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CONTINUITY OF SUPERPOSITION OPERATORS ON DOUBLE
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ABSTRACT. Sagir and Glingér [15] defined the superposition operator P, where g :
N2 x R — R by P, ((zks)) = g (k,s,zxs) for all real double sequences (zys). Chew &
Lee [4] and Petranuarat & Kemprasit [12] characterized Py : co — I1 and Py : cg — [,
where 1 < ¢ < oo, respectively. Sagir and Giingor [16] gave the necessary and sufficient
conditions for the continuity of the superposition operator P, acting from the double
sequences space Cy into £, where 1 < p < oo. In this study, we have generalized P,
acting from the double sequences space of Maddox Cyg (p) into £ (¢) where p = (pis) and
g = (qxs) are bounded double sequences of positive numbers. The main aim of this study
is to give the necessary and sufficient conditions for the continuity of P, : Cyo (p) = L (q).
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1. INTRODUCTION

Let R be the set of all real numbers, N be the set of all natural numbers, N> = N x N and € denotes
the space of all real double sequences which is the vector space with coordinatewise addition and scalar
multiplication. Let any sequence x = (xs) € . If for any € > 0 there exist N € N and [ € R such
that |zps — 1] < € for all k,s > N, then we call that the double sequence © = (xys) is convergent in the
sense of Pringsheim and denoted by p — limxg, = [. If the double sequence x = (xys) converges in the
sense of Pringsheim and, in addition, the limits that liinzvks and lignxks exist, then it is called regularly

convergent and denoted by r — lim 2. The space Cyq (p) is defined by
Cro (p) = {ZE = (wps) € Q:r— lim |zgs|™ = ()}
k,s—0c0

where p = (pis) is a bounded sequence of positive numbers and ||.[|¢, () * Cro (p) = R is defined by

Pks
My

x = sup |xk
1]l ¢, o (p) k’seNl s

where M; = max {1, sup pks}. The Maddox space M, (p) is defined by
k,seN

)= {5 (1 €25 g o <
k,seN
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where p = (pgs) is a bounded sequence of positive numbers. The function |.[[,;, ) + Mu(p) = R is
defined by

Pks
Hx”Mu(p) = Sup [zps| ¥

where M, = max {1, sup pks}. The Maddox space L (¢) is defined by
k,seN

(oo}

L(g)=4 z=(zrs) €Q: Z | g™ < 00
k,s=1

where ¢ = (qis) is a bounded sequence of positive numbers. Let ||.[[,,, : £(¢) = R is defined by

oo

dks

el = 3 lawsl
k,s=1

where M> = max< 1, sup qks}. Let X € {Co (p), M, (p),L(q)}, then we can see easily show that the
k,seN

following properties hold:

lally > 0
lely = 0 & a=0
(1.1) lally = l-=lx

lz+yllx < lllx +llyllx

for all ,y € X. If we take d : X x X — R defined by d (z,y) = ||z — y|| y, then it follows from the above
properties that d is a metric on X. The space £, is defined by

o0
L,:=<x=(1ps) €Q: Z |zgs|” < 0o
k,s=1

k,s=1

0o »
where 1 < p < co. L, is a Banach space with the norm ||zf|, = ( > |xks|p> . It is known that
L1 C Cro(p) € My (p) and L (q) C M, (¢q). The sequence e** is defined as

eks — Lo (k) = (i,])
*J 0, otherwise

n m
If we consider the sequence $,,, defined by Spm = > > aks (n, m € N), then the pair of ((nm), (Snm))
k=1s=1
is called a double series. Also (zn,) is called the general term of the series and (sp,) is called the
sequence of partial sums. Let v be convergence notions, i.e., in the sense of Pringsheim or regularly

convergent. If the sequence of partial sums (s,,,) is convergent to a real number s in v-sense, i.e.

n m
U—limg gackszs,
n,m

k=1s=1

then the series ((nm ), (Snm)) is called v—convergent and the sum of the series equals to s. It’s denoted

by
Z Ls — S.

k,s=1
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It is known that if the series is v—convergent, then the v—limit of the general term of the series equals

oo OO0
to zero. The remaining term of the series > > xys is defined by

k=1s=1
n—1 oo oo m—1 oo o0
(1.2) Rum =3O kst DD Thst DY Ths
k=1s=m k=ns=1 k=ns=m

We will denote the formula (1.2) briefly with

E Tks

max{k,s} >N

for n = m = N. It is known that if the series is v—convergent, then the v—limit of the remain-
ing term of the series is zero. For more details on double sequences and series, one can referee
[1],[2],[3],[8],[10],[11],[14],[18] and the references therein.

We extend the definition of superposition operator for the double sequences spaces as follows. Let
X, Y be two double sequences spaces. A superposition operator P, on X is a mapping from X into €
defined by Py (2) = (g (k, s, ¥ks))5 s Where the function g : N? x R — R satisfies
(1) g(k,s,0) =0 for all k,s € N.

If P, (z) € Y for all x € X, we say that P, acts from X into Y and write P, : X — Y [15]. Moreover, we
shall assume the additionally some of the following conditions:

(2) g (k,s,.) is continuous for all k, s € N.

(2") g (k,s,.) is bounded on every bounded subset of R for all k, s € N.

It is obvious that if the function g (k, s, .) satisfies the propety (2), then g satisfies (2).

Continuity of the superposition operators on sequences spaces are discussed by some authors [4], [5],
[7], [9], [12], [13],][17]. In [4], Chew and Lee gave necessary and sufficient conditions for the continuity of
the superposition operator acting from the sequences space ¢g into I. In [12], Petranuarat and Kemprasit
characterized necessary and sufficient conditions for continuity of the superposition operator acting from
the sequences space ¢g into {; with 1 < ¢ < oco. Sagir and Giingér [16] gave necessary and sufficient
conditions for the continuity of the superposition operator acting from the double sequences space Cig
into £, with 1 < ¢ < o0.

In this paper, we characterize the superposition operator acting from the double sequences space of
Maddox C, (p) into £; under the hypothesis that the function g (k,s,.) satisfies (2’). We discuss the
continuity of the superposition operator P, by using the methods in [4], [12]. Then by using the methods
developed in [12], we generalize our works as the superposition operator acting from the space Ciq (p)
into £ (¢) without assuming that the function g (k, s, .) satisfies (2).

2. SUPERPOSITION OPERATORS OF C, (p) INTO £,

Theorem 2.1. Assume g : N> x R — R satisfies (2'). Then Py : Cro (p) — L1 if and only if there
exist « > 0 and (cks)?sz1 € L1 such that

lg (K, s,t)| < cps whenever |t| < «
for all k,s € N.

Proof. Assume that there exist o > 0 and (cs)q ., € £1 such that |g (k,s,t)| < cxs whenever || < o
for all k,s € N. Let = (zxs) € Cro (p). Hence p — lim |zy5|"** = 0 and the limits that klim |gs|PF* and
— 00
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lim |zys|"* exist. Therefore there exists N € N such that |zxs| < « for all k, s € N with max {k, s} > N.
§—00
Then, we find
oo
Z |g (k,5,$k5)| S Z Cks S Z ‘Cks| < o0.
max{k,s} >N max{k,s} >N k,s=1

So, we get Py (z) =g (k, s, xks) € L1.
Conversely, suppose that P, : Cro (p) — L£1. The sets A («) and B (k, s, ) are defined as

Ala)={teR: |t < mm{m o }}
and
B (k,s,a) =sup{|g (k,s,t)| : t € A(a)}
for all k,s € N and a > 0. So, we see that |g (k, s,t)| < B (k, s,a) whenever || < a. We will show that

oo
there is oy > 0 such that (B (kHS,Oél))?S:l € Ly. Assume the contrary, that is, Y. B(k,s,a) = o
k,s=1

o0

for all @ > 0. Therefore . B (k, S, % + %) = oo for each i, € N. Then there exist two sequences of
k,s=1

positive integers ng =0 <n; <ng <---<n; <--- and mp =0<my <mg <---<my <--- such that

i o 11
(2.1) > > B(kz,s,i+j)>1

k=n;_14+1s=mj;_1+1

for each i,j € N. Let 4,j € N be fixed. Since g satisfies (2'), we see that B (k,sﬁ ) < oo for all
1
J

+ 1
J
i, € Nwithn;_1 +1 <k <n; and mj_1 +1 < s <my. Then, there exists xp, € A %—&— )suchthat

/—\

1 1 L
(22) B (k,S, -+ > < |g (k, S,l‘ks)| + o~ (i+3)
L

for each k, s € N satisfying n;_1 +1 < k <n; and m;j_; +1 < s <m;. So, we find

R R

i=1j=1 \k=n;_1+1s=m; _1+1

< ii|gksxks|+222 (i+7)
k=1s=1 k=1 s=1

< ZTZTW kSCEksH‘ZZ? (i+7)
k=1s=1 k=1s=1

by using (2.1) and (2.2). Therefore we obtain that

S otk =SS [ S S lgths ) | =

k=1s=1 i=1j=1 \k=n;_1+1s=m;_1+1

Hence we get g (k, s, xks) ¢ L£1. Since s € A (% + %) whenever n;_1 +1 <k <n;and mj_; +1<s<
m;, we find |z ["* < 2+ % Hence, we obtain x = (zxs) € Cro (p). This contradicts the assumption that
P, : Cpo (p) — L1. Then there exists a; > 0 such that (B (k, s, 1)) —; € L1. If we put cxs = B (k,s,a1)
for all k,s € N, this completes the proof. ]

Theorem 2.2. If P, : Cro(p) — L1, then P, is continuous on Cro (p) if and only if g(k,s,.) is

continuous on R for all k,s € N.
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Proof. Suppose that P, is continuous on Crg (p). Let k,s € N, ¢y € R and € > 0. Since Py is continuous
at toe™™ € Cyq (p), there exists § > 0 such that

(2.3) Hz - toe("m)‘

< 4 implies HP z)— P, (t e("m))H <e
Cro(p) p g() g \lo L

M
for all z = (zxs) € Cro (p). Let t € R such that |t — to| < §7es and Y = (Yks) defined by

e = {t, (k,s) = (n,m) .

0, otherwise

So y = (yks) € Cro (p) and we have ||y — toe =t— td% < 4. From (2.3), we find

(nm)HCTU(p)
lg (k. s,t) — g (k, s, to)| = Hpg (1) = Py (toe™™) H1 =

Therefore, the function g (k, s, .) is continuous on R for each k,s € N.

Conversely, assume that the function g (k, s, .) is continuous on R for each k, s € N. We will show that
P, is continuous on Cyg (p). Let = (zxs) € Cro (p) and € > 0. Since g satisfies (2'), then P, acts from
Cro (p) to L1 by Theorem 2.1. Hence, there exist a > 0 and (cgs) € £1 such that

(2.4) lg (K, s,t)| < cps whenever [t| <«

for all k,s € N. Since (2s) € Cro (p) C My, (p) and (cis) € L1, there exists N € N such that
|zgs| < % for all k,s € N with max {k,s} > N

and
3
Z Crs < g
max{k,s} >N

So, |zks| < a for all k,s € N with maz {k,s} > N. From (2.4), we write |g (k,s,zrs)| < cs for all
k,s € N with maz {k, s} > N. Hence, we have

(2.5) > lgtksa)l< Y <z

max{k,s} >N max{k,s} >N

Pks

min {1, ( ) My } such that

Since g (k,s,.) is continuous at xps for all k,s € {1,2,...,N —1}, there exists § > 0 with § =
«
2

M . £
(26) |t — Iks| < 5pks 1mphes |g (k7 S,t) — g (k, S,IEkS)| < m
for any t € R. Let 2 = (2ks) € Cro (p) be such that ||z — zf|¢ () < 0. Thus,
578 ey
|Zks — Ths| - < SUp |zks — xps| = ||z — x”Cm(p) <4
k,seN

for each k, s € N. By using (2.6), we find

€
k s) — g (k, s, Tps PYE Y
|g(,8,2k) g( 8$k)|<3(N_1)
for all k,s € {1,2,..., N — 1}. Hence, we have
N-1 -
(27) Z |g (k787zk8) - g(k,S,IkS)‘ < g
k,s=1
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M
Since |zks| < |zks — Tps| + |Trs| < S7rs + 5 < §+ 95 =aforall ks € N with max {k, s} > N, we find
that |g (k, s, zxs)| < cgs for all k, s € N with maz {k,s} > N from (2.4). Hence, we have

> lgtksa)ls Y ew <o

max{k,s} >N max{k,s} >N

So, we obtain
||P9 (Z)ipg (33)” = Z |g(k75azks)7g(kasaxks)|

k,s=1
N—-1
Z |g(k,8,2ks)—g(k3,8,l’ks)|+ Z |g (kv872k3)|+
k,s=1 max{k,s} >N
+ Z |g (kasaxk:s”

max{k,s}>N
< €

IN

by using (2.5) and (2.7). This completes the proof. U

Example 2.3. Let g : N> x R — R be defined by

Pks
‘t| My

g (ka Sat) - Qk+s

for all k,s € N and for all t € R. Since g (k, s, .) is continuous on R for all k, s € N, then g satisfies (2).
Let o =1 and [t| < 1. Then for all k,s € N,

Pks
[t ™
|g (k787t)| = 4k+s

1
4k+s .

<

oo
Since Y. # < 00, we put ¢xs = ﬁ for all k, s € N. By Theorem 2.1, we find that P, : Cy (p) — £L1.
k,s=1
Since g (k, s, .) is continuous on R for all k,s € N, then the superposition operator P, is continuous on

Cyo (p) by Theorem 2.2.

3. SUPERPOSITION OPERATORS OF C, (p) INTO £ (q)

In this section, by using the methods developed in [12] we extend our theorems proved in Section
2 to the superposition operator acting from the space Cyo (p)into L (q) where p = (pgs) and ¢ = (qxs)
are bounded double sequences of positive numbers . For characterization of the superposition operator
P, : Cro(p) = L(g), we will use the following proposition.

Proposition 3.1. Let X be a double sequences space. If L C X and P,: X — M, (q), then there
exist N € N and a > 0 such that (g (k, s, '));Oax{k,s}zN is uniformly bounded on [—a, o] ([6]).

Theorem 3.2. Let g: N> xR — R . Then Py : Cro (p) = L(q) if and only if there exist N € N and
a > 0 such that

(3.1) Z sup |g (k,s,t)ﬁ% < 00.

1
max{k,s}>N |t| <o Phs
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Proof. Suppose that P, acts from Cyq (p) to £ (g). Since L1 C Cyrg (p) and L (q) C M,, (g), by Proposition
3.1 we see that there exist N € N and « > 0 such that (g (k, s, '))Omoax{k,s}ZN is uniformly bounded on
{—aﬁ,aﬁ} . Therefore, sup |g(k,s,t)|% < oo for all k,s € N with max {k, s} > N. We define

|t|<aPhs

B (k,s,8) by

(3.2) B (k,s,8) = sup |g (k,s,1)| ¥
[t|<pB

for allﬁeRWith0<B§aﬁ. We assert that > B (k,s,3) < oo for some f € R with 0 < 8 <
max{k,s} >N

1 1

a?rs . To show that this is the case, we assume the contrary. Therefore, > B (k, S, QPks (% + 1)) =
max{k,s}>N

oo for all 4,7 € N. Hence, there exist n’ > n and m’ > m such that

n’ m'—1 n'—1 m n’ m’
Z ZB <k,5,oﬂ;s (1—1—1))—1—2 ZB(I@S,CVP;S (:-&-1))4-223 (k,s,cw;s (:4—1)) > 1

J k=ns=m

for all i,j € N and n,m > N. Then, there exist two subsequences (ny)y—, of (n),—, and (my),., of
(m);°_, such that

-1 mj1

nip1 Mmjijpr1—1 L 1 1 Nit1 . 1 1
o> B(k,s,a% (.+.>>+ >y B(k,s,a% <.+.>)+
= ! J k=1 s=m;+1 v J
nig1 My4l ) 11
Bk samn (141
+ 3 % B(ksart (145))

k=n;+1s=m;+1
> 1

for all i,5 € N and n > ny, m > my. We put F = {(k,s) : k <njand s <my}. If (k,s) € F, we
take xxs = 0. If £ > ny and s > my, then there exist ¢ € N and j € N such that n; < k£ < n;y; and

1 1
m; < s <mj;i1. Hence, there exists x, € [—apks (% + %) , QU Pks (% + %)} such that

a1 (1 1 Qs
(3.3) 0<B (k,s,am (z + J)) <lg (k,é‘,xks)ﬁ‘]}? 1 g (k+s)

41


Galaxy
Text Box
41


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2015, VOLUME 5, ISSUE 1, p.35-45

from (3.2). Therefore, it is obvious that x5 € Cro (p). By using (3.3), we write

9 LA nit1 myt1—1 1 nir1—1 mjita L 1 1
o EE (Bt () E B et ()

i=1j=1 \k=n;+1 s=1 k=1 s=mj;+1 J

Tit+1 mj+1 ) 1 1
£33 B (ks (54 5))
k=n;+1s=m;+1 ! J

Npgp1 Mpp1—1 Npp1—1 Mpy1
a1 (1 1 a1 1
ot (1) E ot (1)
k=ni+1 s=1 t J k=1 = 1 ¢ J
Nyr41 Myr41 N 1 1
B (ks am (4=
£ Y3 p(kee (743))

k=n;+1ls=mi+1

Npgp1 Mpep1—1 Npp1—1 Mpy1 g1 My g1
< Z Z ksggks|M2+Z Z ksxks M2+Z Z kSZL'kS‘M2+
k=ni1+1 s=1 k=1 s=mi+1 k=n,+1ls=mi+1
0o oo
+Y 0N Tom (),
k=1s=1

for all » € N. Hence, (g (k, s, xks))z’s:l ¢ L (g). This is a contradiction, because of P, : Crg (p) — L (q).
Conversely, suppose that there exist V € N and a > 0 such that

9ks
Z sup |g(k,s,t)| M2 < 0.
max{k,s}Zngaﬁ
To show that P, : Cro (p) — L£(q), let © = (zxs) € Cro (p). Since r—lim |zys[”** = 0, there exists N’ > N
such that |zys| < ams for all k,s € N with max {k, s} > N’. Therefore, we find

Yo gksa) < Y swp gk t)¥ < oo,
1

max{k,s} >N’ max{k,s}>N'|t|<aPks

Thus, we get P, () = g (k, s, zxs) € L(q). U

We need the following proposition to show the continuity of the superposition operator Py, : Cro (p) —

L(q).

Proposition 3.3. Let X be a double sequences space containing all finite double sequences, Y be a
double sequences space such that Y C M, (q) and ||.||x : X = R, |l.|ly : ¥ — R satisfy the conditions in
(1.1). Suppose that

(i) Py: X = Y,

(i) there exist « > 0 such that ||[e""| y < a for all m,n € N and a € R with 0 < a < 1 such that
Azl = A [|z]|x for all X € R.

(it8) |- 1ar, () < Bll-lly on Y for some B> 0.
If Py is continuous at x, then for any € > 0 there exists § > 0 such that

|t = xis| < & implies |g (k,s,t) — g (k, s, mps)| <€
forallk,s € N andt e R ([6]).

Theorem 3.4. If P, : C.o (p) — L(q), then P, is continuous on Cyo (p) if and only if g (k,s,.) is

continuous on R for all k,s € N.
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Proof. Since the conditions in Proposition 3.3 provided, it’s not hard to see that the condition is neces-
sary.

Conversely, let any x = (xs) € Cro (p) and assume that g (k, s,.) is continuous at xys for all k, s € N.
Hence, by Theorem 3.2 there exist N; € N and « > 0 such that

dks
4 k,s,8)| 75 < oo
(3.4) > sup  |g (k. 5,6)| 2 < oo

max{k,s}>N1|t| <o Pks

1
Since z = (z1s) € Cro (p), there exists No > Ny such that |zgs| < 25 for all k, s € N with max {k, s} >
Ns. Let € > 0. From (3.4), we see that

Ni—1 oo co Nij—1 .
ks ks
g E sup. kst|M2 < 00, E g sup. g (k,s,t)| M2 < oo, E E sup. g (k,s,t)| M2 < oo.
k=1 s= Nllt‘<apk5 k= Nl s=1 ‘t|<apk‘5 k= N18 Nl‘t|<apk,a

Therefore, there exists N € N with N > N, such that

Ni—1 o

ZZ sup_ kst)\M2<

dks

e+l

M
k=1 s= N|t\<:1”ks 3.2 M3

Ni—1

e dks I
Z Z bup k S t)| My <L PRy
k=N 2

M.
— M<a% 3.2

N—-1 oo oo N-—1

>3 sw gk n¥EeY Y s | g(ks B3 sup g (ks ] < s

+1°
M
k=Ni;s= N‘t‘<am; k=Ns= N1|t‘<apk; k=Ns= Nlt‘<apk? 3.2 My

Consequently, we obtain that there exists N € N with N > Ny such that

ks e
(35) Z Supl |g (ka S, t)| M2 < s 417
max{k,s}>N|t|<aPks 2

_1
Since g (k, s,.) is continuous at zys for all k,s € {1,2,..., N — 1}, there is § € R with 0 < § < (2%8 ) My
such that

(3.6) lg (k,s,t) — g (k,s,zs)| < {2(]\[5_1)} * whenever [t — zps| < 57k .

Let z = (21s) € Cro (p) satisfying |2 — x| () < 0. Thus, [zks —xks\% < ||z =g,y < 0. From
(3.6), we find |g (k, s, 2ks) —g(k,s,xksﬂqki < 2(N 5y for all ks € {1,2,. —1}. We write |zis| <

1 1

M —
|2ks — Tis| + |Trs| < S7ns + afle <otk 4 ap;s = a7 for all k,s € N with max {k, s} > N. We have

ks

‘g (kv S, st) -9 (kv Sawks)‘m

IA

ks ks ks
2% maxc {|g (k5. 200)| ¥ g (k. 5,0) [ ¥

ks ks
< 2% sup g (ks 1)

_1
lt|<aPhs

for all k,s € N with max {k,s} > N. By using (3.5), we obtain

> glkiszm) —g(hosa) ¥ <2% ST sup g (ks M < 2

1
max{k,s} >N max{k,s}>N|¢t| <o Pks
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Therefore,

%) e N—-1 s
Do lgkyszes) =g (kys,ae)| ™% = Y g (kys,2ns) = g (ky s, 208) % +
k,s=1 k,s=1

ks
+ Z ‘g (kasvzks) 7g(kvsvl'ks)|M2
max{k,s} >N

€ €
N-1)————+ - .
< ( )Q(N—1)+2<E
&) dks
Hence, we get || Py (2) — Py, (x)||£(q) = kzzl lg (k, s, z1s) — g (, s,xks)|#2 < . This completes the proof.
" O

Example 3.5. Let g : N> x R — R defined by

|t|pks %
g (k757t) = <2k+5 >

for all k,s € N and for all t € R. Let & = 2 and [t| < 9% . Then for all k,s € N,

oo

o 2 2
Y. osw kst = YT sup o< Y g < ) g < oo

max{k,s}>N|¢|<2Pks max{k,s}>N|¢|<2Pks max{k,s}>N k,s=1

By Theorem 3.2, we find that P, : Cyo (p) — L (g). Since g (k,s,.) is continuous and bounded on R for
all k, s € N, then the superposition operator P, is continuous on Cyg (p) by Theorem 3.4.
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