophonic set of G such that |S2| ≤
p− 1

2
. Then there exists a vertex u such that u

is not incident with any edge of S2. Obviously, u does not lie on a detour monophonic
path joining a pair of edges of S2, which is a contradiction to S2 an edge-to-vertex detour

monophonic set of G. Hence dmev(G) =
p− 1

2
+ 1 =

p+ 1

2
. �

Corollary 3.4. For the complete graph Kp(p ≥ 3), dmev(Kp) =
⌈p

2

⌉

.

Two vertices u and v of G are called antipodal if d(u, v) = diamG, where diamG is
the usual diameter of the graph G.

Theorem 3.5. For the cycle Cp(p ≥ 3), dmev(Cp) =

{

2 if p 6= 5

3 if p = 5.

Proof. For p = 3, Cp = K3 and any set of two edges is an edge-to-vertex detour mono-
phonic basis and so dmev(G) = 2.
Let p ≥ 4 and p 6= 5. Let Cp : v1, v2, v3, . . . , vk, vk+1, vk+2, . . . , vp, v1 be the cycle of order

p such that vk+1 is the unique antipodal vertex of v1 if p is even; and vk+1 and vk+2 are
the antipodal vertices of v1 if p is odd. Then it is easily checked that S = {v1v2, vk+1vk+2}
is an edge-to-vertex detour monophonic set of Cp so that dmev(Cp) = 2.
For p = 5, it is easily seen that no 2-element subset of edges of C5 is an edge-to-vertex

detour monophonic set of C5 since dm(e, f) = 1 if e and f are two independent edges in
C5. Also, since S = {v1v2, v2v3, v4v5} is an edge-to-vertex detour monophonic set of C5,
it follows that dmev(C5) = 3. �

4. Monophonic Diameter and Edge-to-Vertex Detour Monophonic

Number

Theorem 4.1. For each pair of integers k and q with 2 ≤ k ≤ q, there exists a connected

graph G of order q + 1 and size q with dmev(G) = k.
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Proof. For 2 ≤ k ≤ q, let P be a path of order q−k+3. Then the graph G obtained from
P by adding k − 2 new vertices to P and joining them to any cutvertex of P is a tree of
order q + 1 and size q with k end-edges and so by Corollary 2.11, dmev(G) = k. �

Proposition 2.5 shows that if G is a connected graph of size q ≥ 2, then 2 ≤ dmev(G) ≤
q. Indeed, by Theorem 4.1, for each pair k, q of integers with 2 ≤ k ≤ q, there is a tree of
size q with edge-to-vertex detour monophonic number k. An improved upper bound for
the edge-to-vertex detour monophonic number of a graph can be given in terms of its size
q and detour monophonic diameter. For convenience, we denote the detour monophonic
diameter diamm(G) by dm itself.

Theorem 4.2. If G is a connected graph of size q and monophonic diameter dm, then
dmev(G) ≤ q − dm + 2.

Proof. Let u and v be vertices of G such that dm(u, v) = dm and let P : u =
v0, v1, v2, . . . , vdm−1, vdm = v be a u − v detour monophonic path of length dm. Let
S = (E(G) − E(P )) ∪ {uv1, vdm−1v}. Then it is clear that S is an edge-to-vertex detour
monophonic set of G so that dmev(G) ≤ |S| = q − dm + 2. �

We give below a characterization theorem for trees.

Theorem 4.3. For any tree T of size q ≥ 2 and monophonic diameter dm, dmev(T ) =
q − dm + 2 if only if T is a caterpillar.

Proof. Let T be any tree of size q ≥ 2 and P : v0, v1, . . . , vdm−1, vdm be a monophonic
diameteral path of T. Let e1, e2, . . . , edm−1, edm be the edges of P, where ei = vi−1vi(1 ≤ i ≤
dm), k the number of end-edges of T and l the number of internal edges of T other than
e2, . . . , edm−1. Then k+ l+ dm − 2 = q. By Corollary 2.11, dmev(T ) = k = q− dm − l+2.
Hence dmev(T ) = k = q − dm + 2 if and only if l = 0, if and only if all the internal edges
of T lie on the monophonic diameteral path P, if and only if T is a caterpillar. �

Corollary 4.4. For a wounded spider T of size q ≥ 2, dmev(T ) = q− dm + 2 if and only

if T is obtained from K1,t(t ≥ 2) by subdividing at most two of its edges.

Proof. Since a wounded spider T is a caterpillar if and only if T is obtained from
K1,t(t ≥ 2) by subdividing at most two of its edges, the result follows from Theorem
4.3. �
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