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Abstract. Retrial queues have been widely used to model many problems arising in
telephone switching systems, telecommunication networks, computer networks and com-
puter systems. The reliability study of retrial queues with server breakdowns and repairs
is of great importance because of limited ability of repairs and heavy influence of the
breakdowns on the performance measures. This paper deals with analysis of the reli-
ability of an M/M/2 retrial queueing system for which the both servers are subject to
active and idle breakdowns. We provide also some numerical illustrations to support the
obtained theoretical results.
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1. Introduction

Queueing theory is one of the most powerful analytical tools for modeling logistics and communication
system [3, 6, 21]. The essential feature of a retrial queue is that an arriving customer finding all servers
busy is obliged to abandon the service area and join a retrial group, called orbit, in order to try its
luck again after some random time. For a detailed review of the main results and the literature on this
topic, the reader is referred to the monographs of Artalejo and Gomez-Corral (2008),Falin and Templeton
(1997) [4, 11].

In recent years, there has been an increasing interest in the investigation of the retrial phenomenon
in cellular mobile network, see [5, 9, 19, 23] and the references therein, and in many other telecommu-
nication systems including starlike local area networks [13](1997), wavelength-routed optical networks
[26](2005), circuit-switched systems with hybrid fiber-coax architecture [12](1998), and wireless sensor
network[25](2011). On the other hand, in most of the queueing literature, the server is assumed to be
always available, although this assumption is evidently unrealistic. In fact, queueing systems with server
breakdowns are very common in communication systems and manufacturing systems, the machine may
break down due to the machine or job related problems. This results in an unavailable time period
during until the time when the servers become repaired. Such a system with repairable server has been
studied as a queueing model and a reliability model by many authors: Falin (2010) [10], Artalejo (1994)
[2], Kumar et al (2002) [16], Li and Zhao (2005) [17], Sherman and Kharoufen (2006) [22], Crawford
(2007) [8]. Detailed stochastic analysis of a single server retrial queue with server breakdowns and repairs
was performed by Kulkarni and Choi (1990) [14]. With the help of the theory of regenerative processes
they obtained the generating functions of the limiting distribution and other characteristics of the queue
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length process for two different models. In Aissani (1994) [1], a version of the unreliable M/G/1/1 retrial
queue with variable service was considered. This approach permitted to study the redundancy problem.

It must be noted that current analytical theory of queueing systems with repairable server is limited
due to the complexity of the known results. Indeed, the obtained analytical formulas are difficult to use
in practice. For that reason, when studying real systems, it is often necessary to replace the real system
(usually complex) by a simpler one for which we have exploitable analytical results. This fact led the
authors to develop approximate methods to analyze the server reliability and retrial phenomenon. Some
approximation methods for this type of queueing models have been elaborated in recent years. In the
paper of Oukid and Aissan (2009)[20] , the inequalities and bounds for certain features of the system were
obtained through stochastic comparison techniques. Wang and al (2001) [24] used the supplementary
variable approach to derive the explicit expressions of some main reliability indexes. For their part, Li and
Wang (2006) [18] studied the unreliable M/G/1 retrial queue with two phase service and feedback. Their
investigations were also based on the supplementary variable method. The authors obtained some steady
state solutions for performance and reliability measures. In general, multiserver retrial queueing systems
are difficult to analyze from a mathematical standpoint. If exact results for the steady state probabilities
of reliable systems are given only for the single-server and two-servers cases, for an unreliable model we
observe their absence when the number of servers exceeds one. In this work, we present an approximate
analysis of some reliability indexes of the M/M/2 retrial queue with active and idle breakdowns. The
remainder of the paper is organized as follows. In the next section, we give the model description. Section
3 is devoted to the approximate analysis of the server reliability. We derive approximate expressions for
the availability and failure frequency of the servers. Finally, some numerical results are given in Section
4.

2. Model description

We consider an unreliable M/M/2 retrial queueing system in which customers arrive according to a
Poisson process with rate λ (λ > 0). The service times are assumed to be exponential with rate µ. We
assume that there is no waiting space and therefore if at least one of the servers is idle and not failed,
then an arriving customer occupies a server immediately. Otherwise, it may choose to enter the orbit
with probability PI to become a source of secondary calls or leave the system with probability 1−PI . It
is also assumed that customer that service is interrupted by an active breakdown, must decide whether to
join the retrial orbit with probability PA or leave the system forever after interruption with probability
1− PA. The general structure of the system is shown in Figure 1.

Figure 1. The system structure

Successive inter-retrial times of any customer are independently and exponentially distributed with
a common mean 1

ν . The input flow of primary arrivals, service times and intervals between repeated
attempts are assumed mutually independent. Breakdowns for both servers occur independently via a
Poisson process with rate α and the repair times for each server are exponentially distributed with rate
β. We assume that each server has its own repairman and repairs begin immediately after a failure. The
new random variables and all processes verify the hypothesis of mutual independence.

The state of the system at time t can be described by means of the Markov process
X(t) = {(N(t), C(t), R(t))}, having state space S = {(i, j, k) : i ≥ 0, j + k ≤ 2, j, k ∈ {0, 1, 2}}, where
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N(t) is the number of customers in the orbit at time t, C(t) is the number of busy servers at time t and
R(t) is the number of failed servers at time t.

Let

Pijk = lim
t−→∞

P (N(t) = i, C(t) = j, R(t) = k);(2.1)

i ≥ 0 and (j, k) ∈ E with E = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)} be the steady state distribution
of above-mentioned process. Figure 2 depicts the transition diagram for the CTMC.

Figure 2. transition rate diagram for the unreliable M/M/2 retrial queue

3. Reliability indexes of the servers

In this section, we provide approximations for the availability and failure frequency of the servers.

Theorem 3.1. Let A(t) be the probability that the service station is up at time t, which is defined as the
point wise availability of the servers, and define the steady-state availability of the server as

A = lim
t−→∞

A(t).

The approximate availability of the servers is

A ≈ β2

H
[(β + λ+ µ)(2µ2 + 2λµ+ λ2) + 2α(λ+ µ)2];(3.1)

Where the constant H is given by,

H = µ2α2λ+ 6µ2α2β + 2µ3α2 + 2µ2α3 + 6β2µαλ+ 2µβ3λ

+4λβ2µ2 + λ2β3 + 3λ2β2µ+ λ3β2 + 2αλ2β2 + 4µ3αβ

+6β2µ2α+ 2µ2β3 + 2µ3β2 + 2µαλ2β + 6µ2αλβ + 4βµα2λ.(3.2)

Proof. A is obtained by considering the following equation

A =

∞∑
i=0

Pi00 +

∞∑
i=0

Pi10 +

∞∑
i=0

Pi20.(3.3)
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Due to the complexity of obtaining a solution for the state probabilities recursively or by the method
of generating functions, we instead resort to an approximate analysis of the system. To determine
the approximate probability distributions in the steady state, we apply the phase merging algorithm
which was developed in [7] and [15], and proceed in the following manner. In the first time, we find
the conditional probability distribution of the number of busy servers at time t, given the number of
customers in orbit at time t, then approximate the marginal probability distribution of the number of
customers in the orbit.

In order to accurately approximate joint probability distribution of the state of the servers and the
number of customers in orbit, we assume that the rates of flow within levels of the orbit are significantly
greater than those flowing between levels. Each level is analyzed as a CTMC from which the approximate
conditional Probabilities can be found.

1) To find the Pl\i we reduce the dimensionality of the state space by defining Y (t) as the state of
the servers at time t, such as

Y (t) = {C(t), R(t) : t ≥ 0};(3.4)

Where C(t) and R(t) are defined in (2.1).
Let Pl\i = lim

t−→∞
P{(Y (t) = l \N(t) = i), l = 1, 2, ..., 6} with the index l defined as

state (j,k) (0,0) (1,0) (2,0) (1,1) (0,1) (0,2)
index l 1 2 3 4 5 6

Table 1. The susbstitition for server status

This step results in an infinite number of levels which can be analyzed individually. Figure 3 depicts
the level for the system.

Figure 3. the class for the unreliable M/M/2 retrial queue

For each i ≥ 0, the transition rates of the process Y (t) are described by the following matrix

Qi =


−(λ+ 2α) λ 0 0 2α 0

µ −(λ+ α+ µ) λ α 0 0
0 2µ −2µ 0 0 0
0 β 0 −(β + µ) µ 0
β 0 0 λ −(λ+ α+ β) α
0 0 0 0 2β −2β


Let pi = Pl\i
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The resolution of the equation piQi = 0 requires solving the following system

(λ+ 2α)P1\i = µP2\i + βP5\i
(λ+ α+ µ)P2\i = λP1\i + 2µP3\i + βP4\i

2µP3\i = λP2\i
(β + µ)P4\i = αP2\i + λP5\i

(λ+ α+ β)P5\i = 2αP1\i + µP4\i + 2βP6\i
2βP6\i = αP5\i∑6

l=1 Pl\i = 1

(3.5)

Thus we obtain the expressions for the conditional probabilities for all i ≥ 0. That is

P1\i =
1

H
(2(β + λ+ α+ µ)β2µ2);(3.6)

P2\i =
1

H
(2(β + µ+ λ+ 2α)β2µλ);(3.7)

P3\i =
1

H
((β + µ+ λ+ 2α)β2λ2);(3.8)

P4\i =
1

H
(2(β + λ+ 2µ+ 2α)βµαλ);(3.9)

P5\i =
1

H
(2αβµ2(λ+ 2β + 2µ+ 2α));(3.10)

P6\i =
1

H
(µ2α2(λ+ 2β + 2µ+ 2α)).(3.11)

2) Now each level is considered as a state of a combines CTMC, where the transition rates between
levels correspond to customers entering or leaving the orbit. Analysis of this system gives approximate
marginal probability distribution of the number of customers in the orbit.

Transition rates between grouped states can be expressed by

qij =


αPAP2\i + (λPI + 2αPA)P3\i + (λPI + αPA)P4\i + λPIP6\i, i ≥ 0, j = i+ 1;

iν(P1\i + P2\i + P5\i), i ≥ 1, j = i− 1;
−[αPAP2\i + (λPI + 2αPA)P3\i + (λPI + αPA)P4\i

+λPIP6\i + iν(P1\i + P2\i + P5\i], i = j;
0 elsewhere.

(3.12)

Using the substitutions

Λ = αPAP2\i + (λPI + 2αPA)P3\i + (λPI + αPA)P4\i + λPIP6\i;

υ = iν(P1\i + P2\i + P5\i);

We can see that the analysis of this system is similar to that of the M/M/∞ queueing system. Therefore,
we obtain the following marginal probability distribution

πi =
1

i!
(
Λ

υ
)iπ0, i ≥ 0;(3.13)

By using the normalizing equation
∑∞
j=0 πj = 1 we get

π0 = e−
Λ
υ .(3.14)

3) The approximate joint probability distribution of the level of the orbit and state of the servers can
be obtained by taking the product of the conditional and marginal probabilities.

Pil ≈ P̂il;
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With

P̂il = Pl\i × πi =
Pl\i

i!
(
Λ

υ
)ie−

Λ
υ .(3.15)

With the help of (3.3), the approximate availability of the servers becomes

A ≈
∞∑
i=0

P̂i1 +

∞∑
i=0

P̂i2 +

∞∑
i=0

P̂i3;(3.16)

From (3.15), we have
∞∑
i=0

P̂i1 =

∞∑
i=0

P1\i × πi;(3.17)

∞∑
i=0

P̂i2 =

∞∑
i=0

P2\i× πi;(3.18)

∞∑
i=0

P̂i3 =

∞∑
i=0

P3\i × πi.(3.19)

By substituting (3.6), (3.7), (3.8) in (3.17), (3,18), (3.19) respectively and after calculation of the overall
sum, we obtain (3.1). �

Theorem 3.2. Let F be the failure frequency of the servers. The approximate failure frequency of the
servers is given by

F ≈ µα

H
[(β + λ+ 2µ+ 2α)(2βλ+ 2βµ+ µα) + βµ(2β + α)];(3.20)

Where the constant H is given by (3.2).

Proof. F is given by

F =

∞∑
i=0

Pi11 +

∞∑
i=0

Pi01 +

∞∑
i=0

Pi02;(3.21)

By using table 1 and (3.15), we find
∞∑
i=0

Pi11 ≈
∞∑
i=0

P̂i4 =

∞∑
i=0

P4\i × πi;(3.22)

∞∑
i=0

Pi01 ≈
∞∑
i=0

P̂i5 =

∞∑
i=0

P5\i × πi;(3.23)

∞∑
i=0

Pi02 ≈
∞∑
i=0

P̂i6 =

∞∑
i=0

P6\i × πi.(3.24)

By substituting (3.9), (3.10), (3.11) in (3.22), (3.23), (3.24) and after some algebra, we obtain (3.20).
�

4. Illustrative numerical examples

In the first time, we present numerical illustrations to assess the quality of the phase-merging approx-
imation used to approximate the unreliable M/M/2 retrial queue reliability indexes, in section 4.1. In
the second time, we investigate the impact of the parameters on the availability and failure frequency
of the servers without taking into account the retrial rate. Since these indexes are independent of this
parameter, so we only vary λ, µ, α, β. Recall, that for the algorithm to produce effective results we
require that the flows within levels of the orbit be significantly greater than those between levels.
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4.1. Evaluation of the quality of the approximation of the Phase Merging Algorithm. To
evaluate the quality of the approximations that we have obtained, we present two examples.

Example 1. In this example, we fix µ = 6, λ = 4, β = 0.1 and vary α from 0 to 2 in increments of
0.01.

Figure 4. Availability and failure frequency vs.α

Figure 4 describe the influence of the parameter α on the both availability and failure frequency of the
servers. As is expected (intuitively), with the increase of failure rate α, the probability of finding a server
in good condition is almost zero which leads to decrease the availability of servers and increase the failure
frequency of servers.

Example 2. In this example, we fix µ = 5, α = 0.1, λ = 2 and vary β from 0 to 1 in increments of
0.01.

Figure 5. Availability and failure frequency vs.β

In figure 5 we describe the variations of availability and failure frequency of the servers in function of
repair rate. It is also intuitive that if the service rate is greater than the arrival rate and with the increase
of repair rate, the servers will be often available which leads to decrease the failure frequency.

4.2. Impact of parameters on the calculated approximate reliability indexes. First, we present
an example where the assumption that the flows within levels of the orbit be significantly greater than
those between levels is violated. Then we give two examples that show us how to choose the parameters
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λ and µ to have a good server availability.

Example 3. We fix µ = 10, β = 5, α = 30 and vary λ from 0 to 200 in increments of 0.1. In this

Figure 6. Availability and failure frequency vs.λ

example we can see that the assumption is violated. In figure 6, we show that the availability increases
rapidly and failure frequency decreases, while the repair rate is very small compared to the failure rate.
Moreover, the service rate is small and the arrival rate is increasing. So if the assumptions mentioned
above, are violated, the method may perform very poorly.

Example 4. In this example, in the first time we fix λ = 10, α = 0.1, β = 2 and vary µ from 1 to 200
in increments of 0.1, in the seconde time we put λ = 70 and keep the same values for other parameters.

Figure 7. Availability and failure frequency vs.µ

Looking at figure 7, we notice that the availability decreases with increasing values of µ, on the other
hand the failure frequency knows a little higher then it decreases. However, the availability will be
greater when the arrival rate is high, so for a good server availability and smaller failure frequency, the
λ and µ parameters must be approaching.

Example 5. Finaly, we fix λ = 4, µ = 6, α = 0.1 and vary β from 0 to 5 in increments of 0.01.
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Figure 8. Availability and failure frequency vs.β

Figure 8 describe the influence of the parameter β on the availability and failure frequecy.
We observe that with increasing values of repair rate, the failure frequency decreases and server

availability increases ( which is very logical ). But from a certain rank of repair rates, availability begins
to decline, so a small failure rate needs a small repair rate.

5. Conclusion

The M/M/2 retrial queue with active and idle breakdowns has been investigated. Some approximate
reliability indexes of the model are obtained by using the approximate state probabilities determined by
applying phase merging algorithm. These theoretical investigations are supported by numerical illustra-
tions. The model presented in this article is novel and it is realistic as it can be applicable to various
congestion situations encountered in telecommunication systems, computer networks, banks which involve
the use of multiservers at the same time.
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