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1. Introduction

In 1964 H. Mink and L. Sathre [15] proved the following inequality

(1.1)
n

n+ 1
<

(n!)
1
n

((n+ 1)!)
1

n+1

, n ∈ N.

The inequality (1.1) was generalized and refined by H. Alzer in [2]-[4]. He proved in [4] the following
inequality:

(1.2)
n

n+ 1
≤

[

(n+ 1)
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]
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1
n
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1

n+1

, n ∈ N, r ∈ R+.

The lower and upper bounds are the best possible.

Many proofs of the inequality (1.2) and some generalizations were given in ([1],[5]-[7],[9],[10],[12]
-[14],[16]-[23]).

The left hand side of the Alzer’s inequality (1.2) was generalized by Feng Qi [8] as follows:

(1.3)
n+ k

n+m+ k
≤

[

1
n
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i=k+1 i
r

1
n+m

∑n+m+k

i=k+1 ir

]
1
r

, n,m ∈ N,

where k is a nonnegative integer and r ∈ R+. The lower bound is best possible.

The main purpose of this paper is to give a q-analogue of inequalities (1.2) and (1.3).
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2. q-analogue of the Alzer’s inequality

Throughout this paper, we consider a positive integer q 6= 1 and for x ∈ C, we write

(2.1) [x]q =
1− qx

1− q
.

Note that [x]q tends to x when q tends to 1 (we refer to [11] for more details about q-calculus).
To prove the main result of the paper, we need the following lemma.

Lemma 2.1. For all q > 1, for all nonnegative integers n and k and for all nonnegative real number r,

we have

(2.2)

n+k
∑

i=k+1

[i]rq >
[n]q[n+ k]rq[n+ k + 1]rq

[n+ 1]q[n+ k + 1]rq − [n]q[n+ k]rq
.

Proof. Let k be a nonnegative integer and r be a nonnegative real number. We prove the result by
induction on n.

For n = 1, we have

[k + 1]rq −
[k + 1]rq[k + 2]rq

[2]q[k + 2]rq − [k + 1]rq
= [k + 1]rq

[2]q[k + 2]rq − [k + 1]rq − [k + 2]rq
[2]q[k + 2]rq − [k + 1]rq

= [k + 1]rq
q[k + 2]rq − [k + 1]rq

(1 + q)[k + 2]rq − [k + 1]rq

= [k + 1]rq
q(1− qk+2)r − (1− qk+1)r

(1 + q)(1− qk+2)r − (1− qk+1)r

= [k + 1]rq
q − ( 1−qk+1

1−qk+2 )
r

1 + q − ( 1−qk+1

1−qk+2 )r
.

Using the fact that 1−qk+1

1−qk+2 < 1 < q, we get

[k + 1]rq >
[k + 1]rq[k + 2]rq

[2]q[k + 2]rq − [k + 1]rq
,

which achieves the proof of the result for n = 1.
Suppose, now, that it is valid for n > 1 and let’s prove that it’s valid for n + 1. Using the fact

that
∑n+k+1

i=k+1 [i]
r
q =

∑n+k

i=k+1[i]
r
q + [n + k + 1]rq, calculating straightforwardly, and simplifying easily, the

induction step can be written as

[n+ 2]q[n+ k + 2]rq − [n+ 1]q[n+ k + 1]rq
[n+ 1]q[n+ k + 1]rq − [n]q[n+ k]rq

>

(

[n+ k + 2]q
[n+ k + 1]q

)r

.

Consider the functions f and g defined on [n, n+ 1] as follows

f(x) = [x+ 1]q[x+ k + 1]rq and g(x) = [x]q[x+ k]rq.

Simple derivation gives

f ′(x) =
ln q

q − 1
[qx+1[x+ k + 1]rq + rqx+k+1[x+ 1]q[x+ k + 1]r−1

q ]

and

g′(x) =
ln q

q − 1
[qx[x+ k]rq + rqx+k[x]q[x+ k]r−1

q ].
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So, for all x ∈ [n, n+ 1], we have

f ′(x)

g′(x)
=

qx+1[x+ k + 1]rq + rqx+k+1[x+ 1]q[x+ k + 1]r−1
q

qx[x+ k]rq + rqx+k[x]q[x+ k]r−1
q

=
q[x+ k + 1]rq

(

1 + rqk
[x+1]q

[x+k+1]q

)

[x+ k]rq

(

1 + rqk
[x]q

[x+k]q

)

>

(

[x+ k + 1]q
[x+ k]q

)r

.

From Cauchy’s mean-value theorem and the previous inequality, there exists one point ξ ∈ (n, n+1) such
that

(2.3)
[n+ 2]q[n+ k + 2]rq − [n+ 1]q[n+ k + 1]rq

[n+ 1]q[n+ k + 1]rq − [n]q[n+ k]rq
=

f ′(ξ)

g′(ξ)
>

(

[ξ + k + 1]q
[ξ + k]q

)r

.

But,

[ξ + k + 1]q
[ξ + k]q

−
[n+ k + 2]q
[n+ k + 1]q

=
(1− qξ+k+1)(1− qn+k+1)− (1− qn+k+2)(1− qξ+k)

(1− qξ+k)(1− qn+k+1)

=
qn+k+2 + qξ+k − qξ+k+1 − qn+k+1

(1− qξ+k)(1− qn+k+1)

=
qk(q − 1)(qn+1 − qξ)

(1− qξ+k)(1− qn+k+1)
> 0.

Then,
(

[ξ + k + 1]q
[ξ + k]q

)r

>

(

[n+ k + 2]q
[n+ k + 1]q

)r

.

This inequality together with (2.3) gives

(2.4)
[n+ 2]q[n+ k + 2]rq − [n+ 1]q[n+ k + 1]rq

[n+ 1]q[n+ k + 1]rq − [n]q[n+ k]rq
>

(

[n+ k + 2]q
[n+ k + 1]q

)r

,

which proves that the result is valid for n+ 1. �

Now, we are in a situation to prove the main result of this paper.

Theorem 2.2.

(2.5)
[n+ k]q

[n+m+ k]q
≤



















1

q
m(1+ 1

r
)

(

[n+m]q
∑n+k

i=k+1 q−ir[i]rq

[n]q
∑n+k+m

i=k+1 q−ir[i]rq

)
1
r

, if q ∈]0, 1[,

(

[n+m]q
∑n+k

i=k+1[i]
r
q

[n]q
∑n+k+m

i=k+1 [i]rq

)
1
r

, if q ∈]1,+∞[,

where n,m ∈ N, k is a nonnegative integer and r ∈ R+. The lower bounds are best possible.

Proof. It is easy to verify that for all positive real q 6= 1, we have

[n]q = qn−1[n] 1
q

and so,

[n+ k]q
[n+m+ k]q

=
qn+k−1[n+ k] 1

q

qn+m+k−1[n+m+ k] 1
q

=
[n+ k] 1

q

qm[n+m+ k] 1
q

.

Then, to prove the result, it suffices to focus on the case q > 1.

Galaxy
Text Box
147



Let q > 1 and r be a nonnegative real number.
From the previous lemma and the fact that

(2.6)

n+k+1
∑

i=k+1

[i]rq =

n+k
∑

i=k+1

[i]rq + [n+ k + 1]rq

we obtain for all n ∈ N and k nonnegative integer

(2.7)
1

[n]q[n+ k]rq

n+k
∑

i=k+1

[i]rq >
1

[n+ 1]q[n+ k + 1]rq

n+k+1
∑

i=k+1

[i]rq.

So, by induction on m, we get for all n ∈ N and k,m nonnegative integers

1

[n]q[n+ k]rq

n+k
∑

i=k+1

[i]rq >
1

[n+m]q[n+m+ k]rq

n+m+k
∑

i=k+1

[i]rq.

Then,

(

[n+ k]q
[n+m+ k]q

)r

<
[n+m]q

∑n+k

i=k+1[i]
r
q

[n]q
∑n+k+m

i=k+1 [i]rq
,

which achieves the proof. �

The limit case is given by
∀q ∈]1,+∞[,

(2.8) lim
r→+∞

(

[n+m]q
∑n+k

i=k+1[i]
r
q

[n]q
∑n+k+m

i=k+1 [i]rq

)
1
r

=
[n+ k]q

[n+m+ k]q
.

∀q ∈]0, 1[,

(2.9) lim
r→+∞

1

qm(1+ 1
r
)

(

[n+m]q
∑n+k

i=k+1 q
−ir[i]rq

[n]q
∑n+k+m

i=k+1 q−ir[i]rq

)
1
r

=
[n+ k]q

[n+m+ k]q
.

Thus, the lower bound is best possible.

Indeed, using the fact that 0 ≤
[i]q
[j]q

< 1, ∀1 ≤ i < j, ∀q ∈]1,+∞[,

lim
r→+∞

(

[n+m]q
∑n+k

i=k+1[i]
r
q

[n]q
∑n+k+m

i=k+1 [i]rq

)
1
r

= lim
r→+∞

(

[n+m]q
[n]q

)
1
r [n+ k]q
[n+m+ k]q





1 +
∑n+k−1

i=k+1 (
[i]q

[n+k]q
)r

1 +
∑n+k+m−1

i=k+1 (
[i]q

[n+m+k]q
)r





1
r

=
[n+ k]q

[n+m+ k]q
.
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∀q ∈]0, 1[,

lim
r→+∞

1

qm(1+ 1
r
)

(

[n+m]q
∑n+k

i=k+1 q
−ir[i]rq

[n]q
∑n+k+m

i=k+1 q−ir[i]rq

)
1
r

= lim
r→+∞

1

qm(1+ 1
r
)

(

[n+m]q
[n]q

)
1
r [n+ k] 1

q

[n+m+ k] 1
q

×









1 +
∑n+k−1

i=k+1 (
[i] 1

q

[n+k] 1
q

)r

1 +
∑n+k+m−1

i=k+1 (
[i] 1

q

[n+m+k] 1
q

)r









1
r

=
1

qm

[n+ k] 1
q

[n+m+ k] 1
q

=
[n+ k]q

[n+m+ k]q
.

For k = 0 and m = 1, we find the following special case:

Corollary 2.3. If r, q are positive real numbers and n is a positive integer, then

(2.10)
[n]q

[n+ 1]q
≤



















1

q
1+ 1

r

(

[n+1]q
∑

n
i=1 q−ir[i]rq

[n]q
∑n+1

i=1 q−ir[i]rq

)
1
r

, if q ∈]0, 1[,

(

[n+1]q
∑

n
i=1[i]

r
q

[n]q
∑n+1

i=1 [i]rq

)
1
r

, if q ∈]1,+∞[.

The lower bounds are best possible.

Remark 2.4. When q tends to 1 (q → 1+ or q → 1−), [n]q tends to n and the inequality (2.10) tends to
the Alzer’s one.
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