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Abstract. Let K be a field and let S =
⊕

n≥0 Sn be a positively graded K-algebra.

Given M =
⊕

n≥0Mn, a finitely generated graded S-module, and w > 0, we introduce

the function ζM (z, w) :=
∑∞
n=0

H(M,n)
(n+w)z , where H(M,n) := dimKMn, n ≥ 0, is the

Hilbert function of M , and we study the relations between the algebraic properties of M
and the analytic properties of ζM (z, w). In particular, in the standard graded case, we
prove that the multiplicity of M is e(M) = (m− 1)! limw↘0Resz=mζM (z, w).

Mathematics Subject Classification (2010): 13D40, 11M41, 11P81
Key words: Graded modules, quasi-polynomials, Zeta-Barnes function

Article history:
Received 11 April 2018
Accepted 9 April 2019

Introduction

Let K be a field and let S be a positively graded K-algebra. Let M be a finitely generated S-module
of dimension m ≥ 0. Given a real number w > 0, we consider the zeta-Barnes type (see [3]) function

ζM (z, w) :=

∞∑
n=0

H(M,n)

(n+ w)z
,

where H(M,n) := dimKMn, n ≥ 0, is the Hilbert function of M . According to a Theorem of Serre, see
for instance [5, Theorem 4.4.3], there exists a positive integer D such that

H(M,n) = dM,m−1(n)nm + · · ·+ dM,1(n)n+ dM,0(n), (∀)n� 0,

where dM,j(n+D) = dM,j(n), (∀)n ≥ 0. In Theorem 1.1 we show that

ζM (z, w) = θM (z, w) +D−z
m−1∑
k=0

D−1∑
j=0

dM,k(j + α(M))

k∑
`=0

(
k

`

)
(−w)`Dk−`ζ(z − k + `,

j + α(M) + w

D
),

where α(M) := min{n0 : H(M,n) = qM (n), (∀)n ≥ n0}, θM (z, w) :=
∑α(M)−1
n=0

H(M,n)
(n+w)z and ζ(z, w) =∑∞

n=0
1

(n+w)z is the Hurwitz-zeta function. Consequently, ζM (z, w) is a meromorphic function on the

complex plane with the poles in the set {1, 2, . . . ,m} which are simple with residues

Resz=k+1ζM (z, w) =
1

D

m−1∑
`=k

(
`

k

)
(−w)`−k

D−1∑
j=0

dM,k(j), 0 ≤ k ≤ m− 1.

Other properties of ζM (z, w) are given in Proposition 1.1, 1.2 and Corollary 1.3, 1.4.
We also consider the function ζM (z) := limw↘0(ζM (z, w) − H(M, 0)w−z). In Proposition 1.5 we

compute ζM (z) and its residues. In Proposition 1.6 we prove that S is Gorenstein if and only if
ζωS

(z, w) = ζS(z, w − a(S)), where S is Cohen-Macaulay with the canonical module ωS .
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In the second section, we apply the results obtained in the first section in the case when S =
K[x1, . . . , xr] is the ring of polynomials with deg(xi) = ai, 1 ≤ i ≤ r. Given a graded S-module
M , we compute the residues of ζM (z, w) and ζM (z) in terms of the graded Betti numbers of M and the
Bernoulli-Barnes polynomial associated to (a1, . . . , ar), see Corollary 2.2.

In the third section, we consider the standard graded case and we prove that the multiplicity of M , is

e(M) = (m− 1)! lim
w↘0

Resz=mζM (z, w),

see Corollary 3.3. In the fourth section, we outline the non-graded case and we give a formula for the
multiplicity of the module with respect to an ideal, see Proposition 4.1.

1. Graded modules over positively graded K-algebras

Let K be a field and let S be a positively graded K-algebra, that is

S :=
⊕
n≥0

Sn, S0 = K,

and S is finitely generated over K. Assume S = K[u1, . . . , ur], where ui ∈ S are homogeneous elements
of deg(ui) = ai. Let

M =
⊕
n∈N

Mn

be a finitely generated graded S-module with the Krull dimension m := dim(M). The Hilbert function
of M is

H(M,−) : N→ N, H(M,n) := dimK(Mn), n ∈ N.
The Hilbert series of M is

HM (t) :=

∞∑
n=0

H(M,n)tn ∈ Z[[t]].

According to the Hibert-Serre’s Theorem [1, Theorem 11.1] and [5, Exercise 4.4.11]

HM (t) =
hM (t)

(1− ta1) · · · (1− tar )
,

where hM (t) ∈ Z[t]. According to Serre’s Theorem [5, Theorem 4.4.3] and [5, Exercise 4.4.11] there exists
a quasi-polynomial qM (n) of degree m− 1 with the period D := lcm(a1, . . . , ar) such that

(1.1) H(M,n) = qM (n) = dM,m−1(n)nm−1 + · · ·+ dM,1(n)n+ dM,0(n), (∀)n� 0,

where dM,k(n+D) = dM,k(n) for any n ≥ 0 and 0 ≤ k ≤ m− 1. We denote

(1.2) α(M) := min{n0 : H(M,n) = qM (n), (∀)n ≥ n0}.

Let w > 0 be a real number. We denote

(1.3) ζM (z, w) :=
∑
n≥0

H(M,n)

(n+ w)z
, z ∈ C,

and we call it the Zeta-Barnes type function associated to M and w. We also denote

(1.4) θM (z, w) :=

α(M)−1∑
n=0

H(M,n)

(n+ w)z
, z ∈ C.

The function θM (z, w) is entire. Moreover, M is Artinian if and only if ζM (z, w) = θM (z, w). Also,
α(M) = 0 if and only if θM (z, w) = 0.
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Theorem 1.1. We have that

ζM (z, w) = θM (z, w)+D−z
m−1∑
k=0

D−1∑
j=0

dM,k(j+α(M))

k∑
`=0

(
k

`

)
(−w)`Dk−`ζ(z−k+`,

j + α(M) + w

D
),

where ζ(z, w) =
∑∞
n=0

1
(n+w)z is the Hurwitz-zeta function.

Moreover, ζM (z, w) is a meromorphic function on C with the poles in the set {1, 2, . . . ,m} which are
simple with residues

RM (w, k + 1) := Resz=k+1ζM (z, w) =
1

D

m−1∑
`=k

(
`

k

)
(−w)`−k

D−1∑
j=0

dM,k(j), 0 ≤ k ≤ m− 1.

Proof. The proof follows the line of the proof of [6, Proposition 3.2]. According to (1.1), (1.2), (1.3) and
(1.4), we have

(1.5) ζM (z, w) = θM (z, w) +

∞∑
n=α(M)

qM (n)

(n+ w)z
= θM (z, w) +

m−1∑
k=0

∞∑
n=α(M)

dM,k(n)nk

(n+ w)z
.

For any 0 ≤ k ≤ m− 1, we write

(1.6) nk = (n+ w − w)k =

k∑
`=0

(−1)`
(
k

`

)
(n+ w)k−`w`.

By (1.5) and (1.6) and the fact that dM,k(n+D) = dM,k(n), (∀)n, k, it follows that

ζM (z, w) = θM (z, w) +

m−1∑
k=0

∞∑
n=α(M)

dM,k(n)

k∑
`=0

(−1)`
(
k

`

)
w`

1

(n+ w)z−k+`
= θM (z, w)+

(1.7) +

m−1∑
k=0

D−1∑
j=0

dM,k(j + α(M))

k∑
`=0

(−1)`
(
k

`

)
w`

∞∑
t=0

1

(j + tD + α(M) + w)z−k+`
.

On the other hand,

(1.8)
∞∑
t=0

1

(j + tD + α(M) + w)z−k+`
=
∞∑
t=0

D−z+k−`

(t+ j+α(M)+w
D )z−k+`

= D−z+k−`ζ(z−k+`,
j + α(M) + w

D
).

Replacing (1.8) in (1.7) we get the required result.
The last assertion is a consequence of the fact that the Hurwitz-zeta function ζ(z − k,w) is a mero-

morphic function and has a simple pole at k + 1 with the residue 1 and, also, θM (z, w) is an entire
function. �

Proposition 1.1. Let 0→ U →M → N → 0 be a graded short exact sequence of S-modules. Then

ζM (z, w) = ζU (z, w) + ζN (z, w).

Proof. It follows from H(M,n) = H(U, n) +H(N,n), n ≥ 0, and (1.3). �

Proposition 1.2. For any k ≥ 0, it holds that ζM(−k)(z, w) = ζM (z, w + k).

Proof. Since M(−k)n = Mn−k, it follows that H(M(−k), n) = 0 for all 0 ≤ n < k and H(M(−k), n) =
H(M,n− k), for all n ≥ k. Consequently, by (1.3), we get

ζM(−k)(z, w) =

∞∑
n=0

H(M(−k), n)

(n+ w)z
=

∞∑
n=k

H(M,n− k)

(n+ w)z
=

∞∑
n=0

H(M,n)

(n+ k + w)z
= ζM (z, w + k).

�
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Corollary 1.3. If f ∈ Sk is regular on M , then

ζ M
fM

(z, w) = ζM (z, w)− ζM (z, w + k).

Proof. We consider the short exact sequence

0→M(−k)
·f→M → M

fM
→ 0.

The conclusion follows from Proposition 1.1 and Proposition 1.2. �

Corollary 1.4. If f1, . . . , fp ∈ S is a regular sequence on M , consisting of homogeneous elements with
deg(fi) = ki, then

ζ M
(f1,...,fp)M

(z) = ζM (z, w) +

p∑
`=1

(−1)`
∑

1≤i1<···<i`≤p

ζM (z, w + ki1 + . . .+ ki`).

Proof. It follows from Corollary 1.3, using induction on k ≥ 1. �

Let

(1.9) ζM (z) := lim
w↘0

(ζM (z, w)−H(M, 0)w−z) =

∞∑
n=1

H(M,n)

nz
.

Note that ζM (z) codify all the information about the Hilbert function of M with the exception of H(M, 0).
Let

(1.10) θM (z) :=

α(M)−1∑
n=1

H(M,n)

nz
.

Note that θM (z) is an entire function. Also, if α(M) ≤ 1 then θM (z) is identically zero.

Proposition 1.5. We have that

ζM (z) = θM (z) +

m−1∑
k=0

1

Dz−k

D−1∑
j=0

dM,k(j + α(M))ζ(z − k, j + α(M) + 1

D
).

The function ζM (z) is meromorphic with poles at most in the set {1, . . . ,m} which are all simple with
residues

RM (k + 1) := Resz=k+1ζM (z) =
1

D

D∑
j=0

dM,k(j), 0 ≤ k ≤ m− 1.

Proof. The proof is similar to the proof of Theorem 1.1, therefore we will omite it. Also, the result could
be derived from the proof of [6, Proposition 3.4(i)]. �

Let k ≥ 1 be an integer and let

M(k) :=

∞⊕
n=−k

Mn+k.

Given a real number w > k, we consider the function

(1.11) ζM(k)(z, w) :=

∞∑
n=−k

H(M,n+ k)

(n+ w)z
=

∞∑
n=0

H(M,n)

(n+ w − k)z
= ζM (z, w − k).

Let a(S) := deg(HS(t)) be the a-invariant of S. Assume S is Gorenstein. Then, according to [5,
Proposition 3.6.11], the canonical module of S, ωS is isomorphic to S(a(S)). Consequently, we get
ζωS

(z, w) = ζS(z, w − a(S)), where w > max{0, a(s)}.

Proposition 1.6. Let S be a Cohen-Macaulay domain with the canonical module ωS. Then S is Goren-
stein if and only if ζωS

(z, w) = ζS(z, w − a(S)).
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Proof. Note that ζωS
(z, w) = ζS(z, w − a(S)) is equivalent to HωS

(t) = ta(S)HS(t). Hence, according to
[5, Theorem 4.4.5(2)], this is equivalent to S is Gorenstein. �

Remark 1.7. Assume that S = K[x1, . . . , xr] is the ring of polynomials with deg(xi) = ai, 1 ≤ i ≤ r.
The Hilbert series of S is

HS(t) =
1

(1− ta1) · · · (1− tar )
,

hence a(S) = −(a1 + · · ·+ ar). It is well known that S is Gorenstein, therefore

ωS ∼= S(a(S)) = S(−a1 − · · · − ar).

It follows that

ζωS
(z, w) = ζS(z, w + a1 + · · ·+ ar), (∀)w > 0.

In the next section we will discuss the case of graded modules over S.

2. Graded modules over the ring of polynomials.

Let a = (a1, . . . , ar) be a sequence of positive integers. In the following, S = K[x1, . . . , xr] is the
ring of polynomials in r indeterminates, with deg(xi) = ai, 1 ≤ i ≤ r. The restricted partition function
associated to a is pa : N→ N,

pa(n) := the number of integer solutions (x1, . . . , xr) of

r∑
i=1

aixi = n with xi ≥ 0.

For a kindly introduction on the restricted partition function we reffer to [2]. One can easily see that
pa(n) = H(S, n), (∀)n ≥ 1, hence

(2.1) ζS(z, w) = ζa(z, w) :=

∞∑
n=0

pa(n)

(n+ w)z

is the Zeta-Barnes function associated to the sequence a. We also have

(2.2) ζS(z) = ζa(z) := lim
w↘0

(ζa(z, w)− wz) =

∞∑
n=1

pa(n)

nz
.

See [6] for further details on the properties of the function ζa(z).

Proposition 2.1. Let M be a finitely generated graded S-module. Then:

(1) ζM (z, w) :=
∑p
i=0(−1)i

∑
j≥i βij(M)ζa(z, w + j), where βij(M) := dimK(Tori(M,K))j are the

graded Betti numbers of M and p is the projective dimension of M .
(2) ζM (z) =

∑p
i=0(−1)i

∑
j≥max{i,1} βij(M)ζa(z, j) + β00(M)ζa(z).

Proof. (1) Let

(2.3) F : 0→ Fp → · · · → F1 → F0 →M → 0,

be the minimal free resolution of M . We have that Fi =
⊕

j≥0 S(−j)βij . By (2.1), Proposition 1.1 and
Proposition 1.2, it follows that

ζFi
(z, w) =

∑
j≥0

βijζa(z, w + j).

The result follows from Proposition 1.1 applied several times to the exact sequence (2.3). (2) By (2.1), it
follows that

(2.4) lim
w↘0

ζa(z, j + w) = ζa(z, j), (∀)j ≥ 1.

Using (2.2), (2.4) and (1) we get the required result. �
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The Bernoulli numbers B` are defined by

z

ez − 1
=

∞∑
`=0

Bj
z`

`!
,

B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 and Bn = 0 if n ≥ 3 is odd. For k > 0 we have the Faulhaber’s

identity

1k + 2k + · · ·+ nk =
1

k + 1

k∑
`=0

(
k + 1

`

)
B`n

1+k−`.

The Bernoulli-Barnes polynomials B`(x; a1, . . . , ar) are defined by

zrexz

(ea1z − 1) · · · (earz − r)
=

∞∑
`=0

B`(x; a1, . . . , ar)
z`

`!
.

According to formula (3.9) in Ruijsenaars [8],

(2.5) Resz=`ζa(z, w) =
(−1)r−`

(`− 1)!(r − `)!
Br−`(w; a1, . . . , ar), 1 ≤ ` ≤ r.

The Bernoulli-Barnes numbers are defined by

B`(a1, . . . , ar) := B`(0; a1, . . . , ar).

The Bernoulli-Barnes numbers and the Bernoulli numbers are related by

B`(a1, . . . , ar) =
∑

i1+···+ir=`

(
`

i1, . . . , ir

)
Bi1 · · ·Bira

i1−1
1 · · · air−1r ,

see Bayad and Beck [4, Page 2] for further details. According to [6, Theorem 3.10],

(2.6) Resz=`ζa(z) =
(−1)r−`

(`− 1)!(r − `)!
Br−`(a1, . . . , ar), 1 ≤ ` ≤ r.

Note that (2.6) can be deduced from (2.5).

Corollary 2.2. Let M be a finitely generated graded S-module and w > 0. Then

(1) RM (w, `) =
∑p
i=0

∑
j≥0 βij(M) (−1)i+r−`

(`−1)!(r−`)!Br−`(w + j; a1, . . . , ar), 1 ≤ ` ≤ r.

(2) RM (`) =
∑p
i=0

∑
j≥0 βij(M) (−1)i+r−`

(`−1)!(r−`)!Br−`(j; a1, . . . , ar), 1 ≤ ` ≤ r..

Proof. The results follow from Proposition 2.1 and the formulas (2.5) and (2.6). �

Example 2.3. Let a = (a1, . . . , ar) be a sequence of positive integers, D = lcm(a1, . . . , ar). We consider

the ideal I = (x
D
a1
1 , . . . , x

D
ar
r ) ⊂ S. Note that I is an Artinian complete intersection monomial ideal

generated in degree D, w.r.t. the a-grading. According to (2.2) and Corollary 1.4, we have

(2.7) ζS/I(z, w) = θS/I(z, w) =

r∑
j=0

(−1)j
(
r

j

)
ζa(z, w +Dj).

On the other hand, one can easily check that

HS/I(t) =
(1− tD)r

(1− ta1) · · · (1− tar )
= (1 + ta1 + · · ·+ ta1(

D
a1
−1)) · · · (1 + tar + · · ·+ tar(

D
ar
−1))

is a reciprocal polynomial of degree Dr − a1 − · · · − ar. The coefficient of tn in HS/I(t) equals to

fa(n) = #{(x1, . . . , xr) ∈ Zr : a1x1 + · · ·+ arxr = n, 0 ≤ x1 <
D

a1
− 1, . . . , 0 ≤ xr <

D

ar
− 1}.
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By (2.7) it follows that

Dr−a1−···−ar∑
n=0

fa(n)(n+ w)−z =

r∑
j=0

(−1)j
(
r

j

)
ζa(z, w +Dj).

See Rødseth and Sellers [7] for further details on the coefficients fa(n).

Example 2.4. Let S = K[x1, x2] with deg(x1) = 2, deg(x2) = 3. Let a = (2, 3). The polynomial
f = x31 − x22 ∈ S is homogeneous of degree 6. Let R = S/(f). R has the minimal graded free resolution

(2.8) 0→ S(−6)
·f→ S → R→ 0

It follows that the non-zero Betti numbers of R are β00(R) = 1 and β16(R) = 1. Let w > 0. According
to (2.1) and Corollary 1.3 (or (2.8) and Proposition 2.1(1)) we have

ζR(z, w) = ζa(z, w)− ζa(z, w + 6) =

∞∑
n=0

pa(n)

(n+ w)z
−
∞∑
n=0

pa(n)

(n+ w + 6)z
=

=

5∑
n=0

pa(n)

(n+ w)z
+

∞∑
n=6

pa(n)− pa(n− 6)

(n+ w)z
=

1

wz
+

∞∑
n=2

1

(n+ w)z
=

1

wz
+ ζ(z, w + 2).

In particular, the Hilbert series of R is

HR(t) = 1 +

∞∑
n=2

tn = 1 +
t2

1− t
=
t2 − t+ 1

1− t
,

hence α(R) = a(R) = 1. It follows that θR(z, w) = 1
wz . Also,

ζR(z) = lim
w↘0

(ζR(z, w)− 1

wz
) = ζ(z, 2) and θR(z) = 0.

3. The standard graded case

Let S be a standard graded K-algebra, that is S =
⊕

n≥0 Sn, S0 = K and S = K[S1]. Let M be a
finitely generated graded S-module. According to the Hilbert-Serre’s Theorem, it holds that

(3.1) HM (t) =
hM (t)

(t− 1)m
,

where hM ∈ Z[t], m = dim(M) and hM (1) 6= 0. Also, there exists a polynomial PM (t) ∈ Z[t] of degree
m− 1, such that

H(M,n) = PM (n), (∀)n� 0,

which is called the Hilbert polynomial of M .
The number e(M) := hM (1) is called the multiplicity of the module M .

Proposition 3.1. If PM (t) = dM,m−1t
m−1 + · · ·+ dM,1t+ dM,0 is the Hilbert polynomial of M , then

ζM (z, w) = θM (z, w) +

m−1∑
k=0

dM,k

k∑
`=0

(
k

`

)
(−w)`ζ(z − k + `, α(M) + w)

is a meromorphic function on C with the poles in the set {1, 2, . . . ,m} which are simple with residues

RM (w, k + 1) := Resz=k+1ζM (z, w) =

m−1∑
`=k

(
`

k

)
(−w)`−kdM,`, 0 ≤ k ≤ m− 1.

Proof. It is the particular case of Theorem 1.1 for a = (1, . . . , 1). �
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Proposition 3.2. We have that

ζM (z) = θM (z) +

m−1∑
k=0

dM,kζ(z − k + `, α(M) + 1)

is a meromorphic function on C with the poles in the set {1, 2, . . . ,m} which are simple with residues

RM (`+ 1) := Resz=`+1ζM (z) = dM,`.

Proof. It is the particular case of Proposition 1.5 for a = (1, . . . , 1). �

If dimM ≥ 1, then we can write

(3.2) PM (t) =

m−1∑
k=0

(−1)kek(M)

(
t+m− 1− k
m− 1− k

)
.

According to [5, Proposition 4.1.9], we have

(3.3) ek(M) =
h
(k)
M (t)

k!
, (∀)0 ≤ k ≤ m− 1.

Corollary 3.3. If m = dimM ≥ 1, then

e(M) = e0(M) = (m− 1)!dM,m−1 = (m− 1)!RM (m).

Proof. It follows from (3.2), (3.3) and Proposition 3.2. �

The higher iterated Hilbert functions Hi(M,n), i ∈ N, of a finitely generated S-module M are defined
recursively as follows:

(3.4) H0(M,n) := H(M,n), and Hi(M,n) =

n∑
j=0

Hi−1(M,n), i ≥ 1.

The functions Hi(M,n) are of polynomial type of degree m+ i− 1, hence

(3.5) Hi(M,n) = Pi(M,n) := diM,m+i−1n
m+i−1 + · · ·+ diM,1n+ diM,0, (∀)n� 0.

We define the higher Zeta-Barnes type functions associated to M as follows:

(3.6) ζiM (z, w) :=

∞∑
n=0

Hi(M,n)

(n+ w)z
, i ≥ 0.

and

(3.7) ζiM (z) = lim
w↘0

(ζiM (z, w)−H(M, 0)w−z), i ≥ 0.

Let

αi(M) := min{n0 ∈ N : Hi(M,n) = Pi(M,n), (∀)n ≥ n0}.
We define

θiM (z, w) =

αi(M)−1∑
n=0

Hi(M,n)

(n+ w)z
and θiM (z) =

αi(M)−1∑
n=1

Hi(M,n)

nz
.

Proposition 3.4. With the above notations:

(1) ζiM (z, w) = θiM (z, w) +
∑m+i−1
k=0 diM,k

∑k
`=0

(
k
`

)
(−w)`ζ(z − k + `, αi(M) + w) is a meromorphic

function on C with the poles in the set {1, 2, . . . ,m+ i} which are simple with residues

RiM (w, k + 1) := Resz=k+1ζM (z, w) =

m+i−1∑
`=k

(
`

k

)
(−w)`−kdiM,`, 0 ≤ k ≤ m+ i− 1.
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(2) ζiM (z) = θiM (z) +
∑m+i−1
k=0 diM,kζ(z− k+ `, αi(M) + 1) is a meromorphic function on C with the

poles in the set {1, 2, . . . ,m+ i} which are simple with residues

RiM (k + 1) := Resz=k+1ζM (z) = diM,k, 0 ≤ k ≤ m+ i− 1.

Proof. Is similar to Proposition 3.1 and Proposition 3.2. �

Corollary 3.5. We have that e(M) = m!R1
M (m+ 1).

Proof. According to [5, Remark 4.1.6], H1(M,n) = d1M,mn
m + · · · + d1M,1n + d1M,0, (∀)n � 0, and

e(M) = m!d1M,m. Now, apply Proposition 3.4(2). �

Remark 3.6. Let S = K[x1, . . . , xr] and I ⊂ S a graded ideal. We say that S/I has a pure resolution
of type (d1, . . . , dp) if its minimal resolution is

0→ S(−dp)βp → · · · → S(−d1)β1 → S → S/I → 0,

where p is the projective dimension of S/I, d1 < d2 < · · · < dp and βi =
∑
j≥0 βij(S/I), 1 ≤ i ≤ p, are

the Betti numbers of S/I. According to Corollary 3.3, e(S/I) = RS/I(m), where m = dim(S/I). On the
other hand, according to Corollary 2.2(2), we have

(3.8) RS/I(m) =

p∑
i=0

βi
(−1)r−m

(m− 1)!(r −m)!
Br−m(di; 1, 1, . . . , 1).

Suppose S/I is Cohen-Macaulay and has a pure resolution of type (d1, . . . , dp). According to [5, Theorem
4.1.15],

(3.9) βi = (−1)i+1
∏
j 6=i

dj
dj − di

and e(S/I) =
d1d2 · · · dp

p!
.

The Ausländer-Buchsbaum formula [5, Theorem 1.3.3] implies p = r −m, hence (3.8) and (3.9) give the
identity:

p∑
i=0

(−1)i+1
∏
j 6=i

dj
dj − di

Bp(di; 1, 1, . . . , 1) = (m− 1)!(−1)pd1d2 · · · dp.

4. The non-graded case

Let (S,m,K) be a Noetherian local ring, where m is the maximal ideal of S and K = S/m is the
residue field. Let M be a finitely generated S-module, with m = dim(M), and let I ⊂ S be an ideal such
that mnM ⊂ IM for some n ≥ 1. The associated graded ring is

grI(S) =
⊕
n≥0

In

In+1
=
S

I
⊕ I

I2
⊕ · · · .

The associated graded module of M , with respect to I, is

grI(M) :=
⊕
n≥0

InM

In+1M
,

which has a structure of a grI(S)-module. According to [5, Theorem 4.5.6], it holds that

dim(grI(M)) = dim(M) = m.

The Hilbert-Samuel function of M , w.r.t. I, is

χM (n) := H1(grI(M), n) =

n∑
i=0

H(grI(M), i) = dimK
M

In+1M
, (∀)n ≥ 0.
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The multiplicity of M with respect to I is e(M, I) := e(grI(M)). For n � 0, according to [5, Remark
4.1.6], we have that

(4.1) χM (n) =
e(M, I)

m!
nm + terms in lower powers of n.

We consider the functions

(4.2) ζiM,I(z, w) := ζigrI(M)(z, w) and ζiM,I(z) := ζigrI(M)(z), i ≥ 0.

Proposition 4.1. It holds that
e(M, I) = m!Resz=m+1ζ

1
M,I(z).

Proof. This follows from (4.1), (4.2) and Corollary 3.5. �
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