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ABSTRACT: This article presents the definition of projection plane, 

its importance for the geometry constructions used in civil engineering 

and comparative analysis of three opportunities for creating a three 

dimensional basis, used in drawing such a plane. First method consists 

of transforming affine and orthonormal coordinates and its application 

in GeoGebra is presented. Second method, using combination of 

spherical and polar coordinates in space, is introduced. The third 

suggested method is an application of descriptive geometry for 

transforming 2D to 3D and a new method of forming a plane of 

projection, which will be used later in the reviewed example below. 

The example shows how GeoGebra software can be used in technical 

drawing used in civil engineering.  
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1. INTRODUCTION 

3D modeling capabilities allow the creation of 3D images that are as realistic as the 

actual objects (see [1]). These images are called 3D models because, just like a 

physical model, they can be rotated on the screen. Views from a 3D model, such as 

isometrics or perspectives, can be displayed from any angle with a few simple steps. 

The main aim of the paper is to represent of 3D objects by GeoGebra, which allows 

rotations, translation and dilations to view things from different angles and to zoom in. 

This method can be very useful in civil engineering (see [3]). Also GeoGebra can be 

used in mathematical statistics (see [5]). 

 

2. FIRST MODEL OF THREE DIMENSION BASIS CONSTRUCTION 

M. Passante has developed the following construction (see [10]). The 3D rotation 

matrices for the x, y and z axis are 
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where ,  and  are angles between 0  and 360 . The composition of the 

rotations zyx RRRR  is not commutative. 

After rotation R  the point 
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RP , where 

the q  coordinates depend on the angles ,  and . To see what this looks like in 

2D (on the screen) it is necessary to use two of the coordinates of RP. If the x  axis 

pointing out of the screen towards the viewer then the screen coordinates are zy,  

which means to plot the point
z

y

q

q
Q . 

This construction is good, but it is not very flexible. As well as Q  it will be 

necessary to extract some other information from the 3D point RP, and it is not easy 

to do in GeoGebra with RP in this form. Instead it is possible to start with 
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Thus zzyyxx REpREpREpRP . Then zyx ppp ,,  are components of the 

rotated P  in the directions of the rotated axis zyx RERERE ,, . If xW  is the 2D 

vector with components the y  and z , coordinates of xRE , and similarly for yW  and 

zW , then zzyyxx WpWpWpQ . 

The vectors xxWp , yyWp , zzWp  are the components of the rotated P  along the 

rotated axis as viewed on the Fig. 1. 
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Fig. 1 New axes with constructed plane 

 

Stepwise construction of the plane is presented in Table 1. 
Table 1 

Command/Tool 
Corresponding 

construction 

 

Constructing sliders a, b, 

c from 0  to 360 , d – 

from 0.5 to 5 in steps of 

0.1 which will be used to 

lengthen and shorten axes 

(Fig. 1). 

E_x = {{1},{0},{0}}, 

E_y ={{1},{0},{0}}, E_z ={{1},{0},{0}} 

This represents the 

column vectors 

zyx EEE ,, . 

R_x = {{1, 0, 0}, {0, cos(a), -sin(a)}, {0, sin(a), cos(a)}} 

R_y = {{cos(b), 0, -sin(b)}, {0, 1, 0}, {sin(b), 0, cos(b)}} 

R_z = {{cos(c), -sin(c), 0}, {sin(c), cos(c), 0},{0, 0, 1}} 

R = R_x*R_y*R_z 

Rotation matrices 

zyx RRR ,,  and the 

dilation matrix R . 

 

V_x = R*E_x, V_y = R*E_y, V_z = R*E_z 

Rotation and dilation of 

the unit vectors 

zyx EEE ,, . 

W_x = (Element[Element[V_x, 2], 1], 

 Element[Element[V_x, 3], 1]) 

W_y = (Element[Element[V_y, 2], 1],  

Element[Element[V_y, 3], 1]) 

Creating 2D points to be 

viewed on the screen by 

extracting 2
nd

 and 3
rd

 

components of the 
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W_x = (Element[Element[V_z, 2], 1], 

 Element[Element[V_z, 3], 1]) 
column vectors zyx VVV ,,  

u = Vector[d*W_x], v = Vector[d*W_y], w = 

Vector[d*W_z] 
Constructing axes. 

b = -u 

c = -v  

d = -w 

Constructing the opposite 

vectors. 

 
Hiding the points 

zyx WWW ,, . 

 

In the Starting Point Box 

in Properties and Position 

menu  typing the 

following 

X = 2*W_x;  

Y = 2*W_y; 

Z = 2*W_z. 

Polygon[d*(W_x+W_y), d*(-W_x+W_y), d*(-W_x-W_y), 

d*(W_x-W_y)] 

Constructing plane. With 

right click of each side of 

this polygon click off 

Show Object.  

 

3. SECOND MODEL OF THREE DIMENSION BASIS CONSTRUCTION 

Let Oxybe an orthogonal coordinate system. The point ),( yxM  is given to it. 

The values ,0OM  ),( OMOx , }2,0[  are called polar coordinates 

(Fig. 2). 

sin

cos

y

x
. 

Let Oxyz  be an orthogonal coordinate system. The point ),,( zyxM  is given to it. 

The values OM , },0[ , ),( OMOz , ],0[  and 

)',( OMOx , )2,0[ , where 'M  is the orthogonal projection of M on 

Oxy  are the spherical coordinates of point M (Fig. 3). 

cos

sinsin

cossin

z

y

x
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Fig. 2 Polar coordinates Fig. 3 Spherical coordinates 

 

Using the above are constructed projection points zyx UUU ,,  in Table 2, which 

coordinates are combination of polar and spherical coordinates and vectors connecting 

them with center O  of the orthogonal coordinate system (see [9]). With help of them 

is going to be changed coordinate system as refer on Fig. 4. 

 

 
Fig.4 New coordinate system 

 

Table 2 

Command/Tool Corresponding construction 

O = (0,0) 
Intersection of the two axes with point 

O. 

 

Constructing sliders  from 0  to 

360 , and  from 0  to 180  for 
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rotation the axes,  - from 0 to 5 in 

steps of 0.01 which will be used to 

lengthen and shorten them (Fig. 4). 

U_x = ))sin()cos(),sin((  

U_y= ))sin()sin(),cos((  

U_z = ))cos(,0(  

Creating three points which coordinates 

are combination of polar and spherical 

coordinates to realize the rotation in 

space effect. 

u, v, w 

Constructing axes by connecting center 

O with points zyx UUU ,,  via vectors 

u, v, w. 

 Hiding the points zyx UUU ,, . 

 

Construction of the plane using translation and rotation is presented in Table 3.  

Table 3 

Command/Tool Corresponding construction 

View  Graphics 2 Opening a new Graphics window 

Graphics 2 window: Polygon[A, A_1, 4] 

In the Graphics 2 window is constructed a 

polygon with several vertices, in Fig. 5 with 

4 vertexes. 

Graphics window: 

A
’
 = Translate[O, U_x*x(A) + U_y*y(A)] 

A
’
_1 = Translate[O, U_x*x(A_1) + 

U_y*y(A_1)] 

A
’
_2= Translate[O, U_x*x(A_2) + 

U_y*y(A_2)] 

A
’
_3 = Translate[O, U_x*x(A_3) + 

U_y*y(A_3)] 

Switching back to first Graphics window. 

Translating center O of the new coordinate 

system by vectors constructed in the 

following manner, which connects polygon 

from Graphics 2 window with rotation of 

the first window. It is created new points 

which are dependent on the angles of 

rotation.  

Polygon[A
’
, A

’
_1, A

’
_2, A

’
_3] 

Constructing a plane through translated 

points 321 ,,, AAAA . It is positioned now 

in the base of the rotated coordinate system 

and is made to look dynamical (Fig. 5). 

 

With right click of each side of this 

polygon click off Show Object. Hiding 

the points 321 ,,, AAAA   and Graphics 2 

window. 

 

It is seen in Fig. 5 that if any of the points 321 ,,, AAAA  moves in Graphics 2 

window, the corresponding point in Graphics window will also move, but if the 

rotated view of the plane in the Graphics window is changed it will not change the 
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rotated view of it in the Graphics 2 window. Now the Graphics 2 window can be 

hidden for future drawings because it is not necessary but must not be closed. 

 

 
Fig. 5 Plane view in the two Graphics’ windows 

 

Methods reviewed above requires good knowledge in theory and steps of 

constructing are quite difficult despite there are some similarities see ([6], [7]). For 

this reason is introduced the third method which is based on simple constructions 

without necessity of previous knowledge of theory and contains a certain amount of 

flexibility. 

 

4. CONSTRUCTION OF A PROJECTION PLANE 

4.1 Orthogonal projection of a given point 

V. Dubrovskiy and S. Pozdnyakov (see [2]) have been presented the model of cube 

construction in the interactive geometric environment. This model will be applied in 

GeoGebra. 

A tool for GeoGebra construction of an orthogonal projection of a given point is 

presented in the Table 4.  
Table 4 

Command/Tool Corresponding constructions 

0y  Constructing a straight line, via the input field. 

 
Choosing a point A on it. 

 
Constructing  a straight line through A, perpendicular to the straight 

line. 

 
Constructing the point of crossing of the two straight lines. 

 Hiding the perpendicular straight line. 

 

Input objects: 1) two points, determining the straight line (or the 

straight line itself), 2) point A, which will be projected. Output 
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objects: projected point A'; Name and icon: Projection,   . 

It is necessary to construct a dynamic model, allowing the observation of how the 

projection of a circle is changing on a plane on the screen. After this a polyhedron will be 

inscribed in the circle. 

The circle is positioned on the plane itself on the screen. The projection of the 

diameter, which is perpendicular to the rotation axis, comes closer while rotating, 

whereupon the coefficient of approximation k is equal to the cosine of the angle of rotation 

(or the angle of slope), which is also the angle between the screen and the plane of the 

circle. In this regard, the other hordes will come closer, perpendicular to the diameter – the 

axis of rotation. Therefore, it is enough to construct a model of the circle, approaching its 

horizontal diameter (Table 5). 
Table 5 

Command/Tool Corresponding constructions  

0y  Constructing a horizontal straight line (parallel to the x axis), via 

the input field. 

 Creating a slider b for the scale increasing of the drawing. 

 
Constructing a circle with a center on the straight line and the 

radius b.  

 
Choosing a point P on the circle and project it on the straight line 

with the help of the Projection tool; Name of the projected point P' 

(Fig. 5b). 

 

Constructing a slider for controlling of the approximation 

coefficient k. In this way k will be able to change between 0 and 1, 

which meets the angle of the slope from 0° to 90°. 

 
Applying a homothetic with a center P' and coefficient k to the 

point P.  

 

Point P on the circle, obtained due to homothetic point during the movement, will 

inscribe a circle close to the axis x with coefficient k. Its trajectory can be constructed with 

the help of the Locus tool, by separating the point P' and its prototype. The obtained curve 

is an ellipse. Moving the slider, it is possible to see how the circle is rotating around the 

axis y on the screen even though this effect is obtained with the approximation of the 

circle. 

 

4.2 Construction of a square projection inscribed in a circle 

As observation, the projection will perform with the square inscribed in the circle while 

bending it, as well as the rotation of the square around the center of the circle. 

A square will be inscribed in a circle with vertex in point P, in order for point P to 

rotate it successively three times by 90° around the center O of the circle (or to construct 

two perpendicular diameters, or to take advantage of the tool Regular polygon). 
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Next, the four vertexes of the square will be obtained via the operation approximation 

to the diameter with a coefficient k, repeating the steps, written above (for which a tool can 

be created also). The points obtained lie on an ellipse (this fact can be used for control of 

the regular construction). They are connected with segments (Fig. 6). A parallelogram is 

formed, which consists of a parallel projection of the square, inscribed in the circle, rotated 

around a horizontal axis. 

Therefore, a model of the basis of a polyhedron has been constructed – a square which 

can: 

 Rotate around a horizontal axis, while moving the slider b, 

 Rotate the square around the axis, going through its center O and perpendicular to its 

plane when point P is moved on the circle (Fig. 7). Smaller k slider. 

 

  
Fig. 6 k = 0.7 Fig. 7 k = 0.2 

 

Analogically, other bases of a polygon can be created – triangle, rectangle, regular 

hexahedron and others. 

 

4.3 Rotating cube model 

In order to construct a model of the cube, its basis will be transferred with a vector 

perpendicular to its plane and equal to the length of its side, thus obtaining its base. 

Since the vector of the transfer is perpendicular to the horizontal axis, its projection 

will be perpendicular too. The only thing to be done is to define its length. Therefore, 

the “approximation” construction will be observed (Fig. 7). On the plane of the screen 

a vertical straight line will appear, the circle which started the whole construction – 

segments with lengths R2 , where R  – its radius, and the vector of the transfer – 

vector OQ  perpendicular to this segment, length aof which is equal to the rib of the 

cube, then this is the side of the square inscribed in the circle: 2Ra , if the plane 

of the circle is bent under an angle  towards the screen, then kacos and the 

projection of the segment OQ  of the screen – this segment 'OQ , the length of which 
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is equal of amasin , where 
21 km . Now what is left is to use these 

calculations for the following model. 

  
Fig. 8 - Slope of the plane on the screen Fig. 9 – Dilation by factor 

 

A vertical radius OF  will be constructed in the output circle. On its extension, the 

segment 20 ROQ , equal to the rib of the cube (the side of the cube inscribed in 

the circle) will be put. In point 0Q  , a homothetic with a coefficient 
21 k  and a 

center O  are included. Thus, a point 'Q is obtained. Then - vector 'OQ  – the 

projection of the vector of the transition of the plane on the screen (Fig. 9). It is on this 

vector that the cube must be transferred in order to obtain its parallel side. Performing 

this transition and connecting the vertexes of the output square and its images it will 

receive a cube. All that is left is to hide all additional constructions and to leave only 

the slider for changes k , controlling the slope and the output point P  of the circle for 

rotating around the axis perpendicular to the base of the cube. 

 

5. APPLICATION IN TECHNICAL DRAWING USED IN CIVIL 

ENGINEERING. 

The types of three-dimensional representation drawings that are relevant to this 

article include para-line - isometric and planometric (see [11]). Para-line drawing 

objects are drawn with the receding lines remaining parallel to each other (hence the 

term ‘para-line’). Common types of para-line drawings include isometric and 

planometric ones. Isometric drawings are constructed with both sides receding from 

the corner edge at 30 degrees. The isometric drawing provides a comprehensive 

overall view of the object. Otherwise planometric drawings are the base (or plan) of 

the object retains its true form (is not altered) with both sides receding at 45 degrees 

(or one side recedes at 30 degrees and the other at 60 degrees).  
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To demonstrate technical drawing from another aspect of view in GeoGebra, a model 

which is much more than a 2D drawing has been constructed (see [4]). It was made 

dynamic and scaling in any direction. To put the defined model in isometric (Fig. 9) or 

planometric para-line, the sliders rotation and slope have to be set into appropriate 

parameters (Table 6). 

  
Fig. 9 - Isometric drawing Fig. 10 - Front projection 

 

Table 6 

Figure № Measurements of sliders 

Fig. 9 
Scale = 5; rotation = 90 ; slope = 0.58; 

height = 10;  

length = 1; ratio = 1. 

Fig. 10 
Scale = 5; rotation = 45 ; slope = 0; height = 

10;  

length = 1; ratio = 1. 

 

Sliders in Table 6 and Table 7 are described as follow: scale expands and constricts the 

whole drawing, rotation – rotation of the figure by angle from 0  to 360 , slope – 

dilation of the plane on the screen, height – height of the roof up from the blue base, length 

controls the length of the rib of small cubes, the height of the blue base and changing 

focuses of the ellipse, ratio is constricting just the width of the blue base, ratio is scaling 

the width of the roof and opens the projection plane to be seen under the construction.  

The advantage of this is that the model can be rotated and seen in different angles and 

slopes, thus inspecting every element of the Bird house.  

Just rotating the model, it can be seen in third angle projection views or any wanted 

view (Fig.10). For the needs of this project, a Bird house model is made to transform 

dynamically: the height of the roof, the entire middle construction, and the basis 

proportions are changeable, so the viewer can see under it the plane of projection on 

which the construction steps (Fig. 11 – 16). The sliders’ values are described in Table 7. 
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Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 

 

Table 7 

Figure № Measurements of sliders 

Fig. 11 
Scale = 2.2; rotation = 86 ; slope = 0.61; 

height = 10;  

length = 0.9; ratio = 0.3. 

Fig. 12 
Scale = 2.2; rotation = 86 ; slope = 0.61; 

height = 10;  

length = 1; ratio = 1. 

Fig. 13 
Scale = 2.2; rotation = 0 ; slope = 0; height 

= 10;  

length = 1; ratio = 1. 

Fig. 14 
Scale = 2.2; rotation = 38 ; slope = 0.64; 

height = 10;  

length = 1; ratio = 1. 

Fig. 15 
Scale = 2.2; rotation = 58 ; slope = 0.41; 

height = 0.6;  

length = 1; ratio = 1. 

Fig. 16 
Scale = 5; rotation = 224 ; slope = 0.91; 

height = 10;  

length = 0.6; ratio = 1. 

 

7. CONCLUSION 

It is possible to extend the application in technical drawing in perspective drawings 

where objects are drawn in a naturalistic manner consistent with human vision; the 

receding lines converge towards the horizon (eye level) rather than remaining parallel 

to each other. The placement of the horizontal line determines the location of the 
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viewer and provides capacity for different views of an object or the relationship of 

parts to each other (see [8]).  

In the above example is demonstrated that the knowledge and understanding of 

how to draw an ellipse is important to this study. Whilst ellipse templates can be 

useful, students should know how to draft a freehand ellipse for para-line and 

perspective purposes. 

The use of different line styles and widths is important in technical drawing as they 

are used to indicate details and features in a drawing. Line styles make drawings easier 

to read: for example, solid lines used to show the object will stand out from broken 

lines used to show hidden information. This is very easy to be fulfilled in GeoGebra. 

Placement of numeric information, known as dimensioning, measures directly from 

an orthogonal drawing when the scale is 1:1 (full size). All dimensions are recorded 

using true size measurements. Where the object does not fit to the page, reduction 

ratios are used. 

The method examined is suitable for dynamic demonstration of technical drawing 

lectures and gives future engineer designers one more possibility to expand their 

potential with lateral thinking and new creative methods to design and create their 

projects.  
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