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1. Introduction

In the present work, we consider cyclic codes over Fp of rate 1/2, where p is a prime
number. An important subclass of these is that of isodual codes, i.e. codes equivalent to
their duals. We propose, in the cases: n = 2m, with m odd, a construction of isodual
cyclic codes.

Recently a new results on the optimization of the minimum distance of cyclic codes of
rate 1/2 over F3 and the characterization of generating polynomial of an isodual cyclic
code over F3 and F5 are presented in [6] and [7]. Generally the characterization of the
generating polynomial of an isodual cyclic code is left as a challenging open problem.

2. Isodual cyclic codes of rate 1/2 over Fp
Some familiarity with coding theory is in [5], [8]. Let Fp denote the Galois field of p

elements. Recall that the rate of a linear code of length n and dimension k is k/n. Two
linear codes are said to be equivalent if one can be obtained from the other by permutation
of coordinates. A linear code is said to be isodual if and only if it is equivalent to its dual.
Recall that a cyclic code of length n over Fp can be regarded as an ideal in the principal
ideal ring Fp[X]/(Xn − 1). If g(X) denote the generator polynomial of a cyclic code C,
then the generator of the dual code, denoted by h(X) is, up to sign, the reciprocal of its
complement

h(X) =
Xn − 1

g(X)
,
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where the reciprocal polynomial f ∗(X) of a polynomial f(X), of degree n over Fp, is
defined by

f ∗(X) = Xnf(
1

X
).

The parameters of a p−ary code are denoted by [n, k]p and are length and dimension.
The algorithm to compute the minimum distance of a cyclic codes is in [9] and some
optimal linear codes of rate 1/2 over F5 and F7 are described in [3]. In [2] the online table
of self-dual codes over F7 is maintained.

3. Special class of isodual cyclic codes of parameters [n, n
2
]p

For m a positive integer consider the cyclotomic polynomial

Φm(X) := Π
1≤k≤m
(k, m)=1

(X − e2πik/m).

Thus the first five cyclotomic polynomials are
Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 + X + 1, Φ4(X) = X2 + 1,

Φ5(X) = X4 + X3 + X2 + X + 1.

If p is a prime, then

(3.1) Φp(X) = Xp−1 + Xp−2 + ... + X + 1,

and, if m is an odd number, then

(3.2) Φ2m(X) = Φm(−X).

Hence,

(3.3) Xm − 1 = Π
d/m

Φd(X).

Since Φm(X) ∈ Z[X] (see, for example, N. Jacobson [4] or K. Conrad [1]), for a fixed
prime p, they can reduce them modulo p. It is known the following result:

Theorem 3.1. ([1], [4]) Let p be a fixed prime. Then Φm(X) is irreducible in Fp[X] if
and only if m is not a multiple of p, and p (mod m) is a generator of the multiplicative
group of Zm.

If p is a fixed prime we begin our study of cyclic codes of parameters [n, n
2
] , n singly

even, and not a multiple of p. the following theorem is the main result of the paper.

Theorem 3.2. If p, m be two distinct odd primes such that p (mod m) is a generator
of the multiplicative group of Zm and n = 2m, then a cyclic code of parameters [n, n

2
] is

isodual.

Proof. Let C be a cyclic code of parameters [n, n
2
] having the generator polynomial denoted

by g(X). Since by (3.1)-(3.3),

Xn − 1 = Φ1(X)Φ2(X)Φm(X)Φ2m(X)
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= (X − 1)(X + 1)(Xm−1 + Xm−2 + ... + X + 1)(Xm−1 −Xm−2 + ...−X + 1),

and, by Theorem 3.1, Φm(X) and Φm(−X) are irreducible in Fp[X], it follows that there
are only 4 choice for g(X) of degree n

2
:

g(X) = (X − 1)Φm(X),

g(X) = (X − 1)Φ2m(X),

g(X) = (X + 1)Φm(X),

g(X) = (X + 1)Φ2m(X),

where

Φm(X) = Xm−1 + Xm−2 + ... + X + 1,

and we have always

Φ∗
m(X) = Φm(X).

We compute the generator of the dual code. First we have respectively

(Xn − 1)/g(X) = (X + 1)Φ2m(X),

(Xn − 1)/g(X) = (X + 1)Φm(X),

(Xn − 1)/g(X) = (X − 1)Φ2m(X),

(Xn − 1)/g(X) = (X − 1)Φm(X).

Taking reciprocal of both sides, we obtain(
Xn − 1

g(X)

)∗

= ±g(−X).

Since the map g(X) 7→ ±g(−X) is an isometry, we see that the cyclic code of generator
g(X) and its dual are equivalent codes. �

Example 3.3. If p = 3, for n = 34, 38, 58, 62, the cyclic codes of parameters [n, n
2
] are

isodual (see [7], Proposition 3).

Example 3.4. If p = 5, for n = 22, 38, the cyclic codes of rate 1
2

are isodual (see [6],
Proposition 2.1 and 2.3)

Example 3.5. If p = 7, then the following table gives several examples of isodual cyclic
codes.
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m p (mod m) order of p (mod m) n type of code
11 7 10 22 isodual
13 7 12 26 isodual
17 7 16 34 isodual
19 7 18 38 isodual
23 7 22 46 isodual
29 7 28 58 isodual
31 7 30 62 isodual
37 7 36 74 isodual
41 7 40 82 isodual
43 7 42 86 isodual

Remark 3.6. Using the algorithm in [9], it can be shown that the largest minimum
distance of the all codes of parameters [n, n

2
]7 is equal to 4.

4. Conclusion

In this work, following the lead of [6] and [7] we have studied isodual cyclic codes over
the field Fp and have provided a simple construction valid for all lengths n of the form
twice an odd number m. The value of the minimum distance of these codes has been
determined for such n not a multiple of p. It is possible that other constructions or other
lengths yield larger minimum distances.
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