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Abstract. The modified Kudryashov method is powerful, efficient and can be used as
an alternative to establish new solutions of different type of fractional differential equa-
tions applied in mathematical physics. In this article, we’ve constructed new traveling
wave solutions including symmetrical Fibonacci function solutions, hyperbolic function
solutions and rational solutions of the space-time fractional Cahn Hillihard equation
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and the space-time fractional symmetric regularized long wave (SRLW) equation
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via modified Kudryashov method. In addition, some of the solutions are described in
the figures with the help of Mathematica.
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1. Introduction

In the past, the theory of fractional derivative, only in the interest of mathematicians, was seen as
the subject of pure mathematics. However, in the last few decades, fractional phenomena attracted the
attention of scientists in many other fields. Many researchers indicated that integrals and derivatives
with non-integer order are very beneficial to describe the structure of various real materials. There exist
many fractional derivatives in literature but few of them commonly used, including Caputo, Riemann-
Liouville and modified Riemann-Liouville [28],[30]. Caputo derivatives are defined only for differentiable
functions, while the functions can be continuous (but not necessarily differentiable) in the Riemann-
Liouville sense. Riemann-Liouville definition can be used for any functions that are continuous but not
differentiable anywhere, however, the derivative of a constant is not zero [11]. To overcome the short-
comings, the modification of Riemann-Liouville fractional derivative for continuous (but not necessarily
differentiable) functions [11],[18],[19] is suggested. Fractional derivatives and integrals become apparent
in dynamical systems which are described by fractional differential equations (FDEs)[28],[30]. FDEs also
appears in physics, chemistry, mathematical biology, electromagnetic theory, fluid mechanics, quantum
mechanics, engineering and other fields of science. Many effective methods have been proposed to find
the numerical and analytical solutions of fractional partial differential equations. Such as, the differential
transform method [29], the Adomian’s decomposition method [3],[8],[14], the variational iteration method
[7],[15],[34], the sub-equation method [10],[17],[26],[27],[36],[37], the extended fractional Riccati expansion
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method [24], the exp-function method [9],[38], the first integral method [25],[35], the iterative Laplace
transform method [16], (G′/G) -expansion method [1],[2],[9],[31], extended Jacobi elliptic function expan-
sion method [32] and others. In 2012, R.N. Kudryashov [23] proposed a method to obtain the analytical
solutions of nonlinear partial differential equations and the useful modified Kudryashov method have
been used by many authors [4]-[6],[21],[22]. This method is based on the modified Riemann Liouville
sense derivative and the homogenous balance principle. In this method, by using the transformation
ξ = ξ(x, y, z, . . . , t), a given fractional order differential equation turn into fractional ordinary differential

equation whose solutions are in the form u(ξ) =
∑M
i=0 aiY

i(ξ), where Y (ξ) satisfies the fractional Ric-
cati equation Yξ = lna(Y 2 − Y ). In previous studies, many authors used different nonlinear fractional
traveling wave transformation was taken for ξ, then a certain fractional equation turned into another
integer order ordinary differential equation, which allowed the use of the integer order Riccati equation
instead of the fractional Riccati equation in [12],[13]. Therefore, we notice that the modified Kudryashov
method is suitable for solving partial differential equation of fractional order involving fractional partial
derivatives of certain orders. In this study, we will apply the modified Kudryashov method for solving
some fractional order partial differential equations. To illustrate the validity of this method we will apply
it to the space-time fractional space-time fractional SRLW equation and the space-time fractional Cahn
Hillihard equation.

2. Preliminaries

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cκ, κ ∈ R, if there exists a real
number p > κ such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to be in the space Cmκ if
fm ∈ Cκ,m ∈ N [18],[19].

Definition 2.2. The modified Riemann-Liouville derivative is defined as [18]-[20]:

(2.1) Dα
xf(x) := lim

h↓0
h−α

∞∑
k=0

(−1)k
(
α

k

)
f [x+ (α− k)h].

If f is not a constant, then it follows that

(2.2) Dα
xf(x) =



1

Γ(−α)

∫ x

0

(x− ξ)−α−1
f(ξ)dξ, for α < 0,

1

Γ(1− α)

d

dx

∫ x

0

(x− ξ)−α [f(ξ)− f(0)] dξ, for 0 < α < 1,

(Dα−n
x (x))

(n)
, for n ≤ α < n+ 1, n ≥ 1.

Moreover, some properties for the proposed modified Riemann-Liouville derivative are given in [11] as
follows:

(2.3) Dα
t t
γ =

Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > 0,

(2.4) Dα
t c = 0,

(2.5) Dα
t (c1f(t) + c2g(t)) = c1D

α
t f(t) + c2D

α
t g(t),

where c, c1, c2 are constant.
We present the main steps of the modified Kudryashov method (see [4]-[6],[21]-[23]) as follows:

Consider a nonlinear FDE for a function u of independent variables, x, y, z, . . . , t:

(2.6) P
(
u,Dα

t u,D
β
xu,D

γ
yu,D

δ
zu,D

α
t (Dα

t u), Dα
t (Dα

xu), Dα
t (Dα

z u), . . .
)

= 0,
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where Dα
t u,D

β
xu,D

γ
yu and Dδ

zu are the modified Riemann-Liouville derivatives of u with respect to t, x, y
and z. P is a polynomial in u = u(x, y, z, . . . , t) and its various partial derivatives, in which the highest
order derivatives and nonlinear terms are involved.
Step 1. We investigate the traveling wave solutions of (2.6) by making the transformations presented
by [11]-[13] in the form :

(2.7) u(x, y, z, . . . , t) = u(ξ), ξ =
kxβ

Γ(1 + β)
+

nyγ

Γ(1 + γ)
+

mzδ

Γ(1 + δ)
+ · · ·+ λtα

Γ(1 + α)
,

where k, n,m and λ are arbitrary constants. By using the equation (see [20], Corollary 4.1)

Dα
xf(u(x)) = f ′uD

α
xu,

and by (2.4), under suitable hypotheses (see [12]), (2.6) becomes

(2.8) G(u, uξ, uξξ, uξξξ, . . .) = 0,

where u = u(ξ).
Step 2. We suppose that the reduced equation admits the following solution:

(2.9) u(ξ) =

M∑
i=0

aiY
i(ξ)

where Y = 1
1±aξ and the function Y is the solution of equation

(2.10) Yξ = lna(Y 2 − Y ).

Step 3. According to the method, we assume that the solution of (2.8) can be expressed in the form
(2.9). In order to determine the value of the pole order M , we balance the highest order nonlinear terms
in (2.8) analogously as in the classical Kudryashov method. Supposing ul(ξ)u(s)(ξ) and (u(p)(ξ))r are
the highest order nonlinear terms of (2.8) and balancing the highest order nonlinear terms we have:

(2.11) M =
s− rp
r − l − 1

.

Step 4. Substituting (2.9) into (2.8) and equating the coefficients of Y i to zero, we get a system
of algebraic equations. By solving this system, we obtain exact solutions of (2.6), and the obtained
solutions can depend on symmetrical hyperbolic Fibonacci functions proposed by Stakhov and Rozin
[33]. Symmetrical Fibonacci sine, cosine, tangent, cotangent functions are respectively defined as:

(2.12) sFs(x) =
ax − a−x√

5
, cFs(x) =

ax + a−x√
5

,

(2.13) tanFs(x) =
ax − a−x

ax + a−x
, cotFs(x) =

ax + a−x

ax − a−x
.

3. Applications

Example 3.1. We consider the following the space-time fractional Cahn-Hillihard equation:

(3.1) Dα
t u− γDα

xu− 6u(Dα
xu)2 − (3u2 − 1)Dα

x (Dα
xu) +Dα

x (Dα
x (Dα

x (Dα
xu))) = 0

where 0 < α ≤ 1. By considering the traveling wave transformation

(3.2) u(x, t) = u(ξ), ξ =
kxα

Γ(1 + α)
+

ctα

Γ(1 + α)
+ ξ0

where k, l, c, ξ0 are constants, equation (3.1) can be reduced to the following ordinary differential equation:

(3.3) (c− kγ)u′ − 6k2u(u′)2 − 3k2u2u′′ + k2u′′ + k4u(4) = 0.
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Also we take

(3.4) u(ξ) = a0 + a1Y + · · ·+ aMY
M

where Y = 1
1±aξ . We note that the function Y is the solution of Yξ = lna(Y 2 − Y ). Balancing the linear

term of the highest order with the highest order nonlinear term in (3.3), we compute

(3.5) M = 1.

Thus, we have

(3.6) u(ξ) = a0 + a1Y

and substituting derivatives of u(ξ) with respect to ξ in (3.6) we obtain

(3.7) uξ = lna(a1Y
2 − a1Y ),

(3.8) uξξ = (lna)2(2a1Y
3 − 3a1Y

2 + a1Y ).

(3.9) uξξξ = (lna)3(6a1Y
4 − 12a1Y

3 + 7a1Y
2 − a1Y ).

(3.10) uξξξξ = (lna)4(24a1Y
5 − 60a1Y

4 + 50a1Y
3 − 15a1Y

2 + a1Y ).

Substituting (3.7)-(3.10) into (3.3) and collecting the coefficient of each power of Y i, setting each of
coefficient to zero, solving the resulting system of algebraic equations we obtain the following solutions:
Case 1:

(3.11) a0 = 1, a1 = −2, k = −
√

2

lna
, c = −

√
2γ

lna
.

Inserting (3.11) into (3.6), we obtain the following solutions of (3.1)

(3.12) u1(x, t) = tanFs

(
−
√

2(xα + γtα)

2(lna)Γ(1 + α)

)
,

(3.13) u2(x, t) = cotFs

(
−
√

2(xα + γtα)

2(lna)Γ(1 + α)

)
.

For a = e

(3.14) u3(x, t) = tanh

(
−
√

2(xα + γtα)

2Γ(1 + α)

)
,

(3.15) u4(x, t) = coth

(
−
√

2(xα + γtα)

2Γ(1 + α)

)
.

Case 2:

(3.16) a0 = −1, a1 = 2, k = −
√

2

lna
, c = −

√
2γ

lna
.

Inserting (3.16) into (3.6), we obtain the following solutions of (3.1)

(3.17) u5(x, t) = −tanFs

(
−
√

2(xα + γtα)

2(lna)Γ(1 + α)

)
,
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Figure 1. Solitary wave solutions of (3.1), u1(x, t), u2(x, t) are shown at
a = 10 and α = 0.25.

Figure 2. Solitary wave solution of (3.1), u3(x, t), u4(x, t) are shown at
a = e and α = 0.25.

(3.18) u6(x, t) = −cotFs

(
−
√

2(xα + γtα)

2(lna)Γ(1 + α)

)
.

For a = e

(3.19) u7(x, t) = −tanh

(
−
√

2(xα + γtα)

2Γ(1 + α)

)
,

(3.20) u8(x, t) = −coth

(
−
√

2(xα + γtα)

2Γ(1 + α)

)
.

Case 3:

(3.21) a0 = 1, a1 = −2, k = −
√

2

lna
, c =

√
2γ

lna
.

Inserting (3.21) into (3.6), we obtain the following solutions of (3.1)

(3.22) u9(x, t) = tanFs

( √
2(xα + γtα)

2(lna)Γ(1 + α)

)
,
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Figure 3. Solitary wave solution of (3.1), u5(x, t), u6(x, t) are shown at
a = 10 and α = 0.25.

Figure 4. Solitary wave solution of (3.1), u7(x, t), u8(x, t) are shown at
a = e and α = 0.25.

(3.23) u10(x, t) = cotFs

( √
2(xα + γtα)

2(lna)Γ(1 + α)

)
.

For a = e

(3.24) u11(x, t) = tanh

(√
2(xα + γtα)

2Γ(1 + α)

)
,

(3.25) u12(x, t) = coth

(√
2(xα + γtα)

2Γ(1 + α)

)
.

Case 4:

(3.26) a0 = −1, a1 = 2, k =

√
2

lna
, c =

√
2γ

lna
.

Inserting (3.26) into (3.6), we obtain the following solutions of (3.1)

(3.27) u13(x, t) = −tanFs

( √
2(xα + γtα)

2(lna)Γ(1 + α)

)
,
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(3.28) u14(x, t) = −cotFs

( √
2(xα + γtα)

2(lna)Γ(1 + α)

)
.

For a = e

(3.29) u15(x, t) = −tanh

(√
2(xα + γtα)

2Γ(1 + α)

)
,

(3.30) u16(x, t) = −coth

(√
2(xα + γtα)

2Γ(1 + α)

)
.

Remark 3.2. We obtain analytical results for fractional Cahn Hillihard equation by using modified
Riemann-Liouville derivative while Dahmani and Benbachir [3] obtain numerical results by means of
Caputo derivative. Our results are different. Hyperbolic function solutions are different from (13) in [17]
whereas the solutions become similar in [1] if the coefficients are selected appropriately. In addition, our
symmetrical Fibonacci function solutions (3.12), (3.13), (3.17), (3.18), (3.22), (3.23), (3.27), (3.28) are
new for the literature.

Example 3.3. We next apply the method to the space-time fractional symmetric regularized long wave
(SRLW) equation in the form:

(3.31) Dα
t (Dα

t u) +Dα
x (Dα

xu) + uDα
t (Dα

xu) +Dα
xuD

α
t u+Dα

t (Dα
t (Dα

x (Dα
xu))) = 0

where 0 < α ≤ 1, u is the function of (x, t) and v is a nonzero positive constant. By considering the
traveling wave transformation:

(3.32) u(x, t) = u(ξ), ξ =
kxα

Γ(1 + α)
+

ctα

Γ(1 + α)
+ ξ0

where k, c, ξ0 are constants and c 6= 0. Equation (3.31) can be reduced to the following ordinary
differential equation:

(3.33) (c2 + k2)u′′ + kcuu′′ + kc(u′)2 + k2c2u(4) = 0.

Also we take

(3.34) u(ξ) = a0 + a1Y + · · ·+ aMY
M

where Y = 1
1±aξ . We note that the function Y is the solution of Yξ = lna(Y 2 − Y ). Balancing the linear

term of the highest order with the highest order nonlinear term in (3.33), we compute

(3.35) M = 2.

Similarly as in Example 3.3 we get

(3.36) a0 = −
(
c

k
+
k

c
+ ck

)
lna, a1 = −12cklna, a2 = 12cklna.

Then we obtain the following solutions of (3.31)

(3.37) u1(x, t) = lna

−( c
k

+
k

c
+ ck

)
+

12ck

5cFs2
(

kxα

2Γ(1+α) + ctα

2Γ(1+α) + ξ0
2

)
 ,

(3.38) u2(x, t) = lna

−( c
k

+
k

c
+ ck

)
− 12ck

5sFs2
(

kxα

2Γ(1+α) + ctα

2Γ(1+α) + ξ0
2

)
 .
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For a = e

(3.39) u3(x, t) = −
(
c

k
+
k

c
+ ck

)
+

3ck

cosh2
(

kxα

2Γ(1+α) + ctα

2Γ(1+α) + ξ0
2

) ,
(3.40) u4(x, t) = −

(
c

k
+
k

c
+ ck

)
− 3ck

sinh2
(

kxα

2Γ(1+α) + ctα

2Γ(1+α) + ξ0
2

) .
Remark 3.4. Our solution (3.39) is similar to (38) in [9] if the coefficients are selected appropriately. Hy-
perbolic functions solutions are different from the solutions in [31] and [32]. Furthermore, our symmetrical
Fibonacci function solutions (3.37) and (3.38) are new for the literature.

4. Conclusion

In this study, we have obtained new exact analytical solutions including the symmetrical Fibonacci
function solutions of space-time fractional Cahn-Hillard equation and the symmetric regularized long
wave (SRLW) equation by using the modified Kudryashov method. In special case for a = e, we have
seen that the symmetrical Fibonacci function solutions turned into hyperbolic function solutions. The
obtained hyperbolic solutions of (3.1) and (3.31) are familiar with the solutions obtained in some other
researches. As it can be seen that the modified Kudryashov method is based on the homogenous balance
principle. Therefore, the method is convenient for solving other type of space-time fractional differential
equations in which the homogenous balance principle is satisfied.
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