ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2016, VOLUME 6, ISSUE 2, p.121-125

DISTANCE ROMAN DOMINATION IN RANDOM GRAPHS
ELAHE SHARIFI, NADER JAFARI RAD

ABSTRACT. For a positive integer k, a subset D C V(G) is called a distance-k dominating
set of G if every vertex in V(G) — D is within distance k from some vertex of D. The
minimum cardinality among all distance-k dominating sets of G is called the distance-k
domination number of G. For any positive integer r, a function f : V(G) — {0,1,2}
is a Roman r-dominating function if every vertex u for which f(u) = 0 is adjacent to
at least r vertices v for which f(v) = 2. The weight of a Roman r-dominating function
is the value f(V(G)) = >_,cv(q) f(u). The Roman r-domination number of a graph G
is the minimum weight of a Roman r-dominating function on G. We study distance-k
domination number and Roman r-domination number in Random graphs by considering
a combined variant namely distance-k Roman r-domination number.

Mathematics Subject Classification (2010): 05C69
Keywords: Domination; Roman domination; Distance domination; Random graph.

Article history:

Received 9 June 2016

Received in revised form 9 August 2016
Accepted 10 August 2016

1. INTRODUCTION

Let G = (V, E) be a finite, undirected and simple graph with vertex set V = V(G) and edge set
E = E(G). The number of vertices |V| is called the order of G and is denoted by n = n(G). We denote
the open neighborhood of a vertex v of G by Ng(v), or just N(v), and its closed neighborhood by Ng[v]
or N[v]. For a vertex set S C V(G), we denote N(S) = UyesN(v) and N[S] = UyesN[v]. The degree
of a vertex z, deg(x) (or degx(x) to refer G) in a graph G denotes the number of neighbors of z in G.
We refer §(G) as the minimum degree of the vertices of G. A set of vertices S in G is a dominating set,
if N[S] = V(G). The domination number, v(G), of G is the minimum cardinality of a dominating set of
G. For references and also terminology on domination in graphs see for example [10, 12].

For a graph G, let f : V(G) — {0, 1,2} be a function, and let (Vy, V4, V2) be the ordered partition of
V(G) induced by f, where V; = {v € V(G) : f(v) =i} and for i = 0, 1,2. There is a 1 — 1 correspondence
between the functions f : V(G) — {0,1,2} and the ordered partition (Vo, V1, Va) of V(G). So we will
write f = (Vo, V1, V2). A function f: V(G) — {0,1,2} is a Roman dominating function (RDF) if every
vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an
RDF f is the value f(V(G)) = 3., cv(q) f(u). The Roman domination number of a graph G, denoted
by Yr(G), is the minimum weight of an RDF on G. Roman domination numbers have been studied, for
example, in [4, 17, 18].

For a positive integer k, a subset D C V(G) is called a distance-k dominating set of G if every
vertex in V(G) — D is within distance k from some vertex of D. The minimum cardinality among all
distance-k dominating sets of G is called the distance-k domination number of G. In this paper we denote
the distance-k domination number of G by v¥(G). The concept of distance-k domination in graphs was
introduced by Henning et al. [11] and further studied for example in [8, 15, 16, 19, 20]. Fink and Jacobson
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[6, 7] introduced the concept of r-domination for a positive integer . A subset D C V(G) is called an
r-dominating set of G if every vertex in V(G) — D is adjacent to at least r vertices of D. The minimum
cardinality among all r-dominating set of G is called the r-domination number of G and is denoted by
~-(G). This concept was further studied, for example in [3, 5, 21, 22].

Kammerling and Volkmann [14] extended the concept of Roman domination to Roman r-domination,
for any positive integer r. A function f : V(G) — {0,1,2} is a Roman r-dominating function if every
vertex u for which f(u) = 0 is adjacent to at least r vertex v for which f(v) = 2. The weight of a Roman
r-dominating function is the value f(V(G)) = > ,cv(q) f(v). The Roman r-domination number of a
graph G, denoted by v, r(G), is the minimum weight of a Roman r-dominating function on G.

Several authors studied domination parameters in Random graphs, see for example [1, 2, 13, 23]. Our
aim in this paper is to study the concepts of Roman r-domination and distance-k domination in Random
graphs. For this purpose we define a new invariant namely distance-k Roman r-domination which is a
generalization of Roman r-domination and distance-k domination. A function f : V(G) — {0,1,2} is
a distance-k Roman r-dominating function if every vertex u for which f(u) = 0 is within distance k of
at least r vertex v for which f(v) = 2. The weight of a distance-k Roman r-dominating function is the
value f(V(G)) = X cv(q) f(u). The distance-k Roman r-domination number of a graph G, denoted by

A/}(%IC’T)(G), is the minimum weight of a distance-k Roman r-dominating function on G. It is obvious that

’yg’r)(G) = vr(G). Also if a graph G has a distance-k Roman 1-dominating function f = (Vp, V1, Va)
with ¥ = 0, then *y](éc’l)(G) > 29%(@), and thus v*(G) = %’yg’l)(G), since clearly ”yg’l)(G) < 29%(@).
Throughout this paper we assume that r < 5.

2. MAIN RESULTS

Let n be a positive integer and 0 < p < 1. The random graph G(n,p) is a probability space over the
set of graphs on the vertex set [n] = {1,...,n} determined by Pr[{i,j} € E(G)] = p with these events
mutually independent. We say that an event holds asymptotically almost surely (a.a.s.) if the probability
that it holds tends to 1 as n tends to infinity. Note that by definition the weigh of any distance-k Roman
r-dominating set must be at least 2r. It is well known that for constant p < 1, the diameter of G(n,p)
is two a.a.s. Thus if p is constant and k > 2 then a.a.s. ’yg’r)(G(n,p)) = 2r. The case p constant and
k = 1 will be addressed as an open problem. We next assume that p is not constant.

Theorem 2.1 (Bollobas, [2]). Let ¢ be a positive constant, d = d(n) > 2 a natural number, and define
p=pn,cd), 0 <p<1, by pin?=t =log(n?/c). Suppose that pn/(logn)® — oo. Then in G(n,p), we
have
(1) lim,_eo Pr(diam G=d)=e %2,
(2) lim, 0o Pr(diam G=d+1)=1—e /2
From Theorem 2.1, the following can be obtained readily.
Theorem 2.2. For any positive integers k > 3 and r, in a random graph G(n,p) with p = { loi(,?#,
a.a.8 'y}(f’r)(G(mp)) = 2r.
Next we consider the case k = 2.
Theorem 2.3 (Hopcraft and Kannan, [13]). Let p = ¢ 1“7" For ¢ > /2, G(n,p) almost surely has
diameter less than or equal to two.

From Theorem 2.3 for p > v/24/™2% we obtain that 'y}(éf’r)(G(n,p)) = 2r a.a.s. We will weaken the

Inn
n

Inn
n )

minimum value of p from V2 top>c for a fixed constant ¢ > 1.
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Theorem 2.4. Let ¢ > 1 be a fized constant. For any positive integer r, in a random graph G(n,p) with
p>cy /22 aas. 'yg’r) (G(n,p)) = 2r.

Proof. Let D C V(G(n,p)) be a subset with |D| = r. Let the vertices in D be labeled as vy, vs,...,v,.
The probability that a vertex v € V(G(n,p)) \ D is not within distance-2 from a vertex v; € D is given
by Pr(u ¢ No(v;)) < (1 —p*)" 2. Let X be a random variable that denotes the number of vertices

u € V(G(n,p)) \ D, where the number vertices of D within distance 2 from wu is less than r. We show
that Pr(X > 0) — 0 as n — oo.

A fixed vertex u is defined bad, if there is less than r vertices in D within distance two from u. By the
linearity property of the expectation we have

(2.1) E(X) = (n—r)Pr(fixed u is bad).

Let X, be a random variable that denotes the number of vertices in D that are not within distance two
2

from u. Then E(X,) < r(1 —p?)"~2 < re P (»=2), By the Markov’s inequality we have Pr(X, > 0) <

E(X,) < re~?’(n=2) Thus,

(2.2) Pr(fixed u is bad) = Pr(X, > 0) < re ? (=2,

By (2.1) and (2.2), we have E(X) < (n — r)re*pZ("*Q). By the Markov’s inequality we obtain,

(2.3) PrX>0)<EX)<(n- r)re_pz("_Q) < nre P (n=2),

Since n — oo, in (2.3), we have e?” ("=2) > rn for sufficiently large n. This implies that p?(n — 2) > Inrn

and so p > ,/1;;%;’. We conclude that p > 1“7" Let p > c\/lnT", where ¢ > 1 is a constant. We

determine the value of eP”(n=2).

(2.4) P’ (n=2) > (elnn)cz(nTﬁ) > (-3,

From (2.3) and (2.4) we have
(n—2) nro r
< nct(1=2) - net(l=2)-1"

(2.5) nre?"

Since ¢ > 1 as n — oo, c2(1 — %) > 1, and hence, ¢?(1 — %) — 1> 0. Thus, as n — oo,
r
nCQ(lf%)fl

Therefore, from (2.3) and (2.5) we have Pr(X > 0) — 0 as n — oc. O

— 0.

Thus the remaining case is £ = 1. We propose the following problem.

Problem 2.5. For k=1 andp € (0,1) (p is not necessarily constant) determine 'yg’r)(G(n,p)) a.a.e.

3. CONCLUDING REMARKS

We end the paper with stating some probabilistic bounds for the distance-k Roman r-domination
number in graphs using similar results on Roman domination and r-domination numbers. It is obvious
that 'yg”)(G) = 2r if diam(G) < k. Thus we assume that diam(G) > k. For a vertex v let Ny (v)
be the set of all vertices u such that v # v and is within distance-k from v, and let §; = Jx(G) =
min{N(v) : v € V(G)}. We also define the k-graph G* as the graph with vertex set V(GF) = V(G),

and E(G*) = {zy : dg(z,y) < k}. Note that G! = G. Hansberg and Volkmann, [9] proved that if

G is a graph on n vertices with §(G) > r, where r is a positive integer, and % > 2r, then

Yr(G) < <2T 1n(5(§)(;;i_);ln4+2)n' It is obvious that *y}(;f’r)(G) = v-r(G¥). Thus from the above upper

bound and with an identical proof as the proof of Theorem 11 of [23], we obtain the following.
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Theorem 3.1. If Q14202 > 9 ond 6§ > r, then

In(8,+1)
() () < (2rln(§k +1)—Ind+ 2)
’YR ( ) — 6k + 1 n.
This bound is asymptotically best possible.
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