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1. Introduction

Suppose that Q = R" is a bounded domain. Let f :QxR" — R be a function
satisfying the Carathéodory conditions:
(i) for each s € R" | the function X — f(X,S) is Lebesgue measurable in Q;

(i) for almost all X € Q2 the function s — f (X,S) is continuous in R" .
To such a function we associate the Nemytskij operator

(N, u)(x) = f (x,u(x)) foreach xeQ2,
defined on classes of vector functions U : Q2 — R", u(x) = (u,(x),u,(X)....,u, (x)).

Let us make the following convention for the Carathéodory function, the assertion
” X € Q7 is to be understood in the sense ”almost all X e Q™.

It is well known that, for any measurable function u:Q — R", the function
Qx> f (x,u(x)) € R is also measurable.

We now review some definitions and properties related to Lebesgue spaces with
variable exponents needed throughout the paper. For proofs and references see [3].

Given a function p() el” (Q) that satisfies
1< p :=ess inf p(x)<ess sup p(x)=:p" <o,
X XeQ

the Lebesgue space L") (€2) with variable exponent p() is defined as

LPO(Q) = {v :Q—R; v is measurable and p,(v):= jg‘v(x)‘p(x) dx < oo }
Equipped with the norm
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ueLl™(Q)—ul,,=inf {/1 > O;fg‘—u (/IX)

p(x) }
<1l
the space L"(QQ) is a separable Banach space.
Given p(-) e L"(€Q) suchthat p~ >1, let p'(-) € L”(€2) be defined by
1 N 1
p(x)  P'(x)

Forany ue L"(Q) and ve L"Y(Q), the following inequality holds:

R O e LA

=1 for almostall xeQ).

If v,we L”(Q), then:
@) Py, (VW) <2” (pp(') (V)+p,, (W)) .
The following theorem summarizes the relations between the norm H-Ho’p(_) and the
convex modular Py
Theorem 1. Let p(-) e L”(Q) besuchthat p~>1and let U e L*(C). Then:
(@) If u=0, then Hqu(‘) =a ifand only if pp()(a’lu) =1.
(b) Hqu(.) <1 (resp. =1 or >1) if and only if pp(‘)(u) <1 (resp. =1 or >1).

© [ul,,, >1 impties Jul’, < p,,, (u)<[ul’,.

(@ Jul,, <L impties Jul’ < p,, (u)<|ul’,,.

(e) Let ue L”V(Q) and u_ e L"(Q), n=1,2,.... The following statements are
equivalent:

M Ju-u,

(i) pp(.)(un —u)—0 as n—>oo.

o0 — 0 as Nn—o0.

(iii) (u,) convergesto U in measure and pp(')(un)—>pp(‘)(u) as N —oo.

2. The main result

The main result of this paper states sufficient conditions to ensure the Nemytskij
operator that maps [Lpl(')(Q)F into Lpz(')(Q) is continuous and bounded.

on [Lpl(')(Q)F consider the norm
jul = [frLuu]

M
where U :(ul,uz,...,uM ), Tluul=>u?.
i1
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Theorem 2. Let f :QQxR"™ — R be a Carathéodory function which satisfies the growth
condition

M
®) £ ()] <6, () +c(x) D Ju, ™™, xeQ, ueR",
i=1
where ¢, e L27(Q) and ¢ is a non-negative L*(Q)-function. Then N, is a well-defined,

bounded, continuous operator from [Lpl(‘)(Q)F into Lpz(')(Q).

Proof. First we prove that N, is a well-defined and bounded operator from

M
[Lpl(')(Q)]M into L2(Q). Let u =(u,,U,,...,u, ) e[Lpl(')(Q)} . From (3), by integrating
over Q and taking into account (2), it follows that
(x)
(4) [N @O0 dx <

+ M pz(X)
<2 IQ|C1(X)|p2(X)dx + CL(ZM (x}pl(x)’pz(x)j dx] <
i=1

+ 5
< oo o 2 G )<
i=1

where C ;= max(Hc Ei(g))- Consequently, N ([Lpl(')(Q)]ij L"2Y().

is bounded, let us consider

E:;(Q) ’HC

To prove the operator N,

u=(u,u,,...,u, ) e [Lpl(')(Q)]M such that |u| <C, . Since

(5) u|<Tu,u], 1<i<M,

we deduce that ||ui||p () <C, . Therefore (Theorem 1 (c) and (d))
1
oy (U)<Cy 1= max(C2pl ,C1 )

According to (4), it follows that N, transforms norm bounded sets in [L"l(')(Q)F into mean

bounded sets in Lpz(')(Q), therefore in norm bounded sets in Lpz(')(Q) (Theorem 1 (c), (d)).
Consequently N is bounded.

We now prove that the operator N, is continuos.
M
Fix u:(ul,uz,...,uM)e[Lpl(')(Q)] . To establish the continuity of N, it is

enough to show that every sequence (u‘”’)n C [Lpl(') (Q)IA such that
(6) lim |u® —u| =0

n—oo

has a subsequence (u(”k))K such that Nf(u(”k))—> N, (u) in Lpz(')(Q) as k > .
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Indeed, let (u‘”))n be a sequence as above, U = (u<“>,u;“>,...,u<”>) .
Taking into account (5), from (6) we infer that

O - :

limu; uinl(‘) 0,1<i<M,

n—oo

therefore
limp, ,(u” —u;)=0,1<i<M,
or
) (u” —u)™ >0 in L'(Q) as N>, 1<I <M.

By using the Brézis’s Lemma ([1]), it follows that there exists a subsequence
(ul(“k))K <(u™) and h, e X(Q) such that

N Py(x)
|im(u1( k)(x)—ul(x)) " =0 foralmostall xeQ
k—ow
and

(00 -u,00)"

By applying the Brézis’s Lemma again, passing to a subsequence, there exists h2 S Ll(Q)
such that

S‘hl(x)‘ for almostall XxeQ2, ke N.

N Py (%)
|im(u£ k)(X) —uz(X)) " =0 foralmostall x eQ,
k—o0
and

S‘hz(x)‘ foralmostall xeQ), ke N.

(600 - u,00)"

The process continues. There exist a subsequence (u(”k))K and h,h, ....h, € L*(€2) such that

n () i
(8) Iim(Ui( k)(X) —ui(x)) =0 foralmostall XxeQ, 1<i<M,
k—o0
and
. py(x) .
(9) (U.( k)(X) _Ui(x)) ' S‘hi(x)‘ foralmostall xeQ), keN,1<i<M.
Consequently
(10) Ikimui(”")(x) =U,(X) almostall xeQ,1<i<M,
and
(11) ‘ui("k)(x) <[ (O™ +|u, (x)| almostall xeQ, keN, 1<i<M.
Since f isa Carathéodory function, it is clear that (see (10))
IKILQ N, (u(nk))(x) =N, (U)(x) foralmostall XxeQ),
therefore
Py (%)
12) m(Nf (u(”k))(x) _N, (u)(x)) *" 20 foralmostall X Q).

On the other hand, from (3) it follows that
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p,(X)

< 2p2(x)_1

o

X(‘Cl(X)‘pZ(X) + C . Z(Ml)(pZ(x)l)i(

= ‘ £ (x,u™

i=1

. Py (%)
Ui( k)(X)D ] foralmostall xeQ, ke N.
From (11) We deduce that
N (oo <2”“Ucl(x)\"2“’+

therefore

‘Nf ) - N, Wy 2

< 2p2<x>1(
where

g(x):: 2p§—1(‘cl(x)‘pz(X) +C.2 —1)(!32—1+p1 1 (‘h (X)‘+‘U (X)‘pl )j"“Nf(U)(X)‘pZ(X)

Since the right term of this equallty is in '(Q) and (12) holds, by applying
Lebesgue’s dominated convergence theorem, it follows that

im [, (" o0 - N, 00 ax =0

Mlp2

22"1 (1009 +Ju, G0 ))

QN f (u(“k))(x)‘ [N, (u)(x)\)pz(x) <
N oo 4 N, (u)(x)\”z(x)j <2%7g(x),

that is the subsequence (Nf(u(”k)))k converges in mean to N,(u). It follows that the
subsequence (Nf(unk))k converges in norm to N, (u) (Theorem 1 (e)), therefore the operator

N is continuous.
For M =1 we obtain:

Corollary 3. Let f :Q2x R — R be a Carathéodory function which satisfies the growth
condition

Fxu)<e, () +ec(x)u™, xeQ, ueR,
where C € L° (Q) and c is a non-negative L*(Q)-function. Then N, is a well-defined,

bounded, continuous operator from L""(Q) into L*(€2).

Note that this corollary is contained in Theorem 1.16, Fan and Zhao [3].

3. Fréchet differentiability of the gradient norm on a Sobolev space with a variable
exponent

In this section, the above results are used to prove the Fréchet differentiability of a
norm on a Sobolev space with a variable exponent.

Given a function p(-)e L”(Q) that satisfies p~ >1, the Sobolev space W*™’ ()
with variable exponent p() is defined as
W (Q)={ve(Q); avel’(Q), 1<i<N/,
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where, for each 1<i1< N, 0, denotes the distributional derivative operator with respect to

the i-th variable. W*"”(€2) is a Banach space with respect to the norm

N
Jull ey =00, + 2000,
Consider the space (see [2] for details)
U, = {u eW"™(Q); tru=0on Fo} ,T,cT'=0Q, dI —measl’, >0.
The map
ueU, = uf,,..= H\Vumpo
is anormon U, _, equivalent to the norm Hqu 4 (2], Theorem 6 (b))

Moreover ([2], Lemma 1), the norm |u| is Gateaux-differentiable at any nonzero

0.p()v
u eUFO and the Gateaux-differential of this norm at any nonzero U eUro is given for any
he U, by

‘Vu(x)‘p(x)_2 (Vu(x),vh(x))
HU p(x)-1

0.p()V
‘VU p(x)
Ju

Jo,, PO o

1) ([N OTE

[P0 ey dx

p(X)
0,p()V

where Q= {X eQ; ‘Vu(x)‘ = 0} :
By using Theorem 2 and Corollary 3, we will prove:

Theorem 4. The map
ueU, \{0} |,
IS continuous.
Proof. Another direct proof of this theorem can be found in [2], Lemma 2.

Let p:U, \{0} > (Uro M ) be defined by
vu(x)"" (Vu(x),Vh(x))

(p(u),h):=]  p(x) dx foreach heU,_
O,u

Hu (:(px()-;lv
and let 01U, \{0} —[] be defined by
vu(x p(x)
q(u) _J‘ p( )‘ H p(x) dX
0,p(-),V
Since p
' _ (D(U),'
<H-Hp(‘)(u),-> = < o) ) forall ueU, \ {0},

it is sufficient to prove that ¢ and ¢ are continuous.
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Fix ueU, \ {0} and let (u,) cU. \{0} be such that u, —u as N—>oo in the space

(UFO ’H'Ho,p(-),v ) . Since

vu, (X)| = |[Vu(x)| <[V (u, —u)(x)|
and
V(u, - u)mp(') —>0as N—oo,

it follows that

[Vu,|- " —0as n—>oo0.
Consequently
Vu, V|
(14) H\Vun HWU‘H —>0as n—oo
p() PO) {lp()

Foranyi, 1<i <N, consider the function f :QxR" — R given by:

N p(x)-2 N
(«/zﬂ s i 257> 0
—_ j=1 j=1
Sy ) .

N
0 Jf Y'sT=0
j=1

We can write

(p(u),h): ZI p(x) f. ( u(x )JG h(x)dx foreach heU,

1l 0

We have
(15) (p(u,) - p(u),h) ZI p(x)w, (x)o,h(x)dx,

where, foranyi, 1<i<N,

W, (x):= f(x, Vun(x)j_ f{x, Vu(x)] , XeQ.
un 0,p(-),V HUHO,p(-),V
Since

- p(x)-1 N
(16) \fi(x,sl,sz,...,sN)\s( /Zsf] if >'s’>0,
= =

it follows that the functions f, are continuous on R™ . On the other hand,

(17) /ZN;SJZ gi‘sj‘

and
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o(0)-1 Jl/(p(X)l)

5= (‘SJ

p(x)-1 1/(p(x)-1) N
) < ;‘s j

therefore

N N l/(p(x)—l)
p(x)-L
(18) >ls;|<N (z\sj\ J .
j=1 j=1
From (16), (17), and (18) it follows that

‘ f (X,Sl, S,s-- s Sy, )‘ <N p(x)—lg‘sj‘p(x)l <N p+_1%:‘sj p(X)/ p'(x)

that is (3) with p, (x)= p(x) and p,(x)= p'(X). By applying Theorem 2, it follows that

f [’Huvuﬁj e L*Y(Q), therefore W (x) € L"V(Q). But ,h e LP” (Q2). Therefore,
0,p(-).v
taking (15) and (1) into account, we obtain

@) [lou)-pw).h|< p 3 [ w (x)an(xjax=c|wl, lonl,,

where C = p*(i+ L J
- (p)

Since
&, <[l

we deduce from (19) that

((u,) - p(u),h) < c_:(z
Consequently,

lotu)-g(w) <3, .

It is now clear that in order to prove the continuity of ¢, it suffices to show that

W,

T

i
Wn

i
Wn

p,(A)—>0 as N—oo, for any i, 1<i1<N. Taking into account (14), that is a

consequence of the continuity of Nemytskij operator (Theorem 2).
We now show that
q(u,) —q(u) as n—oo.
Since

la(u,) —au)| = Igp(x){

‘Vun (x) ‘Vun (x) Peot ‘Vu(x) PO
p(x)-1 B p(x)-1

n

vu,(X) P vu(x) P
‘ . ‘ _‘ p(x) dx| <
0,p(),v

(x) -
oo M

n

<p dx

0,p(-).V nllo,p(),v H 0,p(-).V
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dx.

+p°,

Vu(x) ) [\Vu (X)) B \Vu(x)\]
p(x) -1

0,p(-),vV 0,p(-),V HUHO,p(-),V

it suffices to show that:

=1,

dx >0 as n—ow

‘Vu ‘ ‘Vun(x) P ‘Vu(x) P
p(x)-1 - p(x)—L
nlio,p().v

nlio,p(-),v H

0.p().V
and
p(x)—l
j ‘Vu 0 PVU (X)‘_‘Vu(x)qu_)o as N —>oo
p(x '
H 0,p(-),\V 0,p().V HUHOVPC),V
p()1 p()1
Since vu, LPY(Q), Wu D ‘Vup‘(_)l e LY(Q), by using the inequality (1),
nlo,p(-),v 0,p(-).V H HO,p(~),V

we obtain that

i p()-1 ‘V ‘p(-)fl

p()-1 H Hp() -1
nio, p(-).v 0,p(-),\V

A <C

where C::i+ :
P (p)

— . It suffices to show that

p()-1 p()-L
Wu”p(,)l W p‘() —~ —0as n—o0.
nllo,p(-),v H Ho p()Vv

That follows from (14) and Corollary 3with f(x,u)= ‘u“’(x)‘l
Therefore A, — 0 as n— 0.

Similarly,
p()-1
B <C Vu, ~ V| \Vup\()l
nio,p(-).v Hu”o,p(-)v H Ho p(-),vV
Since

v [ vu J
=p | =1,
[H H:))(p)(-)l,v . HUHO,p(~),V

it follows (Theorem 1 (b)) that

‘V ‘p()l
()1
Julzse |,

Therefore
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B <C vu,
u

n

~ Vul

orov Moposly,

n

Taking into account (19), B, >0 as n — 0.
Hence we conclude that
q(u, ) —q(u) as n —oo.
This completes the proof of Theorem 3.
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