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Abstract

Using Lotker’s interlacing theorem on the Laplacian eigenvalues
of a graph in [5] and Wang and Belardo’s interlacing theorem on the
signless Laplacian eigenvalues of a graph in [6], we in this note obtain
spectral conditions for some Hamiltonian properties of graphs.
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We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow those in [1]. For a graph
G = (V, E), we use n and e to denote its order |V| and size |E|, respec-
tively. If u is a vertex of GG, then G — w is defined as the subgraph of G
obtained from G by deleting u together with its incident edges. A cycle C
in a graph G is called a Hamiltonian cycle of GG if C' contains all the vertices
of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A
path P in a graph G is called a Hamiltonian path of G if P contains all
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the vertices of G. A graph G is called traceable if G has a Hamiltonian
path. A graph G is called Hamilton-connected if for each pair of vertices
in G there is a Hamiltonian path between them. A cycle C' in a graph G
is said to be dominating if V(G) — V(C) is independent. The connectivity
and independence number of a graph G are denoted by x(G) and «(G), re-
spectively. For a graph G of order n, We use A(G) to denote the adjacency
matrix of G and D(G) to denote the diagonal matrix of the degree sequence
of G. The Laplacian of G is defined as L(G) = D(G) — A(G) and the sign-
less Laplacian of G is defined as Q(G) = D(G) + A(G). The eigenvalues
p1(A) < po(A) < .o < pp(A) of A(G) are called the eigenvalues of G. The
eigenvalues A\ (G) > A\o(G) > ... > A\, (G) = 0 of L(G) are called the Lapla-
cian eigenvalues of G and the eigenvalues ¢1(G) > ¢(G) > ... > ¢,(G) of
Q(G) are called the signless Laplacian eigenvalues of G.

The following interlacing theorem on the Laplacian eigenvalues of graphs
was proved by Lotker in [5].

Theorem 1 ([5]) Let G be a graph of order n. If u is vertex in G, then
Ai41(G) — 1 < XN(G —u) < N(G),where i =1,2,---,(n —1).
Using Theorem 1, Li in [4] obtained the following result.

Theorem 2 ([4]) Let G be a graph of order n. If G has an independent set
I, then |I| 4+ X\ i1 < 1.

For the sake of completeness, we repeat the proofs in [4] below.

Proof of Theorem 2. Suppose I = {v;,vy,... v, } is an independent set
in G. Set N :=V(G) —1I ={wuy,ug,... us}. Then s =n —r. By Theorem
1, we have

)\S(G - ul) 2 >\s+1(G) - 17
)\sfl(G — Uy — UQ) 2 )\S(G — Ul) — 1,
)\S,Q(G — Uy — Uz — U3) Z )\5,1(G — Uy — UQ) — 1,

)\s—(s—l)(G — Uy — Uy — ... — US) Z )\5_(5_2)(G — Uy — U — ... — us,l) — 1.
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Summing up the inequalities above, we have
MG —up —ug —ug — ... —ug) > As1(G) — s = A\s41(G) — (n — ).

Since there is no edge in the graph (G — u; — ug — uz... — us), M\ (G — uy —
ug —ug — ... —up) = 0. Thus r + Ay < n. Namely, [I| + A1 <n. O

The following interlacing theorem on the signless Laplacian eigenvalues
of graphs was proved by Wang and Belardo in [6].

Theorem 3 ([6]) Let G be a graph of order n. If u is vertex in G, then
4i+1(G) — 1 < ¢;(G —u) < ¢;(G),where i =1,2,---,(n —1).
Using Theorem 3, We can similarly prove the following theorem.

Theorem 4 Let G be a graph of order n. If G has an independent set I,
then |I| + gnj141 < n.

In this note, we will use Theorem 2 and Theorem 4 to prove the following
theorems on the Hamiltonian properties of graphs.

Theorem 5 Let G be a graph of order n with connectivity x, Laplacian
eigenvalues A\ (G) > X\y(G) > ... > A\, (G) = 0, and signless Laplacian eigen-
values ,(G) > g5(G) > .. > 4u(G).

(1) If n < K+ A\—k, then G is Hamiltonian.

(2) If n < Kk + @y—x, then G is Hamiltonian.

Remark 1 Let G be the non-Hamiltonian complete bipartite graph K, ,4+1
(r > 2). Notice that k(G) = r and \y—yy = gy = 7. Thus n —1 = 2r <
K+ M—x = K+ ¢u_r. Therefore (1) and (2) in Theorem 5 are best possible.

Theorem 6 Let G be a graph of order n with connectivity s, Laplacian
eigenvalues A\ (G) > X\y(G) > ... > A\, (G) = 0, and signless Laplacian eigen-
values q1(G) = ¢2(G) = ... = ¢,(G).

(1) If n <K+ Ay—r—1 + 1, then G is traceable.

(2) If n < K+ ¢u_p—1 + 1, then G is traceable.
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Remark 2 Let G be the non-traceable complete bipartite graph K, , o
(r > 1). Notice that K(G) = r and \,_x 1 = ¢rrw1 = 7. Thusn —1 =
2r+1<k+N_x1+1=kK+¢g,r1+1. Therefore (1) and (2) in Theorem
6 are best possible.

Theorem 7 Let G be a graph of order n with connectivity s, Laplacian
eigenvalues A\ (G) > X\y(G) > ... > A\, (G) = 0, and signless Laplacian eigen-
values ¢1(G) 2 ¢2(G) > ... = qu(G).

(1) If n < K+ A\p—wy1 — 1, then G is Hamilton-connected.

(2) If n < K+ ¢u_pt1 — 1, then G is Hamilton-connected.

Remark 3 Let G be the non-Hamilton-connected complete bipartite graph
K, , graph (r > 3). Notice that x(G) = r and \,_x41 = ¢n—r+1 = r. Thus
n—1=2r—1<k+4+N—wi1 — 1 =K+ ¢_nt1 — 1. Therefore (1) and (2) in
Theorem 7 are best possible.

Theorem 8 Let G be a 2-connected triangle-free graph of order n with
connectivity x, Laplacian eigenvalues A (G) > Xo(G) > ... > \,(G) =0, and
signless Laplacian eigenvalues ¢1(G) > ¢2(G) > ... > ¢,(G).
(1) If n < 2K + Ay_2k42 — 2, then every longest cycle in G is dominating.
(2) If n < 2K + ¢_2k12 — 2, then every longest cycle in G is dominating,.

We need the following results to prove our theorems. Notice that Theo-
rem 9 below can be proved by using slight modifications of the proofs in [2].

Theorem 9 ([2]) Let G be a graph of order n with connectivity x and
independence number «.

(1) If & < K, then G is Hamiltonian.

(2) If « < k + 1, then G is traceable.

(3) If @ < k — 1, then G is Hamilton-connected.

Theorem 10 ([3]) Let G be a 2-connected triangle-free graph of order n
with connectivity x and independence number a. If a < 2k — 2, then every

longest cycle in GG is dominating.

Proof of Theorem 5. Let G be a graph satisfying the conditions in Theo-
rem 5.
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(1) If @ < &, then, by (1) in Theorem 9, G is Hamiltonian. If o > k + 1,
then there exists an independent set S in G such that |S| = x+ 1. Applying
Theorem 2, we have that K+1+X,_x = K+1+A (o)1 = S|+ Ao js1+1 < 1,
which is a contradiction.

(2) If o« < Kk, then, by (1) in Theorem 9, G is Hamiltonian. If & > k + 1,
then there exists an independent set S in G such that |S| = K+ 1. Applying
Theorem 4, we have that K4+14¢n—x = K+ 14+ G141 = |5+ 5141 < 1,
which is a contradiction.

Thus we complete the proof of Theorem 5. ad

Proof of Theorem 6. Let GG be a graph satisfying the conditions in Theo-
rem 6.

(1) If @« < k+1, then, by (2) in Theorem 9, G is traceable. If @ > k + 2,
then there exists an independent set S in G such that |S| = k+ 2. Applying
Theorem 2, we have that K+2+X 1 = K+24+ X (wr2)+1 = ||+ Anojs141 <
n, which is a contradiction.

(2) If @« < k+1, then, by (2) in Theorem 9, G is traceable. If @ > xk + 2,
then there exists an independent set S in G such that |S| = k + 2. Applying
Theorem 4, we have that K +2+¢,—x—1 = K+ 2+ Gn—(xt2)+1 = |5+ Gnojsj41 <
n, which is a contradiction.

Thus we complete the proof of Theorem 6. O

Proof of Theorem 7. Let G be a graph satisfying the conditions in Theo-
rem 7.

(1) If « < k — 1, then, by (3) in Theorem 9, G is Hamilton-connected.
If @« > K, then there exists an independent set S in G such that |S| = .
Applying Theorem 2, we have that k£ + A,_x11 = S| + A\_jsj41 < n, which
is a contradiction.

(2) If « < k — 1, then, by (3) in Theorem 9, G is Hamilton-connected.
If a > k, then there exists an independent set S in G such that |S| = k.
Applying Theorem 4, we have that £+ ¢,—x—1 = S| + ¢u_|sj41 < 1, which is
a contradiction.

Thus we complete the proof of Theorem 7. O

Proof of Theorem 8. Let G be a graph satisfying the conditions in Theo-

rem 8.
(1) If & < 2k — 2, then, by Theorem 10, we have that every longest
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cycle in GG is dominating. If @ > 2k — 1, then there exists an independent
set S in G such that |S| = 2k — 1. Applying Theorem 2, we have that
26 = 14 Aguge = 26 — 14+ A 2e—1)+1 = |S| + Auzjsj41 < n, which is a
contradiction.

(2) If & < 2k — 2, then, by Theorem 10, we have that every longest
cycle in GG is dominating. If @ > 2k — 1, then there exists an independent
set S in G such that |S| = 2k — 1. Applying Theorem 2, we have that
26 — 1+ Gnsuto = 26 — 1 + Gu_2e—1)11 = |S| + Anjsi41 < n, which is a
contradiction.

Thus we complete the proof of Theorem 8. O
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