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Abstract. Generalized differential transform method (GDTM) is a powerful method
to solve the fractional differential equations. In this paper, a new fractional model
for systems with single degree of freedom (SDOF) is presented, by using the GDTM.
The advantage of this method compared with some other numerical methods has been
shown. The analysis of new approximations, damping and acceleration of systems are
also described. Finally, by reducing damping and analysis of the errors, in one of the
fractional cases, we have shown that in addition to having a suitable solution for the
displacement close to the exact one, the system enjoys acceleration once crossing the
equilibrium point.
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1. Introduction

In recent years, study of systems and fractional equations by various methods, helped physics and
engineering, especially mechanics to improve a lot (see [3]-[5], [11], [16], [18], [20], [23], [26]). A system
with one degree of freedom, which presented in vibration, is an example of these equations. Degree of
freedom means the direction of body motion (see [13], [14], [19], [29]). We consider the Newton’s equation
of motion. A second order differential equation corresponding to a single degree of freedom system is as
follows

(1.1) mẍ+ cẋ+ kx = 0,

where m, c, and k are mass, damping coefficient, and stiffness coefficient of spring, respectively. (1.1) is
solved as follows

ms2 + cs+ k = 0,(1.2)

∆ = c2 − 4mk.(1.3)

Now, considering the value of ∆, there will be three different answers. If ∆ > 0, then we have

x(t) = Ae(−ζ+
√
ζ2−1)ωnt +Be(−ζ−

√
ζ2−1)ωnt,(1.4)

where ωn =
√

k
m , ζ = c

cc
, and cc =

√
4mk are the natural frequency, the ratio of damping coefficient, and

the value of c in the critical damping, respectively. Furthermore, A and B are constants to be evaluated
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from initial conditions of equation. In this case, the motion is a time reducing function and is known as a
non-periodic motion. This case is called a fast damped or beyond-damped case. If ∆ = 0, then we have

(1.5) (A+ tB)e−ωnt.

In this case, the motion is a function of time decreasing and the solution tends to zero, faster than the
beyond-damped.

Finally, if ∆ < 0, vibration shows the nature of oscillating motion and the equation of motion is
obtained as follows

x(t) = Ae(−ζ+i
√

1−ζ2)ωnt +Be(−ζ−i
√

1−ζ2)ωnt.(1.6)

For knowing that how the solutions were obtained refer to Sec.2.3 in [29]. The natural frequency of
the damped oscillation is shown as

ωd = ωn
√

1− ζ2.(1.7)

Also, by using (1.7), damped period is calculated as follow

τd =
2π

ωd
.(1.8)

To solve (1.1), two types of the fractional models of differential orders have been considered by the
researchers (see [3], [11], [27]). They were able to study only one fractional order of the system, but
Gomez-Aguilar et al. and Zaillua et al. succeeded to introduce both fractional orders of the system (see
[12], [31]). In the model below, it can be seen that the orders are dependent

m

σ2(1−γ)
D2γx(t) +

c

σ1−γD
γx(t) + kx(t) = 0.(1.9)

In the next section we will see that the proposed model includes degrees, which are independent.
Another point that must be reminded is that recently two or more order fractional differential equations
have been considered by the GDTM (see [8]). They could study two or multi-order fractional differential
equations by zeroing one of orders. But recently, even without considering zero order, and by using
both fractional orders approximate solutions were obtained (see [25]). In pursuit of our discussion, some
definitions and theorems will be considered. Then, we will analysis the considered system.

2. Definitions and theorems

In this section we provide some important definitions and theorems.

Definition 2.1. The Riemann-Liouville integral operator is defined by

(2.1) Iαf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ,

where α ∈ R+, a ≥ 0, and t > a.

Definition 2.2. The Caputo fractional derivative of order α is defined by

(2.2) Dαf(t) =
1

Γ(−α+m)

∫ t

a

(t− τ)−α+m−1f (m)(τ)dτ,

where m− 1 < α ≤ m,m ∈ Z+.

For more information one may refer to [4], [5], [17],[24].
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Definition 2.3. We define the generalized differential transform for the i-th derivative of a function f(t)
as follows

(2.3) Fα(i) =
1

Γ(αi+ 1)
[(Dα)if(t)]t=t0 ,

where 0 < α ≤ 1 and (Dα)i = Dα.Dα. · · · .Dα {i− times} (see [22]).

Also, the differential inverse transform of Fα(i) is defined as

(2.4) f(t) =

∞∑
i=0

Fα(i)(t− t0)αi.

By substituting (2.3) into (2.4) and by using the generalized Taylor’s formula in [21], we obtain

(2.5) f(t) =

∞∑
i=0

(t− t0)αi

Γ(αi+ 1)
((Dα)if)(t0).

Using Theorem 4 in [21], we will obtain an approximate function f(t) by the finite series as (see [22])

(2.6) f(t) ∼=
n∑
i=0

Fα(i)(t− t0)αi.

The following theorems help us to solve fractional differential equations.

Theorem 2.4. If f(t) = g(t)± h(t), then Fα(i) = Gα(i)±Hα(i).

Theorem 2.5. If f(t) = λg(t) and λ ∈ R, then Fα(i) = λGα(i).

Theorem 2.6. If f(t) = g(t)h(t), then Fα(i) =
∑i
j=0Gα(j)Hα(i− j).

Theorem 2.7. If f(t) = Dαg(t), then Fα(i) = Γ(α(i+1)+1)
Γ(αi+1) Gα(i+ 1).

Theorem 2.8. If f(t) = Dβg(t),m−1 < β ≤ m and the function g(t) satisfies the conditions of Theorem

2-5 in [22], then Fα(i) = Γ(αi+β+1)
Γ(αi+1) Gα(i+ β

α ).

The proofs may be found in [22].

3. Discussion

In this section, first we introduce the new model of SDOF system. Then, by the above definitions and
theorems we compare accuracy of GDTM with other numerical methods. In addition, we study the new
displacement and acceleration diagrams in any cases.

The new model of fractional differential equation corresponding to SDOF system is as follows

(3.1) mxβ(t) + cxα(t) + kx(t) = 0,

where 0 < α ≤ 1 and 1 < β ≤ 2. We consider the following initial conditions

(3.2) x(0) = 0, ẋ(0) = 1.

In the first case, we suppose α = 1 and β = 2. The exact solution of the equation with the initial
conditions will be

(3.3) x(t) =
me

1
2 (−c+

√
c2−4m)t

√
c2 − 4m

− me−
1
2 (c+

√
c2−4m)t

√
c2 − 4m

.
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Now, we assume m = c = k = 1. By the generalized differential transform and Theorems 2.8, 2.7, and
2.5, respectively, the terms in (3.1) are transformed as

(3.4)
Γ(αi+ β + 1)

Γ(αi+ 1)
Xα(i+

β

α
) +

Γ(α(i+ 1) + 1)

Γ(αi+ 1)
Xα(i+ 1) +Xα(i) = 0.

Setting values of α and β in above equation and arranging, respectively, (3.1) is transformed as

(3.5)
Γ(i+ 3)

Γ(i+ 1)
X1(i+ 2) +

Γ(i+ 2)

Γ(i+ 1)
X1(i+ 1) +X1(i) = 0,

(3.6)
Γ(i+ 3)

Γ(i+ 1)
X1(i+ 2) = −Γ(i+ 2)

Γ(i+ 1)
X1(i+ 1)−X1(i),

(3.7) X1(i+ 2) = −Γ(i+ 2)

Γ(i+ 3)
X1(i+ 1)− Γ(i+ 1)

Γ(i+ 3)
X1(i).

Also, according to Definition 2.3 and (3.2), the generalized differential transform of the initial conditions
can be obtained as

(3.8) X1(0) = 0, X1(1) = 1.

Considering i = 0, 1, 2, · · · , n in (3.7), other components are as follow

X1(2) = −0.5, X1(3) = 0, X1(4) = 0.04166666667,

X1(5) = −0.008333333334, · · · , X1(20) = −4.110317620 10−19.(3.9)

By substituting (3.8), and (3.9) into (2.6) instead of Fα(i) for i = 0, 1, 2 · · ·n, we obtain x(t) up to
O(t20)

x(t) ∼= t+ (−0.5)t2 + (0.04166666667)t4

+(−0.008333333334)t5 + (0.0001984126984)t7

+(−0.00002480158730)t8 + (2.755731922 10−7)t10

+(2.505210838 10−8)t11 + (1.605904383 10−10)t13

+(−1.147074559 10−11)t14 + (−2. 10−22)t15

+(4.779477330 10−14)t16 + (−2.811457252 10−15)t17

+(8.220635240 10−18)t19 + (−4.110317620 10−19)t20.(3.10)

Table 3.1 shows a comparison of GDTM results with the exact solution and other numerical methods
such as Taylor’s series method in the interval [0, 1]. The Taylor’s method can be used for high accuracy
solutions (see [1]). The other methods find the numerical solutions by using Runge-Kutta method.
RKF45 and CK45 methods are a Fehlberg and a Cash-Karp fourth-fifth order, respectively (see [2], [6],
[9], [10], [28]). Also, dverk78 and Rosenbrock obtain approximate solutions by using a seventh-eight order
and third-fourth order, respectively (see [7], [15], [28], [30]). Although, we can evaluate the approximation
of GDTM for more terms of series solution, but according to the large values of calculations and the
possible errors, it will not be efficient. As seen, the results of GDTM is as well as the results of the
Taylor and dverk78’s methods and more accurate than the other methods.
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Table 3.1: Comparison of GDTM with other methods for (3.1) and (3.2).

t Exact GDTM Taylor dverk78 CK45 RKF45 Rosenbrock

0 0 0 0 0 0 0 0
0.1 0.09500408342 0.09500408336 0.09500408335 0.09500408335 0.09500408466 0.09500408321 0.09500415174

0.2 0.1800640025 0.1800640024 0.1800640025 0.1800640025 0.1800640029 0.1800640016 0.1800640947
0.3 0.2553172919 0.2553172918 0.2553172918 0.2553172918 0.2553172918 0.2553172914 0.2553173953
0.4 0.3209816424 0.3209816422 0.3209816422 0.3209816422 0.3209816420 0.3209816418 0.3209817546

0.5 0.3773452037 0.3773452035 0.3773452035 0.3773452035 0.3773452033 0.3773452021 0.3773453037
0.6 0.4247571395 0.4247571393 0.4247571393 0.4247571393 0.4247571390 0.4247571381 0.4247572282
0.7 0.4636185012 0.4636185010 0.4636185010 0.4636185010 0.4636185006 0.4636185002 0.4636185798

0.8 0.4943734769 0.4943734766 0.4943734766 0.4943734766 0.4943734762 0.4943734754 0.4943735463
0.9 0.5175010623 0.5175010621 0.5175010622 0.5175010621 0.5175010621 0.5175010600 0.5175011233
1.0 0.5335071953 0.5335071952 0.5335071951 0.5335071951 0.5335071960 0.5335071927 0.5335072481

In the second case, we suppose α = 0.5 and β = 2. As before, by above mentioned theorems,
(3.1) is transformed to (3.4). Now, by setting values of α and β in (3.4) and arranging, respectively, we
have

(3.11)
Γ(0.5i+ 3)

Γ(0.5i+ 1)
X0.5(i+ 4) +

Γ(0.5i+ 1.5)

Γ(0.5i+ 1)
X0.5(i+ 1) +X0.5(i) = 0,

(3.12) X0.5(i+ 4) = −Γ(0.5i+ 1.5)

Γ(0.5i+ 3)
X0.5(i+ 1)− Γ(0.5i+ 1)

Γ(0.5i+ 3)
X0.5(i).

Also, according to Definition 2.3 and (3.2), the generalized differential transform of the initial conditions
can be obtained as

(3.13) X0.5(0) = X0.5(1) = X0.5(3) = 0, X0.5(2) = 1.

Since α = 0.5, we obtain X0.5(i) = 1 when i = 2. So, by considering i = 0, 1, · · · , n, in (3.12), the
other components are as follow

(3.14) X0.5(4) = 0, X0.5(5) = −0.3009011113, · · · , X0.5(80) = −1.131502271 10−43.

By Substituting (3.13), and (3.14) into (2.6) instead of Fα(i) for i = 0, 1, 2 · · ·n, we have the displace-
ment of x(t) up to O(t40) as

x(t) ∼= t+ (−0.3009011113)t2.5 + (−0.1666666667)t3

+(0.04166666668)t4 + (0.03820966493)t4.5

+(0.00833333333)t5 + · · ·+ (1.105571111 10−42)t39.5

+(−1.131502271 10−43)t40.(3.15)

Finally, in the last case, we decrease both orders of the equation. That is, we suppose α = 0.5 and
β = 1.5. Once again, by setting values of α and β in (3.4) and arranging, respectively, the generalized
differential transform of (3.1) is as follows

(3.16)
Γ(0.5i+ 2.5)

Γ(0.5i+ 1)
X0.5(i+ 3) +

Γ(0.5i+ 1.5)

Γ(0.5i+ 1)
X0.5(i+ 1) +X0.5(i) = 0,

(3.17) X0.5(i+ 3) = −Γ(0.5i+ 1.5)

Γ(0.5i+ 2.5)
X0.5(i+ 1)− Γ(0.5i+ 1)

Γ(0.5i+ 2.5)
X0.5(i).

Also, according to Definition 2.3 and (3.2), we can obtain the generalized differential transform of the
initial conditions

(3.18) X0.5(0) = X0.5(1) = X0.5(2) = 0.

Considering i = 0, 1, 2, · · · , n in (3.17), other components are as follow

(3.19) X0.5(3) = 0, X0.5(4) = −0.5, X0.5(5) = 0, · · · , X0.5(80) = 2.947475100 10−42.
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Hence, the displacement of x(t) is as follows

x(t) ∼= t+ (−0.5)t2 + (−0.3009011113)t2.5

+(0.166666666)t3 + (0.1719434921)t3.5

+(0.00833333333)t4 + · · ·+ (2.247478671 10−42)t39.5

+(2.947475100 10−42)t40.(3.20)

Fig.3.1(a) shows the comparison of the last three cases with the exact solution. When we fix β and
decrease α, since the value of c is high, the damping of the system is reduced. Therefore, the diagram
shows the higher peak. Using (1.7) and (1.8), according to natural frequency of ωn, and the ratio of
damping coefficient of ζ we obtained the damped period of this case, that is τd,1 = 7.25. On the other
hand, by reducing both orders, SDOF system achieves high damping. The mass-spring moves slowly
after the first seconds. Fig.3.1(b) shows the two cases errors. We see that the first case has a very low
error. Now, we suppose c = 0.001 and compare both displacements of the first and second cases with
each other, up to O(t40), again. Fig.3.2 shows the results. The curve of the second case is compatible
with the first case and with the exact solution. Clearly, both the error and damping are decreased, in
comparison with when c was 1. Notice that, we can obtain the closer approximations with the reduction
of c. The damped period is τd,0.001 = 6.28.

Fig. 3.1: Comparison of the displacement of mass-spring for three cases of GDTM with the exact solution when c = 1:

(a) The displacement (b) GDTM errors.
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Fig. 3.2: Comparison of the displacement of mass-spring for two cases of GDTM with the exact solution when c = 0.001:

(a) The displacement (b) GDTM errors (c) Equilibrium point.

Now, we suppose c to be a variable and m = k = 1. Considering to the mentioned theorems, we obtain

(3.21)
Γ(αi+ β + 1)

Γ(αi+ 1)
Xα(i+

β

α
) + c

Γ(α(i+ 1) + 1)

Γ(αi+ 1)
Xα(i+ 1) +Xα(i) = 0.

The generalized differential transform of the first case, by setting α = 1 and β = 2, will be

(3.22) X1(i+ 2) = −cΓ(i+ 2)

Γ(i+ 3)
X1(i+ 1)− Γ(i+ 1)

Γ(i+ 3)
X1(i).

Regarding to the transformed initial conditions (3.8) and (3.22), we consider i = 0, 1, 2, · · · , n, the first
components of the generalized differential transform can be obtained as

(3.23) X1(1) = 0, X1(1) = 1, X1(2) = −0.5c,X1(3) = −0.1666666667c2 − 0.1666666667.
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We would have the displacement of x(t) by the same initial conditions (3.8)

x(t) ∼= t+ (−0.5c)t2 + (−0.1666666667c2 − 0.1666666667)t3 + · · ·
+(−1.225617439 10−48c39 + 4.657346272 10−47c37

−8.162612143 10−46c35 + 8.750908516 10−45c33

−6.417332911 10−44c31 + 3.410354061 10−43c29

−1.357454655 10−42c27 + 4.125251811 10−42c25

−9.668558933 10−42c23 + 1.753509254 10−41c21

−2.454912955 10−41c19 + 2.631912949 10−41c17

−2.130596197 10−41c15 + 1.274715673 10−41c13

−5.463067172 10−42c11 + 1.602499704 10−42c9

−3.004686946 10−43c7 + 3.227540966 10−44c5

−1.630071194 10−45c3 + 2.451234881 10−47c)t40.(3.24)

Also, in the second case, with regard to (3.21), by setting α = 0.5 and β = 2, we obtain

(3.25) X0.5(i+ 4) = −cΓ(0.5i+ 1.5)

Γ(0.5i+ 3)
X0.5(i+ 1)− Γ(0.5i+ 1)

Γ(0.5i+ 3)
X0.5(i).

Considering the transformed initial conditions (3.18) and i = 0, 1, 2 · · · , n, the first components of the
generalized differential transform can be obtained as

X0.5(0) = X0.5(1) = X0.5(3) = X0.5(4) = X0.5(7) = 0, X0.5(2) = 1,

X0.5(5) = −0.3009011113c,X0.5(6) = −0.1666666667.(3.26)

The displacement of x(t) will be obtained up to O(t40)

x(t) ∼= t+ (−0.3009011113c)t2.5 + (−0.1666666667)t3

+(0.04166666668c2)t4 + (0.03820966493)t4.5 + · · ·
+(1.225617440 10−48c26 − 2.818920110 10−45c22

+1.649632048 10−43c18 − 1.001562316 10−42c14

+7.925406148 10−43c10 − 6.650690470 10−44c6

+2.328673135 10−46c2)t40.(3.27)

Galaxy
Text Box
100



Fig. 3.3: Vector of acceleration: (a) Exact solution and c ∈ [0.001, 1] (b) GDTM for β = 2, α = 1 and c ∈ [0.001, 1] (c)

Exact solution and c ∈ [0.88, 1] (d) Exact solution and c ∈ [0, 0.12].
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Fig. 3.4: Vector of acceleration for GDTM (a) β = 2, α = 0.5 and c ∈ [0.001, 1] (b) β = 2, α = 0.5 and c ∈ [0.88, 1] (c)

β = 2, α = 0.5 and c ∈ [0, 0.12].

Fig.3.3 shows the acceleration-time diagram of (3.3), (3.24), and (3.27). c is assumed to be in the
interval [0.001, 1]. According to the exact curve of Fig.3.1(a), the mass-spring reaches the peak at t = 1.2.
Accordingly, the vector changes its direction and the acceleration reaches to zero in the interval [2.5, 3].
It is the equilibrium point. According to the Fig.3.3(d), this time would be [2.94, 3.37] for c = 0.001.
Also, it is clear that the value of the acceleration vector will be larger than when the damping reduces.
The process continues until the mass-spring stops. By comparing Fig.3.3(a) and (b), there would be
no significant difference. As seen, other acceleration approximates in Fig.3.4, as to this difference, the
mass-spring still has an acceleration when it crosses the equilibrium point. The acceleration reaches to
zero after few seconds, with a delay compared to the two other cases. The reason for occurrence is using
the fractional order, and particularly reducing of c. Finally, the acceleration reaches to zero in the interval
[3.35, 3.75]. But the time of equilibrium point is t = 3.14 in Fig.3.2(c). It’s noticed that the acceleration
will be zero in the equilibrium point when c increases, that is c reaches to 1. Also, Fig.3.5 shows the
displacement of mass-spring, assuming the different damping coefficients in the space of x(t)− c− t. The
difference in the solution surface in Fig.3.5(c) is considerable.
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Fig. 3.5: The surface shows the solution of (3.24) and (3.27) in x(t)− c− t space: (a) Exact solution (b) GDTM for

β = 2, α = 1 (c) GDTM for β = 2, α = 0.5.

4. Conclusions

This paper tried to presented a new model of SDOF system by GDTM. It uses in door closer and
shock absorber. The results have been compared with the Taylor’s series and some other methods and
show that our model works well and more accurate than other methods. The damping of the system
increases when we decrease both orders. By considering fractional order of α and the reducing of damping
coefficient we found that there would be an acceleration in the equilibrium point. But it becomes zero
when damping coefficient increases.
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