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EDGE-TO-VERTEX DETOUR MONOPHONIC NUMBER OF A
GRAPH
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ABSTRACT. For a connected graph G = (V, E) of order at least three, the monophonic
distance d,,(u,v) is the length of a longest © — v monophonic path in G. For subsets A
and B of V, the monophonic distance d,,, (4, B) is defined as d,, (A, B) = min{d,,(z,y) :
x € A,y € B}. A u— v path of length d,,(A, B) is called an A — B detour monophonic
path joining the sets A, B C V, where u € A and v € B. A set S C F is called an
edge-to-vertex detour monophonic set of G if every vertex of G is incident with an edge
of S or lies on a detour monophonic joining a pair of edges of S. The edge-to-vertex
detour monophonic number dme,(G) of G is the minimum order of its edge- to-vertex
detour monophonic sets and any edge-to-vertex detour monophonic set of order dme,(G)
is an edge-to-vertex detour monophonic basis of G. Certain general properties of these
concepts are studied. It is shown that for each pair of integers k and ¢ with 2 < k < ¢,
there exists a connected graph G of order ¢ + 1 and size ¢ with dme,(G) = k.
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1. INTRODUCTION

By a graph G = (V, E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and ¢, respectively. For basic
graph theoretic terminology we refer to Harary [1, 5]. For vertices x and y in a connected
graph G, the distance d(x,y) is the length of a shortest  —y path in G. An x — y path of
length d(z,y) is called an x — y geodesic. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if
the subgraph induced by its neighbors is complete.

The detour distance D(u,v) between two vertices u and v in G is the length of a longest
u — v path in G. An u — v path of length D(u,v) is called an v — v detour. It is known
that D is a metric on the vertex set V' of G. The closed detour interval Ip[z,y] consists
of z,y, and all the vertices in some z — y detour of G. For S C V| Ip[S] is the union of
the sets Iplx,y] for all z,y € S. A set S of vertices is a detour set if Ip[S] =V, and the
minimum cardinality of a detour set is the detour number dn(G). The concept of detour
number was introduced in [2, 3] and further studied in [3, 4].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is
called monophonic if it is a chordless path. A longest © —y monophonic path is called an
x —y detour monophonic path. A set S of vertices of a graph G is a detour monophonic
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set if each vertex v of G lies on an x — y detour monophonic path for some x,y € S.
The minimum cardinality of a detour monophonic set of G is the detour monophonic
number of G and is denoted by dm(G). The detour monophonic number of a graph was
introduced in [9] and further studied in [10].

An edge detour monophonic set of G is a set S of vertices such that every edge of G
lies on a detour monophonic path joining some pair of vertices in S. The edge detour
monophonic number of G is the minimum cardinality of its edge detour monophonic sets
and is denoted by edm(G). An edge detour monophonic set of cardinality edm(G) is
an edm-set of G. The edge detour monophonic number of a graph was introduced and
studied in [8].

For any two vertices v and v in a connected graph G, the monophonic distance d,(u, v)
from u to v is defined as the length of a longest u — v monophonic path in G. The
monophonic eccentricity en,(v) of a vertex v in G is e,,(v) = max {d,,(v,u) : u € V(G)}.
The monophonic radius, rad,,G of G is rad,,(G) = min {e,(v) : v € V(G)} and the
monophonic diameter, diam,,G of G is diam,,(G) = max {e,(v) : v € V(G)}. A vertex
w in G is a monophonic eccentric vertex of a vertex v in G if e,,(v) = d,(u,v). The
monophonic distance was introduced in [6] and further studied in [7].

Throughout this paper G denotes a connected graph with at least three vertices.

2. EDGE-TO-VERTEX DETOUR MONOPHONIC NUMBER

Definition 2.1. Let G = (V, E) be a connected graph with at least three vertices. For
subsets A and B of V, the monophonic distance d,(A, B) is defined as d,,(A,B) =
min{d,,(z,y) : * € A,y € B}. A u— v detour monophonic path of length d,,(A, B) is
called an A — B detour monophonic path joining the sets A and B, where u € A and
v € B. For A={u,v} and B = {z,w} with uv and zw edges, we write an A — B detour
monophonic path as uv — zw detour monophonic path, and d,,(A, B) as d,,(uv, zw).

U1 V2
U3

(3 Us (%21

Figure 2.1: G

Example 2.2. For the graph G given in Figure 2.1, with A = {v;,v2} and B = {v4, vs},
P : vy,v3,v4 is the only v; — vy detour monophonic path; @ : vy,v3,v4,v5 and R :
vy, V3, Vg, V5 are the only v; — vy detour monophonic paths; P’ : vy, vs,v4 is the only
vy — v4 detour monophonic path, Q' : vs, v3,v4, v5 and R’ : vq, v3, Vg, U5 are the only vy — v
detour monophonic paths. Hence d,,(A, B) = 2 and P : vy,v3,v4 and P’ : vy, v3,v4 are
the only two A — B detour monophonic paths.
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Definition 2.3. Let G = (V, E) be a connected graph with at least three vertices. A
set S C F is called an edge-to-vertex detour monophonic set of G if every vertex of G is
incident with an edge of S or lies on a detour monophonic path joining a pair of edges of S.
The edge-to-vertex detour monophonic number dme,(G) of G is the minimum cardinality
of its edge-to-vertex detour monophonic sets and any edge-to-vertex detour monophonic
set of cardinality dm.,(G) is an edge-to-vertex detour monophonic basis of G.

Example 2.4. For the graph G given in Figure 2.2, the four v vs—v4v5 detour monophonic
paths are P, : v1,v9,v3,v4, Po @ 01,06, 05,04, Q1 : V2,V3,04,v5 and Qo : v, V1, Vg, Us,
each of length 3 so that d,,(vive,v4v5) = 3. Since the vertices v3 and vg lie on the
v1ve — V405 detours monophonic paths P, and P, respectively, S; = {vjve, v4v5} is an
edge-to-vertex detour monophonic basis of G so that dm.,(G) = 2. Also Sy = {vyv3, v5v6}
and S3 = {vsvy, v1v6} are edge-to-vertex detour monophonic bases of G. Thus there can
be more than one edge-to-vertex detour monophonic basis for a graph.

U1 V2
U6 ¢ ¢ U3
Us V4

Figure 2.2: G

It is clear that an edge-to-vertex detour monophonic set needs at least two edges, and
the set of all edges of G is an edge-to-vertex detour monophonic set of G. Hence the
following proposition is trivial.

Proposition 2.5. For any connected graph G of size ¢ > 2, 2 < dm.,(G) < q.

For the star Ki,q(q > 2), it is clear that the set of all edges is the unique edge-to-
vertex detour monophonic set so that dm.,(K7,) = ¢. The set of two end-edges of a path
P,(n > 3) is its unique edge-to-vertex detour monophonic basis so that dme,(P,) = 2.
Thus the bounds in Proposition 2.5 are sharp.

Definition 2.6. An edge e in a graph G is an edge-to-vertex detour monophonic edge in G
if e belongs to every edge-to-vertex detour monophonic basis of G. If G has a unique edge-
to-vertex detour monophonic basis S, then every edge in S is an edge-to-vertex detour
monophonic edge of G.

U3 Uy

(% (% Us Vg
Us U7
Figure 2.3: G
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Example 2.7. For the graph G given in Figure 2.3, S = {vjv, v5v6} is the unique edge-
to-vertex detour monophonic basis of G so that both the edges in S are edge-to-vertex
detour monophonic edge of G. For the graph G given in Figure 2.1, it is easily verified
that no two element subset of £ is an edge-to-vertex detour monophonic set of G. Also, it
is clear that S; = {v1v3, vous, vV4v5} and Sy = {v1v3, vovs, V5V } are the only edge-to-vertex
detour monophonic bases of G so that the edges vyv3, vov3 are the edge-to-vertex detour
monophonic edges of G.

An edge of a connected graph G is called an extreme edge of G if one of its ends is an
extreme vertex of G.

Theorem 2.8. If v is an extreme vertex of a non-complete connected graph G, then every
edge-to-vertex detour monophonic set of G contains at least one extreme edge that is
incident with v.

Proof. Let v be an extreme vertex of G. Let ey, es, ..., e; be the edges incident with wv.
Let S be any edge-to-vertex detour monophonic set of G. We claim that e; € S for some
i(1 <i < k). Otherwise, e; ¢ S for any i(1 < i < k). Since S is an edge-to-vertex detour
monophonic set and the vertex v is not incident with any element of S, v lies on a detour
monophonic path joining two elements say x,y € S. Let x = vjv, and y = vv,,. Then
v # v1, V9, Uy, Uy, and since G is non-complete, d,, (z,y) > 2. Let u and w be the neighbors
of v on P. Then u and w are not adjacent and so v is not an extreme vertex, which is a

contradiction. Therefore, e; € S for some i(1 <1i < k). O
V9 V3
v V4
Vs Vg
Figure 2.4: G

Remark 2.9. For the graph G given in Figure 2.4, S = {vyv5, v3v4} is an edge-to-vertex
detour monophonic set of GG, which does not contain the extreme edge v,vy. Thus all the
extreme edges of a graph need not belong to an edge-to-vertex detour monophonic set of

G.

In the following theorem we show that there are certain edges in a connected graph G
that are edge-to-vertex detour monophonic edges of G.

Corollary 2.10. Every end-edge of a connected graph G belongs to every edge-to-vertex
detour monophonic set of G. Also if the set S of all end-edges of G is an edge-to-vertex
detour monophonic set, then S is the unique edge-to-vertex detour monophonic basis for

G.

Proof. This follows from Theorem 2.8. If S is the set of all end-edges of G, then by the
first part of this corollary dme,(G) > |S|. Since S is an edge-to-vertex detour monophonic
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set of G, dme,(G) < |S|. Hence dm.,(G) = |S| and S is the unique edge-to-vertex detour
monophonic basis for G. U

Corollary 2.11. If T is a tree with k end-edges, then dm,(T) = k.
Corollary 2.12. For any connected graph G with k end-edges, maz{2,k} < dm.,(G) < q.
Proof. This follows from Proposition 2.5 and Corollary 2.10. U

For a cutvertex v in a connected graph G and a component H of G — v, the subgraph
H and the vertex v together with all edges joining v and V(H) is called a branch of G at
v.

Theorem 2.13. Let G be a connected graph with cutvertices and S an edge-to-vertex
detour monophonic set of G. Then every branch of G contains an element of S.

Proof. Assume that there is a branch B of G at a cutvertex v such that B contains no
element of S. Then by Corollary 2.10, B does not contain any end-edge of G. Hence it
follows that no vertex of B is an endvertex of G. Let u be any vertex of B (note that
|[V(B)| > 2). Then u is not incident with any end-edge of G and so u lies on a e — f
detour monophonic path P : uq,us,...,u,...,u; where u; is an end of e, u; is an end of f
and e, f € S. Since v is a cutvertex of G, the u; —u and u —u; subpaths of P both contain
v and so P is not a path, which is a contradiction. Hence every branch of G contains an
element of S. O

Corollary 2.14. Let G be a connected graph with cut-edges and S an edge-to-vertex detour
monophonic set of G. Then every branch of G contains an element of S.

Corollary 2.15. Let G be a connected graph with cut-edges and S an edge-to- vertex
detour monophonic set of G. Then for any cut-edge e of G, which is not an end-edge,
each component of G — e contains an element of S.

Proof. Let e = uv. Let Gy and Gy be the two components of G — e such that u € V(Gy)

and v € V(Gy). Since u and v are cutvertices of G, the result follows from Theorem
2.13. O

Corollary 2.16. If G is a connected graph with k > 2 endblocks, then dme,(G) > k.

Corollary 2.17. If G is a connected graph with a cutvertex v and the number of compo-
nents of G — v is r, then dm.,(G) > r.

Remark 2.18. By Corollary 2.16, if S is an edge-to-vertex detour monophonic set of
a graph G, then every endblock of G must contain at least one element of S. However,
it is possible that some blocks of G that are not endblocks must contain an element
of S as well. For example, consider the graph G given in Figure 2.5, where the cycle
Cs:x,y,t,w,s,x is a block of G that is not an endblock. By Corollary 2.10, every edge-
to-vertex detour monophonic set of G must contain us and tv. Since the us — tv detour
monophonic path does not contain the vertex w, it follows that {us,tv} is not an edge-
to-vertex detour monophonic set of G. Thus every edge-to-vertex detour monophonic set
of G must contain at least one edge from the block Cj.
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Figure 2.5: G

Theorem 2.19. Let G be a connected graph with cut-edges. Then no cut-edge which is
not an end-edge in G belongs to any edge-to-vertex detour monophonic basis of G.

Proof. Suppose that S is an edge-to-vertex detour monophonic basis that contains a cut-
edge e = wv which is not an end-edge of G. Let GG1, G5 be the two components of G — ¢
such that v € G7 and v € G5. Then by Corollary 2.15, each of G; and G5 contains an
element of S. Let 8" = S—{uv}. We show that S’ is an edge-to-vertex detour monophonic
set of G. Since S is an edge-to-vertex detour monophonic set of G and uv € S, let s be
any vertex of G that lies on a detour monophonic path P joining the edges, say xzy
and wv of S. We may assume that zy € E(G;) and so V(P) C V(G;). Let P, be the
xy —uv detour monophonic path that contains the vertex s and P, be any uv —wz detour
monophonic path in G, where wz € F(G3) N S. Then, since uv is a cut-edge of G, the
detour monophonic path P; followed by the edge uv and the detour monophonic path P,
is an xy — wz detour monophonic path which contains the vertex s. Thus we have shown
that a vertex that lies on a detour monophonic path joining a pair of edges zy and uv of
S also lies on a detour monophonic path joining a pair of edges zy and wz of S’. Hence it

follows that S’ is an edge-to-vertex detour monophonic set of G. Since |S'| = |S| — 1, this
contradicts that S is an edge-to-vertex detour monophonic basis of G. Thus the result is
proved. 0

3. EDGE-TO-VERTEX DETOUR MONOPHONIC NUMBERS OF SOME STANDARD
GRAPHS

Theorem 3.1. For p even, a set S of edges of G = K,(p > 4) is an edge-to-vertex detour
monophonic basis of K, if and only if S consists of p/2 independent edges.

Proof. Let S be any set of p/2 independent edges of K,. Since each vertex of K, is
incident with an edge of S, it follows that dm.,(G) < p/2. If dm,(G) < p/2, then there
exists an edge-to-vertex detour monophonic set S’ of K, such that |S’| < p/2. Therefore,
there exists at least one vertex v of K, such that v is not incident with any edge of S’.
Since d,(e, f) = 1 if e and f are independent edges, it follows that v is neither incident
with any edge of S’ nor lies on a detour monophonic path joining a pair of edges of S’
and so S’ is not an edge-to-vertex detour monophonic set of G, which is a contradiction.
Thus S is an edge-to-vertex detour monophonic basis of K.

Conversely, let S be an edge-to-vertex detour monophonic basis of K. Let S’ be any
set of p/2 independent edges of K,. Then as in the first part of this theorem, S’ is
an edge-to-vertex detour monophonic basis of K,. Therefore, |S| = p/2. If S is not
independent, then there exists a vertex v of K, such that v is not incident with any edge
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of S and it follows that S is not an edge-to-vertex detour monophonic set of G, which is
a contradiction. Therefore, S consists of p/2 independent edges. O

Corollary 3.2. For the complete graph K,(p > 4) with p even, dm.,(Kp) = p/2.

For any real z, [x] denotes the smallest integer greater than or equal to x.
Theorem 3.3. For the complete graph G = K,(p > 3) with p odd, dm.,(G) = ——.

p—1

Proof. Let S be any set of

vertex v which is not incident with an edge of S. Let S; be the union of S and an

edge incident with v. Then S; is an edge-to-vertex detour monophonic set of G so that
—1 —1
dme,(G) < Z?T + 1. Now, if dm.,(G) < pT’ then let S, be an edge-to-vertex detour

-1
monophonic set of G such that |S;| < pT Then there exists a vertex u such that u

independent edges of G. Then there exists a unique

is not incident with any edge of S;. Obviously, u does not lie on a detour monophonic
path joining a pair of edges of S5, which is a contradiction to S; an edge-to-vertex detour

—1 1
monophonic set of G. Hence dm,,(G) = pT +1= ]% O
Corollary 3.4. For the complete graph K,(p > 3), dm.,(K,) = {g-‘

Two vertices u and v of G are called antipodal if d(u,v) = diam G, where diam G is
the usual diameter of the graph G.

9
Theorem 3.5. For the cycle Cy(p > 3), dm.,(C,) = { ifp#5

3 ifp=>5.

Proof. For p = 3, C, = K3 and any set of two edges is an edge-to-vertex detour mono-
phonic basis and so dm.,(G) = 2.

Let p >4 and p # 5. Let C), : v1,v9, 03, ..., Uk, V41, V42, - - - , Up, U1 be the cycle of order
p such that vg,q is the unique antipodal vertex of vy if p is even; and vy, and v o are
the antipodal vertices of vy if p is odd. Then it is easily checked that S = {vjve, Vg1 Uk 12}
is an edge-to-vertex detour monophonic set of C, so that dm.,(C,) = 2.

For p =5, it is easily seen that no 2-element subset of edges of (5 is an edge-to-vertex
detour monophonic set of Cj since d,(e, f) = 1 if e and f are two independent edges in
Cs. Also, since S = {v1v9, 1903, v4v5} is an edge-to-vertex detour monophonic set of Cs,
it follows that dme,(Cs) = 3. O

4. MONOPHONIC DIAMETER AND EDGE-TO-VERTEX DETOUR MONOPHONIC
NUMBER

Theorem 4.1. For each pair of integers k and q with 2 < k < q, there exists a connected
graph G of order q + 1 and size q with dm.,(G) = k.
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Proof. For 2 < k < q, let P be a path of order ¢ — k+3. Then the graph G obtained from
P by adding k — 2 new vertices to P and joining them to any cutvertex of P is a tree of
order ¢ + 1 and size ¢ with k end-edges and so by Corollary 2.11, dme,(G) = k. U

Proposition 2.5 shows that if G is a connected graph of size ¢ > 2, then 2 < dm,,(G) <
q. Indeed, by Theorem 4.1, for each pair k, ¢q of integers with 2 < k < ¢, there is a tree of
size q with edge-to-vertex detour monophonic number k. An improved upper bound for
the edge-to-vertex detour monophonic number of a graph can be given in terms of its size
g and detour monophonic diameter. For convenience, we denote the detour monophonic
diameter diam,,(G) by d,, itself.

Theorem 4.2. If G is a connected graph of size q and monophonic diameter d,,, then
dme,(G) < q—dp, + 2.

Proof. Let u and v be vertices of G such that d,(u,v) = d, and let P : u =

Vg, V1, V2, ..., V4, —1,Vq, = U be a u — v detour monophonic path of length d,,. Let
S = (E(G) — E(P)) U {uvy,v4,-1v}. Then it is clear that S is an edge-to-vertex detour
monophonic set of G so that dm.,(G) < |S| = q — d,,, + 2. O

We give below a characterization theorem for trees.

Theorem 4.3. For any tree T of size ¢ > 2 and monophonic diameter d,,, dme,(T) =
q— dp + 2 if only of T is a caterpillar.

Proof. Let T be any tree of size ¢ > 2 and P : vy, vq,...,vq4, 1,04, be a monophonic
diameteral path of T. Let ey, e, ..., €4, 1, €q,, be the edges of P, where e; = v;_jv;(1 < i <
dy), k the number of end-edges of 7" and [ the number of internal edges of T other than
€, ...,€q, 1. Then k+1+d, —2 = q. By Corollary 2.11, dm,(T) =k =q—d,, — [ + 2.
Hence dm.,(T) = k = ¢ — d,,, + 2 if and only if [ = 0, if and only if all the internal edges
of T lie on the monophonic diameteral path P, if and only if T is a caterpillar. O

Corollary 4.4. For a wounded spider T of size ¢ > 2, dme,(T) = q — d,,, + 2 if and only
if T is obtained from K, .(t > 2) by subdividing at most two of its edges.

Proof. Since a wounded spider T is a caterpillar if and only if 7' is obtained from
K, .(t > 2) by subdividing at most two of its edges, the result follows from Theorem
4.3. U
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