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Abstract. For a positive integer k, a subsetD ⊆ V (G) is called a distance-k dominating
set of G if every vertex in V (G) −D is within distance k from some vertex of D. The
minimum cardinality among all distance-k dominating sets of G is called the distance-k
domination number of G. For any positive integer r, a function f : V (G) → {0, 1, 2}
is a Roman r-dominating function if every vertex u for which f(u) = 0 is adjacent to
at least r vertices v for which f(v) = 2. The weight of a Roman r-dominating function
is the value f(V (G)) =

∑
u∈V (G) f(u). The Roman r-domination number of a graph G

is the minimum weight of a Roman r-dominating function on G. We study distance-k
domination number and Roman r-domination number in Random graphs by considering
a combined variant namely distance-k Roman r-domination number.
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1. Introduction

Let G = (V,E) be a finite, undirected and simple graph with vertex set V = V (G) and edge set
E = E(G). The number of vertices |V | is called the order of G and is denoted by n = n(G). We denote
the open neighborhood of a vertex v of G by NG(v), or just N(v), and its closed neighborhood by NG[v]
or N [v]. For a vertex set S ⊆ V (G), we denote N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v]. The degree
of a vertex x, deg(x) (or degG(x) to refer G) in a graph G denotes the number of neighbors of x in G.
We refer δ(G) as the minimum degree of the vertices of G. A set of vertices S in G is a dominating set,
if N [S] = V (G). The domination number, γ(G), of G is the minimum cardinality of a dominating set of
G. For references and also terminology on domination in graphs see for example [10, 12].

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0, V1, V2) be the ordered partition of
V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i} and for i = 0, 1, 2. There is a 1−1 correspondence
between the functions f : V (G) → {0, 1, 2} and the ordered partition (V0, V1, V2) of V (G). So we will
write f = (V0, V1, V2). A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) if every
vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an
RDF f is the value f(V (G)) =

∑
u∈V (G) f(u). The Roman domination number of a graph G, denoted

by γR(G), is the minimum weight of an RDF on G. Roman domination numbers have been studied, for
example, in [4, 17, 18].

For a positive integer k, a subset D ⊆ V (G) is called a distance-k dominating set of G if every
vertex in V (G) − D is within distance k from some vertex of D. The minimum cardinality among all
distance-k dominating sets of G is called the distance-k domination number of G. In this paper we denote
the distance-k domination number of G by γk(G). The concept of distance-k domination in graphs was
introduced by Henning et al. [11] and further studied for example in [8, 15, 16, 19, 20]. Fink and Jacobson
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[6, 7] introduced the concept of r-domination for a positive integer r. A subset D ⊆ V (G) is called an
r-dominating set of G if every vertex in V (G)−D is adjacent to at least r vertices of D. The minimum
cardinality among all r-dominating set of G is called the r-domination number of G and is denoted by
γr(G). This concept was further studied, for example in [3, 5, 21, 22].

Kammerling and Volkmann [14] extended the concept of Roman domination to Roman r-domination,
for any positive integer r. A function f : V (G) → {0, 1, 2} is a Roman r-dominating function if every
vertex u for which f(u) = 0 is adjacent to at least r vertex v for which f(v) = 2. The weight of a Roman
r-dominating function is the value f(V (G)) =

∑
u∈V (G) f(u). The Roman r-domination number of a

graph G, denoted by γrR(G), is the minimum weight of a Roman r-dominating function on G.
Several authors studied domination parameters in Random graphs, see for example [1, 2, 13, 23]. Our

aim in this paper is to study the concepts of Roman r-domination and distance-k domination in Random
graphs. For this purpose we define a new invariant namely distance-k Roman r-domination which is a
generalization of Roman r-domination and distance-k domination. A function f : V (G) → {0, 1, 2} is
a distance-k Roman r-dominating function if every vertex u for which f(u) = 0 is within distance k of
at least r vertex v for which f(v) = 2. The weight of a distance-k Roman r-dominating function is the
value f(V (G)) =

∑
u∈V (G) f(u). The distance-k Roman r-domination number of a graph G, denoted by

γ
(k,r)
R (G), is the minimum weight of a distance-k Roman r-dominating function on G. It is obvious that

γ
(1,r)
R (G) = γrR(G). Also if a graph G has a distance-k Roman 1-dominating function f = (V0, V1, V2)

with V1 = ∅, then γ
(k,1)
R (G) ≥ 2γk(G), and thus γk(G) = 1

2γ
(k,1)
R (G), since clearly γ

(k,1)
R (G) ≤ 2γk(G).

Throughout this paper we assume that r < n
2 .

2. Main results

Let n be a positive integer and 0 < p < 1. The random graph G(n, p) is a probability space over the
set of graphs on the vertex set [n] = {1, ..., n} determined by Pr[{i, j} ∈ E(G)] = p with these events
mutually independent. We say that an event holds asymptotically almost surely (a.a.s.) if the probability
that it holds tends to 1 as n tends to infinity. Note that by definition the weigh of any distance-k Roman
r-dominating set must be at least 2r. It is well known that for constant p < 1, the diameter of G(n, p)

is two a.a.s. Thus if p is constant and k ≥ 2 then a.a.s. γ
(2,r)
R (G(n, p)) = 2r. The case p constant and

k = 1 will be addressed as an open problem. We next assume that p is not constant.

Theorem 2.1 (Bollobas, [2]). Let c be a positive constant, d = d(n) ≥ 2 a natural number, and define
p = p(n, c, d), 0 < p < 1, by pdnd−1 = log(n2/c). Suppose that pn/(log n)3 → ∞. Then in G(n, p), we
have

(1) limn→∞ Pr(diam G = d) = e−c/2,

(2) limn→∞ Pr(diam G = d+ 1) = 1− e−c/2.

From Theorem 2.1, the following can be obtained readily.

Theorem 2.2. For any positive integers k ≥ 3 and r, in a random graph G(n, p) with p = k

√
log(n2/c)
nk−1 ,

a.a.s γ
(k,r)
R (G(n, p)) = 2r.

Next we consider the case k = 2.

Theorem 2.3 (Hopcraft and Kannan, [13]). Let p = c
√

lnn
n . For c >

√
2, G(n, p) almost surely has

diameter less than or equal to two.

From Theorem 2.3 for p ≥
√

2
√

lnn
n we obtain that γ

(k,r)
R (G(n, p)) = 2r a.a.s. We will weaken the

minimum value of p from
√

2
√

lnn
n to p ≥ c

√
lnn
n , for a fixed constant c > 1.
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Theorem 2.4. Let c > 1 be a fixed constant. For any positive integer r, in a random graph G(n, p) with

p ≥ c
√

lnn
n , a.a.s. γ

(2,r)
R (G(n, p)) = 2r.

Proof. Let D ⊆ V (G(n, p)) be a subset with |D| = r. Let the vertices in D be labeled as v1, v2, . . . , vr.
The probability that a vertex u ∈ V (G(n, p)) \D is not within distance-2 from a vertex vi ∈ D is given
by Pr(u /∈ N2(vi)) ≤ (1 − p2)n−2. Let X be a random variable that denotes the number of vertices
u ∈ V (G(n, p)) \ D, where the number vertices of D within distance 2 from u is less than r. We show
that Pr(X > 0)→ 0 as n→∞.

A fixed vertex u is defined bad, if there is less than r vertices in D within distance two from u. By the
linearity property of the expectation we have

(2.1) E(X) = (n− r)Pr(fixed u is bad).

Let Xu be a random variable that denotes the number of vertices in D that are not within distance two
from u. Then E(Xu) ≤ r(1 − p2)n−2 ≤ re−p

2(n−2). By the Markov’s inequality we have Pr(Xu > 0) ≤
E(Xu) ≤ re−p2(n−2). Thus,

(2.2) Pr(fixed u is bad) = Pr(Xu > 0) ≤ re−p
2(n−2).

By (2.1) and (2.2), we have E(X) ≤ (n− r)re−p2(n−2). By the Markov’s inequality we obtain,

(2.3) Pr(X > 0) ≤ E(X) ≤ (n− r)re−p
2(n−2) < nre−p

2(n−2).

Since n→∞, in (2.3), we have ep
2(n−2) > rn for sufficiently large n. This implies that p2(n− 2) > ln rn

and so p >
√

ln rn
n−2 . We conclude that p >

√
lnn
n . Let p > c

√
lnn
n , where c > 1 is a constant. We

determine the value of ep
2(n−2).

(2.4) ep
2(n−2) ≥ (elnn)c

2(n−2
n ) ≥ nc

2(1− 2
n ).

From (2.3) and (2.4) we have

(2.5) nre−p
2(n−2) ≤ nr

nc
2(1− 2

n )
=

r

nc
2(1− 2

n )−1
.

Since c2 > 1 as n→∞, c2(1− 2
n ) > 1, and hence, c2(1− 2

n )− 1 > 0. Thus, as n→∞,

r

nc
2(1− 2

n )−1
→ 0.

Therefore, from (2.3) and (2.5) we have Pr(X > 0)→ 0 as n→∞. �

Thus the remaining case is k = 1. We propose the following problem.

Problem 2.5. For k = 1 and p ∈ (0, 1) (p is not necessarily constant) determine γ
(1,r)
R (G(n, p)) a.a.e.

3. Concluding remarks

We end the paper with stating some probabilistic bounds for the distance-k Roman r-domination
number in graphs using similar results on Roman domination and r-domination numbers. It is obvious

that γ
(k,r)
R (G) = 2r if diam(G) ≤ k. Thus we assume that diam(G) > k. For a vertex v let Nk(v)

be the set of all vertices u such that u 6= v and is within distance-k from v, and let δk = δk(G) =
min{Nk(v) : v ∈ V (G)}. We also define the k-graph Gk as the graph with vertex set V (Gk) = V (G),
and E(Gk) = {xy : dG(x, y) ≤ k}. Note that G1 = G. Hansberg and Volkmann, [9] proved that if

G is a graph on n vertices with δ(G) ≥ r, where r is a positive integer, and δ(G)+1+2 ln 2
ln(δ(G)+1) ≥ 2r, then

γrR(G) ≤
(

2r ln(δ(G)+1)−ln 4+2
δ(G)+1

)
n. It is obvious that γ

(k,r)
R (G) = γrR(Gk). Thus from the above upper

bound and with an identical proof as the proof of Theorem 11 of [23], we obtain the following.
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Theorem 3.1. If δk+1+2 ln 2
ln(δk+1) ≥ 2r and δk ≥ r, then

γ
(k,r)
R (G) ≤

(2r ln(δk + 1)− ln 4 + 2

δk + 1

)
n.

This bound is asymptotically best possible.
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