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Abstract. In this paper, we introduce principal direction curve and binormal direction
curve of a given Frenet curve by using integral curves of the Frenet vector fields 3-
dimensional Galilean space G3. Besides, we define W -direction curve and W -rectifying
curve of a Frenet curve in G3 by using the unit Darboux vector field W of the Frenet curve
and give some characterizations together with the relationships between the curvatures
of each associated curve. Then, we classify the curves in G4 such as G3 and we introduce
slant helix and B2-slant helix in G4. In addition to this, some new associated curves of
a Frenet curve are defined in G4.
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1. Introduction

In differential geometry, the theory of curves is one of the main study area. In the theory of curves,
helices, slant helices and rectifying curves as in [13], [14], [1], [6], are the most fascinating curves. Besides,
associated curves which is called curves that found in a differential and mathematical relationship between
two or more curves are widely studied. Among these curves the most studied ones are Bertrand curve
couple, Mannheim partner curves, spherical indicatrices and involute-evolute curve couple, as in [2], [3],
[10].

Non-Euclidean geometries have an important place in the history of humanity. By constrast with
known, it has used also in architecture from far in the past. For instance Hagia Sophia in Istanbul is
included elliptic geometry. Structures are prospered with non-Euclidean geometry in modern architecture.
Conton tower in China was constructed via hiperbolic geometry when Tote Restaurant in Mumbai was
built by fractal geometry. These are some of the example of non-Euclidean works [9].

On the other hand, in many field of science, one can run across with non-Euclidean geometry types. In
some new developments on physical science Galilean geometry that is one of the non-Euclidean geometries
is in use. In this study, we work on Galilean geometry which has been developed over the last two
centuries and some properties of curves and surfaces are more emphasized in currently developed non-
Euclidean geometries than in the Euclidean.I. M. Yaglom have explained basics of Galilean geometry in
[19]. Differential geometry of the Galilean space G3 has been largely developed in O. Röschel’s paper
[18].

The Darboux vector field ω = τT + κB which can be interpreted kinematically as a shear along the
absolute line in Galilean space has an important place for the space curves in differential geometry, [18].
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A. O. Ogrenmis, M. Ergut and M. Bektas have obtained characterizations for a curve to be a helix
with respect to the Frenet frame in 3-dimensional Galilean space G3 in [16]. Moreover, characterizations
of slant helix in Galilean and Pseudo-Galilean spaces are studied by H. Oztekin et al. and M. K. Karacan
at al. in [4], and [11], respectively. Later, a characterization for position vector of rectifying curves are
expressed in G3 by S. Yilmaz, U. Z. Savci, and A. Magden [20]. Construction of the Frenet-Serret frame
of a curve in G4 are introduced by S.Yılmaz, [21]. Then, researchers have studied some special curves in
4-dimensional Galilean Space such as Inclined Curves, Bertrand Curves, Mannheim curves in [22], [17],
[5].

In a recent paper, Choi and Kim introduce principal (binormal)-direction curve, principal (binormal)-
donor curve and PD-rectifying curves in E3. They give handy characterizations for the general and slant
helices via their associated curves and give a useful method to obtain general helix and slant helix from
a planar curve. Also, they give a new characterization for Bertrand curves by using the PD-rectifying
curve, [7]. Later, Choi et al. introduce the notion of the principal (binormal)-direction curve and the
principal (binormal)-donor curve of the Frenet curve in the Minkowski space E3

1,[8], and Körpınar et al.
give new associated curves by using Bishop frame in E3 [12]. Then, N.Macit and M.Düldül, [15]; defined
some new associated curves of a Frenet curve in E3 and E4. In the light of these studies we introduce
some associated curves of a given curve in Galilean 3-space and Galilean 4-space. In this study, we
define principal-direction curve, binormal-direction curve, W -direction curve, W -rectifying curve in G3

and principal-direction curve, B1-direction curve, B2-direction curve in G4.

All these new associated curves are defined as the integral curves of vector fields taken from the Frenet
frame along a curve in 3-dimensional Galilean space. Some characterizations of these new curves are also
studied.

2. Preliminaries

2.1. 3-Dimensional Galilean Geometry. 3-dimensional Galilean geometry can be described as the
study of properties of 3-dimensional space with coordinates that are invariant under general Galilean
transformations

x′ = x+ a

y′ = v cosαx+ (cosϕ) y + (sinϕ) z + b

z′ = v sinαx+ (− sinϕ) y + (cosϕ) z + d.

Let a = (x, y, z) and b = (x1, y1, z1) be vectors in the Galilean space. The scalar product is defined by

< a,b >G=

{
xx1, if x 6= 0 or x1 6= 0

yy1 + zz1, if x = x1 = 0.

A vector a = (x, y, z) is said to be non-isotropic if x 6= 0. On the otherhand, a vector a = (x, y, z) is said
to be isotropic if x = 0. All unit non-isotropic vectors and isotropic vectors are of the form a = (x, y, z)
and p = (0, y, z), respectively. The orthogonality of vectors in Galilean Space, a ⊥G b, means that

< a,b >G= 0.

The norm of a non-isotropic vector a is defined by

‖ a ‖G= |x|,

and a is called a unit vector if

‖ a ‖G= 1.

The norm of an isotropic vector p defined by

‖ p ‖G=
√
y2 + z2
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and p is called a unit isotropic vector if
‖ p ‖G= 1,

If a = (x, y, z) and b = (x1, y1, z1) are vectors in Galilean space, we define the vector product of a and
b as the following:

a×G b =



∣∣∣∣∣∣
0 e2 e3

x y z
x1 y1 z1

∣∣∣∣∣∣ , if x 6= 0 or x1 6= 0

∣∣∣∣∣∣
e1 e2 e3

0 y z
0 y1 z1

∣∣∣∣∣∣ , if x = x1 = 0.

[19]. Let α be a spatial curve given by

α(t) = (x(t), y(t), z(t))

where x(t), y(t), z(t) ∈ C3(the set of three-times continuously differentiable functions) and t run through
a real interval. If x′(t) = 0, then curve α is called a non-admissible curve. On the other hand, if x′(t) 6= 0,
then curve α is called an admissible curve. A non-admissible curve α is given by the parametrization

α(t) = (c, y(t), z(t))

where c is a constant, i.e., a non-admissible curve α is on Euclidean Plane x = c. Hence,

α′(t) = (0, y′(t), z′(t)).

If ‖α′(t)‖G = 1 then a non-admissible curve α is an isotropic unit speed curve. So, the tangent vector T
of α is defined as the isotropic unit vector

T (t)= (0, y′(t), z′(t)) .

the normal vector N of α is defined as the isotropic unit vector

N(t)= (0,−z′(t), y′(t)) ,
and binormal vector B of α is defined as the non-isotropic unit vector

B (t) = T (t)×G N(t).

Finally, curvature of a non-admissible curve α

κ = 〈T ′, N〉G = z′′(t)y′ (t)− y′′(t)z′ (t) ,
and torsion of a non-admissible curve α

τ = 〈N ′, B〉G = 0.

Frenet formulas of a non-admissible curve can be written as: T ′

N ′

B′

 =

 0 κ 0
κ 0 0
0 0 0

 T
N
B

 .
Let an admissible curve α parameterized by arclength s be

α(s) = (s, y(s), z(s)).

So, the associated invariant moving trihedron of an admissible curve α is given by

T (s) = (1, y′(s), z′(s))

N(s) =
1

κ (s)
(0, y′′(s), z′′(s))

B(s) =
1

κ (s)
(0,−z′′(s), y′′(s))
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where curvature is given by

κ(s) =

√
y′′ (s)

2
+ z′′ (s)

2

and torsion is obtained as

τ(s) =
1

κ2(s)
det (α′ (s) , α′′ (s) , α′′′ (s)) .

So, Frenet derivative formulas can be written as: T ′

N ′

B′

 =

 0 κ 0
0 0 τ
0 −τ 0

 T
N
B

 ,
[18].

Theorem 2.1. Let γ be a curve in 3-dimensional Galilean space G3, and {T,N,B} be the Frenet frame
in 3-dimensional Galilean space G3 along γ. A curve γ such that

κ

τ
= constant

is called a general helix (where κ and τ are curvature and torsion of γ, respectively) , [16].

A curve γ is called a slant helix if there exists a constant vector field u in G3 such that the function
〈N(s),u〉G is constant, [4], [11].

Theorem 2.2. Let γ be a curve parameterized by the arc length s in G3 .Then γ is a slant helix if and
only if the function

κ2

τ3

( τ
κ

)′
is constant everywhere τ does not vanish, [4], [11].

Let γ be a curve in G3. γ is called a rectifying curve if the position vector of γ always lies in its
rectifying plane, [20]. For an admissible Frenet curve γ : I ⊂ R → G3 with the Frenet frame {T,N,B},
consider a vector field V given by

V (s) = u(s)T (s) + v(s)N(s) + w(s)B(s),

where u, v, w are functions on I. If u(s) 6= 0 then, an integral curve γ(s) of V defined on I satisfying
u2(s) = 1 is a unit speed admissible curve in G3. If u(s) = 0 then an integral curve γ(s) of V defined

on I satisfying
√
v2(s) + w2 (s) = 1 is a unit speed non-admissible curve in G3. Also, the arc-length

parameter s of an integral curve γ of V (s) is obtained as s = s + c for some constant c. Thus, without
loss of generality, one can assume s = s. The integral curve γ is unique up to translation of G3. In fact,
γ is determined by the initial point.

2.2. 4-Dimensional Galilean Geometry. Now, let’s talk about some 4-dimensional Galilean Geome-
try G4. Four-dimensional Galilean geometry can be defined as the study of properties of four-dimensional
space with coordinates that are invariant under general Galilean transformations

x′ = (cosβ cosα− cos γ sinβ sinα)x− (sinβ cosα− cos γ sinβ sinα) y

+ (sin γ sinα) z + (v cos δ1) t+ a

y′ = (cosβ sinα+ cos γ sinβ cosα)x+ (− sinβ sinα− cos γ cosβ cosα) y

+ (sin γ cosα) z + (v cos δ2) t+ b

z′ = (sin γ sinβ)x− (sin γ cosβ) y + (cos γ) z + (v cos δ3) t+ c

t′ = t+ d
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where cos2 δ1 + cos2 δ2 + cos2 δ3 + cos2 δ4 = 1, [19]. Let a = (x, y, z, w) and b = (x1, y1, z1, w1) be vectors
in the 4-dimensional Galilean space G4. The scalar product in the 4-dimensional Galilean space G4 is
defined by

< a,b >G=

{
xx1, if x 6= 0 or x1 6= 0

yy1 + zz1 + ww1, if x = x1 = 0.

A vector a = (x, y, z, w) is said to be non-isotropic if x 6= 0. Otherwise, a vector a = (x, y, z, w) is said to
be isotropic if x = 0. All unit non-isotropic vectors and isotropic vectors are of the form a = (x, y, z, w)
and p = (0, y, z, w), respectively. The orthogonality of vectors in Galilean Space, a ⊥G b, means that

< a,b >G= 0.

The norm of a non-isotropic vector a defined by

‖ a ‖G= |x|,
and a is called a unit vector if

‖ a ‖G= 1.

The norm of an isotropic vector p is defined by

‖ p ‖G=
√
y2 + z2 + w2

and p is called an unit isotropic vector if

‖ p ‖G= 1.

If a = (x, y, z, w), b = (x1, y1, z1, w1) and c = (x2, y2, z2, w2) are vectors in the Galilean space G4, we
introduce the vector product of a, b and c as the following:

a×G b×G c =



∣∣∣∣∣∣∣∣
0 e2 e3 e4

x y z w
x1 y1 z1 w1

x2 y2 z2 z2

∣∣∣∣∣∣∣∣ , if x 6= 0 or x1 6= 0 or x2 6= 0

∣∣∣∣∣∣∣∣
e1 e2 e3 e4

0 y z w
0 y1 z1 w1

0 y2 z2 z2

∣∣∣∣∣∣∣∣ , if x = x1 = x2 = 0.

Let α be a curve in G4 given by

α(t) = (x(t), y(t), z(t), w (t))

where x(t), y(t), z(t), w (t) ∈ C4(the set of four-times continuously differentiable functions) and t run
through a real interval. If x′(t) = 0, then curve α is called a non-admissible. If x′(t) 6= 0, then curve α is
called an admissible curve. A non-admissible curve α is given by the parametrization

α(t) = (c, y(t), z(t), w(t))

where c is a constant, i.e., a non-admissible curve α is on 3−dimensional Euclidean Space x = c. Hence,

α′(t) = (0, y′(t), z′(t), w′ (t)).

If ‖α′(t)‖G = 1 then a non-admissible curve α is a curve with an isotropic unit velocity. So, the tangent
vector T of α is defined as the isotropic unit vector

T (t)=α′ (t) ,

the normal vector N of α is defined as the isotropic unit vector

N(t)=
α′′(t)

‖α′′(t)‖G
,
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the second binormal vector B2 of α is defined as the non-isotropic unit vector

B2(t)= − α′ (t)×G α
′′(t)×G α

′′′(t)

‖α′ (t)×G α′′(t)×G α′′′(t)‖G
and the first binormal vector B1 of α is defined as the isotropic unit vector

B1(t)=B2 ×G T ×G N.

Finally, first curvature of a non-admissible curve α obtained as

k1 = 〈T ′, N〉
G
,

second curvature of a non-admissible curve α obtained as

k2 = 〈N ′, B1〉G ,
and third-curvature of a non-admissible curve α obtained as

k3 = 0.

Frenet formulas of a non-admissible curve can be written as:
T ′

N ′

B′1
B′2

 =


0 k1 0 0
k1 0 k2 0
0 −k2 0 0
0 0 0 0




T
N
B1

B2


Let an admissible curve α parametrized by the arc length s be

α(s) = (s, y(s), z(s), w (s)).

The associated invariant moving tetrahedron of an admissible curve is given by

T (s) = (1, y′(s), z′(s), w′ (s))

N(s) =
1

k1 (s)
(0, y′′(s), z′′(s), w′′ (s))

B1(s) =
1

k2 (s)

(
0,

(
y′′(s)

k1 (s)

)′
,

(
z′′(s)

k1 (s)

)′
,

(
w′′ (s)

k1 (s)

)′)
B2(s) = µT ×G N ×G B1

where µ = ±1,
k1 = ‖T ′‖G

is first curvature,
k2 = ‖N ′‖G

is second curvature, and third curvature is

k3 = 〈B′1, B2〉G .
Frenet formulas can be written as:

T ′

N ′

B′1
B′2

 =


0 k1 0 0
0 0 k2 0
0 −k2 0 k3
0 0 −k3 0




T
N
B1

B2

 ,
[21]. Let γ be a curve in 4-dimensional Galilean space G4 and {T,N,B1, B2} be the Frenet frame along
γ in 4-dimensional Galilean space G4 . A curve γ is called a general helix if there exists a constant vector
field u in G4 such that the function 〈T (s),u〉G is constant, [22].

Definition 2.3. A curve γ is called a slant helix if there exists a constant vector field u in G4 such that
the function 〈N(s),u〉G is constant.
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Definition 2.4. A curve γ is called a B2−slant helix if there exists a constant vector field u in G4 such
that the function 〈B2(s),u〉G is constant.

For an admissible Frenet curve γ : I ⊂ R→ G4 with the Frenet frame {T,N,B1, B2}, consider a vector
field V given by

V (s) = u(s)T (s) + v(s)N(s) + w(s)B1(s) + z(s)B2(s),

where u, v, w, z are functions on I. If u(s) 6= 0, an integral curve γ(s) of V defined on I satisfying
u2(s) = 1 is a unit speed admissible curve in G4. If u(s) = 0, an integral curve γ(s) of V defined on I

satisfying
√
v2(s) + w2 (s) + z2 (s) = 1 is a unit speed non-admissible curve in G4. Besides, the arc-length

parameter s of an integral curve γ of V (s) is obtained as s = s + c for some constant c. Thus, without
loss of generality, one can assume s = s. The integral curve γ is unique up to translation of G4. In fact,
γ is determined by the initial point.

3. Associated curves of a Frenet curve in G3

In this section, we define principal-direction curve and binormal-direction curve in G3.

Definition 3.1. Let γ be an admissible Frenet curve and {T ,N,B} be its Frenet frame in G3.
An integral curve of the principal normal vector field of γ is called the principal-direction curve of γ.
An integral curve of the binormal vector field of γ is called the binormal-direction curve of γ.

Theorem 3.2. Let γ be an admissible Frenet curve G3 whose curvatures are κ, τ and γ be the principal-
direction curve of γ. The curvature of γ is given

κ(s) = τ (s) .

Proof Let
{
T ,N,B, κ, τ

}
be the Frenet apparatus of γ. By the definition of the principal direction curve,

we may write

N (s)|γ(s) = γ′ (s) .

Then,

T (s) =

(
0,
y′′ (s)

κ (s)
,
z′′ (s)

κ (s)

)
Hence

N (s) =

(
0,
−z′′ (s)
κ (s)

,
y′′ (s)

κ (s)

)
= B (s) .

Then, the curvature of γ is given by

κ(s) =
〈
T
′
(s) , N (s)

〉
G

= τ (s) .

Corollary 3.3. If γ is a plane curve then principal-direction curve of γ is a straight line.

Theorem 3.4. Let γ be an admissible Frenet curve G3 whose curvatures are κ, τ and γ̂ be the binormal-
direction curve of γ. The curvatures of γ̂ are given

κ̂(s) = τ (s) .

Proof Let
{
T̂ , N̂ , B̂, κ̂, τ̂

}
be the Frenet apparatus of γ̂. By the definition of the binormal-direction curve,

we may write

B (s)|γ̂(s) = γ̂′ (s)

Hence,

T̂ (s) =

(
0,
−z′′ (s)
κ (s)

,
y′′ (s)

κ (s)

)
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So,

N̂ (s) =

(
0,
−y′′ (s)
κ (s)

,
−z′′ (s)
κ (s)

)
= −N (s)

Then, the curvature of γ̂ is given by

κ̂(s) =
〈
T̂ ′ (s) , N̂ (s)

〉
G

= τ (s) .

Corollary 3.5. If γ is a plane curve then binormal-direction curve of γ is a straight line.

Corollary 3.6. If γ is an admissible curve, easily seen that the principal direction curve and the binormal
direction curve of γ is a non-admissible curve.

4. W -direction curves in G3

In this section we introduce W -direction curve, second W -direction curve and W -rectifying curve in
G3 and give some characterizations. It is obvious that if γ is an admissible curve then W -direction curve
of γ is also an admissible curve.

Definition 4.1 (W -direction curves). Let γ be an admissible Frenet curve in G3 and W be the unit
Darboux vector field of γ. We call an integral curve of W (s) as W -direction curve of γ.Namely, if γ(s)

is W -direction curve of γ, then W (s) = γ′(s), where W = 1
|τ | (τT + κB).

Theorem 4.2. Let γ be the W -direction curve of a nonplanar admissible curve γ. Then, γ is a general
helix if and only if γ is a straight line.
Proof (⇒) Let γ be a general helix. Then κ

τ = c(constant). Since γ is the W -direction curve of γ, we
have

γ′(s) = W (s) =
1

|τ |
(τT + κB) .

Differentiating gives γ′′(s) = 0, i.e. κ = 0. Thus, γ is a straight line.

(⇐) Let γ be a straight line. Then the velocity γ′(s) = W (s) is constant. Hence,

γ′′(s) = W ′(s) =

(
1

|τ |
(τT + κB)

)′
= 0.

Since κ 6= 0 and τ 6= 0, we obtain κ
|τ | = 0, i.e. κ

τ = constant. This means γ is a general helix.

Theorem 4.3. Let γ be an admissible Frenet curve in G3 with the curvature κ and the torsion τ , and
γ be W-direction curve of γ. If γ is not a general helix, then the curvature κ and the torsion τ of γ are
given by

κ =
κ′τ − κτ ′

τ2
, τ =| τ | .

Proof We can use the same arc-lenght parameter s for γ and γ. By the definition of W -direction curve,
we have W (s) = γ′(s) = T(s). Then, we have

T =
1

|τ |
(τT + κB)

and the curvature of γ is given by

κ =‖ T′ ‖=‖G
(κ
τ

)′
B ‖G=

(κ
τ

)′
or

κ =
τκ′ − τ ′κ

τ2
.
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The torsion τ of γ is calculated by

τ =
det(γ′, γ′′, γ′′′)

κ2
.

Because of fact that

γ′(s) = T(s) = W (s) =
1

|τ |
(τT + κB)

γ′′(s) = W ′(s) =
(κ
τ

)′
B

and

γ′′′(s) = W ′′(s) = −τ
(κ
τ

)′
N +

(κ
τ

)′′
B,

we get τ =| τ |.
Theorem 4.4. Let γ be the W -direction curve of γ which is not a general helix. Then, γ is a general
helix if and only if γ is a slant helix.
Proof (⇒) Let γ be a general helix. Then, we have τ

κ = c(constant). Using Theorem 6, we find

τ

κ
=
|τ |(
κ
τ

)′ =
τ3

τκ′ − τ ′κ
= c ⇒ κ2

τ3

( τ
κ

)′
=

1

c
(constant).

This means that γ is a slant helix.

(⇐) Let γ be a slant helix. In this case, from Theorem 2 we have κ2

τ3

(
τ
κ

)′
= c or τ3

τ ′κ−τκ′ = 1
c (constant),

that is, τ
κ = constant. This means that γ is a general helix.

Definition 4.5 (Second W -direction curve). Let γ be W -direction curve of γ and γ be W -direction curve
of γ in G3. In this case we call γ as second W -direction curve of γ.

Corollary 4.6. If γ is a slant helix, then the second W -direction curve of γ is a straight line.

Definition 4.7 (W -rectifying curve). Let γ be an admissible Frenet curve and γ be its W -direction curve.
The curve γ is called W -rectifying curve if the position vector of γ always lies in rectifying plane of γ.

Theorem 4.8. Let γ be an admissible Frenet curve and γ be its W -direction curve. If γ is a W -rectifying
curve, then γ is a general helix.
Proof Using the definition of W -rectifying curve, we can write

(4.1) γ = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are non-zero functions and {T,N,B} is the Frenet frame along γ. By differentiating
this equation we get

(4.2) T = λ′T + (λκ− µτ)N + µ′B.

On the other hand, we also have W = γ′ = T . So, from 4.2 we obtain

1

|τ |
(τT + κB) = λ′T + (λκ− µτ)N + µ′B

or 
λκ− µτ = 0,
λ′ = ±1,
µ′ = κ

|τ | .

Using these equations we obtain λ′µ− λµ′ = 0. It means λ
µ = c(constant). Then λ

µ = τ
κ = c, i.e. γ is a

general helix.

Example 4.9. The W-direction curve of the circular helix γ(s) = (s,−3 cos (s) , 3 sin (s)) is

γ(s) = (−s+ c1, c2, c3), c1, c2, c3 = constants

which is a straight line.
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We obtain tangent vector field

T (s) = (1, 3 sin (s) , 3 cos (s)) ,

we get curvature as

κ(s) = ‖γ′′(s)‖G = 3.

N(s) =
1

κ(s)
γ′′(s) = (0, cos(s),− sin(s)) ,

we obtain torsion as τ(s) = −1.

B(s) = (0, sin(s), cos(s)) ,

Hence W -direction curve is obtained as

γ(s) = (−s+ c1, c2, c3), c1, c2, c3 = constants.

5. Associated curves of a Frenet curve in G4

In this section, we define new associated curves in G4.

Definition 5.1. Let γ be an admissible Frenet curve and {T ,N,B1, B2} be its Frenet frame in G4.
An integral curve of the principal normal vector field of γ is called the principal-direction curve of γ.
An integral curve of the first binormal vector field of γ is called the B1- direction curve of γ.
An integral curve of the second binormal vector field of γ the B2- direction curve of γ.

Theorem 5.2. Let γ be an admissible Frenet curve whose curvatures are k1, k2, k3 and γ be the principal-
direction curve of γ. The curvatures of γ are given

k1(s) = k2 (s) ,

k2(s) = sgn (k3 (s)) k3 (s) .

Proof Let
{
T ,N,B1, B2, k1, k2, k3

}
be the Frenet apparatus of γ. By the definition of the principal

direction curve, we may write

N (s)|γ(s) = γ′ (s) = T (s) .

Then,

N (s) =
γ′′ (s)

‖γ′′ (s)‖G
=

(k2 (s)B1)

|k2 (s)|
= B1 (s)

B2 (s) =
γ′ (s)×G γ

′′ (s)×G γ
′′′ (s)∥∥γ′ (s)×G γ

′′ (s)×G γ
′′′ (s)

∥∥
G

=

(
k22 (s) k3 (s)T (s)

)
|k22 (s) k3 (s)|

= sgn (k3 (s))T (s)

and finally,

B1 (s) = B2 (s)×G T (s)×G N (s) = sgn (k3 (s))B2 (s)

Then, the first curvature of γ is given by

k1(s) =
〈
T
′
, N
〉
G

= k2 (s) .

and the second curvature of γ is given by

k2(s) =
〈
N
′
, B1

〉
G

= 〈B′1 (s) , sgn (k3 (s))B2 (s)〉 = sgn (k3 (s)) k3 (s) .
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Theorem 5.3. Let γ be an admissible Frenet curve whose curvatures are k1, k2, k3 and γ̂ be the
B1−direction curve of γ. The curvatures of γ̂ are given

k̂1(s) =

√
k2

2 + k3
2,

k̂2(s) =
k2
′k3 − k3′k2 + k3

2k2

k2
2 + k3

2 .

Theorem 5.4. Let γ be an admissible Frenet curve whose curvatures are k1, k2, k3 and γ̃ be the
B2−direction curve of γ. The curvatures of γ̃ are given

k̃1(s) = sgn (k3 (s)) k3 (s) ,

k̃2(s) = k2 (s) .

Proof Let
{
T̃ ,Ñ ,B̃1, B̃2, k̃1, k̃2, k̃3

}
be the Frenet apparatus of γ̃. By the definition of the principal direc-

tion curve, we may write

B2 (s)|γ̃′(s) = γ̃′ (s) = T̃ (s) .

If we use the definition of Frenet vector fields, then we get

Ñ (s) = −sgn (k3 (s))B1 (s)

B̃2(s) = −T (s)

B̃1(s) = sgn (k3 (s))N (s) .

So, the first curvature of γ̃ is given by

k̃1(s) = sgn (k3 (s)) k3 (s)

and the second curvature of γ̃ is given by

k̃2(s) = k2 (s) .

Theorem 5.5. Let γ be an admissible Frenet curve in G4 and γ be the principal-direction curve of γ.
Then γ is a slant helix if and only if γ is a general helix.
Proof Let {T ,N,B1, B2} denotes the Frenet frame of γ. By the definition of the principal-direction curve,
we have

N (s) = γ′ (s) = T (s) .

Hence,

γ is a slant helix ⇐⇒ 〈N,u〉G = c where u is a constant vector and c = constant

⇐⇒
〈
T ,u

〉
G = c where u is a constant vector and c = constant

⇐⇒ γ is a general helix.

Theorem 5.6. Let γ be an admissible Frenet curve in G4 and γ̃ be the B2-direction curve of γ. Then γ
is a B2-slant helix if and only if γ̃ is a general helix.
Proof Let {T ,N,B1, B2} denotes the Frenet frame of γ. By the definition of the B2-direction curve, we
have

T̃ (s) = γ̃′ (s) = B2 (s)

Hence,

γ is a B2 − slant helix ⇐⇒ 〈B2,v〉G = c where v is a constant vector and c = constant

⇐⇒
〈
T̃ ,v

〉
G

= c where v is a constant vector and c = constant

⇐⇒ γ̃ is a general helix.
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Conclusion As a result,firstly we introduce the notion of the principal direction curve and binormal
direction curve in G3. We obtain that if γ is a planar curve then both its principal-direction and binormal
direction curve is a straight line. Secondly, we give the notion of the W− direction curve in G3. Also, we
see that if γ is a slant helix then W−direction curve of γ is a general helix, besides if γ is a general helix
then W− direction curve of γ is a straight line. In addition, by giving W− rectifying curve, we obtain
that W−rectifying curves are associated curves of general helices in G3.

Moreover, we classify the curves in G4 such as G3,then we define slant helix and B2-slant helix in G4.
After defining principal-direction, B1− direction and B2−direction curve in G4 we obtain the curvatures
of this associated curves in terms of the main curve’s curvatures. Finally, we get that if γ is a Frenet
curve in G4, γ̃ is the principal direction curve of γ and γ is a slant helix then γ̃ is a general helix and
also if γ̃ is the B2− direction curve of γ and γ is a B2−slant helix, then γ̃ is a general helix. So this
conclusions and characterizations give us a useful method to investigate some curves by the help of other
curves.
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