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A ZETA-BARNES FUNCTION ASSOCIATED TO GRADED MODULES
MIRCEA CIMPOEAS

ABSTRACT. Let K be a field and let S = @nZO S, be a positively graded K-algebra.
Given M = @nzo M,,, a finitely generated graded S-module, and w > 0, we introduce

the function (a(z,w) = Y07, gl(-ﬁ;;lz)’ where H(M,n) = dimg M,,, n > 0, is the
Hilbert function of M, and we study the relations between the algebraic properties of M
and the analytic properties of (j(z,w). In particular, in the standard graded case, we

prove that the multiplicity of M is e(M) = (m — 1)! im0 Res.—mCr (2, w).
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INTRODUCTION

Let K be a field and let S be a positively graded K-algebra. Let M be a finitely generated S-module
of dimension m > 0. Given a real number w > 0, we consider the zeta-Barnes type (see [3]) function

Cu(z,w) = Z m,

n=0
where H(M,n) := dimg M, n > 0, is the Hilbert function of M. According to a Theorem of Serre, see
for instance [5, Theorem 4.4.3], there exists a positive integer D such that

H(M, n) = d]yj’m,1(7’b)nm + -+ dM,l(n)n + dM’()(n), (V)?’L >0,
where das j(n + D) = dar j(n), (V)n > 0. In Theorem 1.1 we show that

(M) +w

m—1D—1 k .
— s . k _ + «
Gua(ev) = Baa ) + D7 30 X a4 a0) 3 () (o) DU - oy 1 TGN,
k=0 j=0 =0
where a(M) := min{ng : H(M,n) = qu(n), (V)n > no}, Oar(z,w) := S 000! %w?z) and ((z,w) =
> m is the Hurwitz-zeta function. Consequently, (y/(z,w) is a meromorphic function on the
complex plane with the poles in the set {1,2,...,m} which are simple with residues

m—1 D—1
1 4 _ .
ResectiaGr(eow) = 5 3 (1) > dual) 0 <k S

Other properties of (j/(z,w) are given in Proposition 1.1, 1.2 and Corollary 1.3, 1.4.

We also consider the function (ar(2z) = limy,~o0({nm(2,w) — H(M,0)w™?). In Proposition 1.5 we
compute (p/(z) and its residues. In Proposition 1.6 we prove that S is Gorenstein if and only if
Cws (z,w) = (s(z,w — a(S)), where S is Cohen-Macaulay with the canonical module wg.
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In the second section, we apply the results obtained in the first section in the case when S =

Klzy,...,x,] is the ring of polynomials with deg(x;) = a;, 1 < i < r. Given a graded S-module
M, we compute the residues of (p7(z,w) and (as(2) in terms of the graded Betti numbers of M and the
Bernoulli-Barnes polynomial associated to (ay,...,a,), see Corollary 2.2.

In the third section, we consider the standard graded case and we prove that the multiplicity of M, is
e(M)=(m—1)! lir\no Res,—mCn (2, w),

see Corollary 3.3. In the fourth section, we outline the non-graded case and we give a formula for the
multiplicity of the module with respect to an ideal, see Proposition 4.1.

1. GRADED MODULES OVER POSITIVELY GRADED K-ALGEBRAS

Let K be a field and let S be a positively graded K-algebra, that is
S:=EP 5. % =K,
n>0

and S is finitely generated over K. Assume S = KJuy,...,u,], where u; € S are homogeneous elements

of deg(u;) = a;. Let
M = @ M,,
neN

be a finitely generated graded S-module with the Krull dimension m := dim(M). The Hilbert function
of M is

H(M,-):N—= N, HM,n) := dimg(M,), n € N.
The Hilbert series of M is
o0
Hy(t) ==Y H(M,n)t" € Z[[t]].

n=0

According to the Hibert-Serre’s Theorem [1, Theorem 11.1] and [5, Exercise 4.4.11]

har(t)
(1_ta1)...(1_tar)’

where hjs(t) € Z[t]. According to Serre’s Theorem [5, Theorem 4.4.3] and [5, Exercise 4.4.11] there exists
a quasi-polynomial gpr(n) of degree m — 1 with the period D :=lem(ay, ..., a,) such that

(1.1) H(M,n) =qu(n) = dMym_l(n)nmfl +---+dui(n)n+duo(n), (V)n>0,
where das x(n + D) = dpri(n) for any n > 0 and 0 < k < m — 1. We denote
(1.2) a(M) :=min{ng : H(M,n) = qum(n), (V)n > ng}.

Hy(t) =

Let w > 0 be a real number. We denote

(1.3) Culzw) =Y HMm) - C,

= (n + w)z 9

and we call it the Zeta-Barnes type function associated to M and w. We also denote

a(M)-1
. H(M,n)
(1.4) Or(z,w) == ; et w) ze€C.

The function 6p;(z,w) is entire. Moreover, M is Artinian if and only if (yr(z,w) = Op (2, w). Also,
a(M) =0 if and only if O (z,w) = 0.
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Theorem 1.1. We have that

—-1D-1 k )
Cv(z,w) = Oy (2, w)+D™7 Z Z dar (G4 ))Z (k)(—w)eDkﬁg(z_k+g7HO‘(]\4)—Hu)’

14 D
k=0 j=0 =0
where ((z,w) = > ", m is the Hurwitz-zeta function.
Moreover, (p(z,w) is a meromorphic function on C with the poles in the set {1,2,...,m} which are

simple with residues

Ry(w, k+1) := Res,—p+1¢m(z,w) = DZ() ékZde ,0<k<m-1

Proof. The proof follows the line of the proof of [6, Proposition 3.2]. According to (1.1), (1.2), (1.3) and
(1.4), we have

0o m—1 0o
qr(n) dak(n)n®
1. - _am(n)
( 5) CM(Zaw) GM(Za ’LU) + n_aZ(M) (n + w)z HM(Z7w) + ~ n_oéz(]w Tl + ’LU
For any 0 < k < m — 1, we write
k
(1.6) nfF=m+w—wr= Z(—l)l(lz> (n + w)**w’.

=0
By (1.5) and (1.6) and the fact that dasx(n + D) = dark(n), (V)n, k, it follows that

k
k 1
¢ ¢ _
Cu(z,w) = O (2,w) + kzong(:M)de 2 0( 1) <£>w (nw) O (z,w)+
m—1D—1 k i oo !
- 1\ ¢

(1.7 # 3 X duali + o) 3 (- (0)* X grmranm e
On the other hand,
(1.8)
i ! = i D= = D*Z+k*fg(z_k_|_g W)
— (j+1D + (M) +w)= kg y %)z7k+é ’ D ’

Replacing (1.8) in (1.7) we get the required result.

The last assertion is a consequence of the fact that the Hurwitz-zeta function {(z — k,w) is a mero-
morphic function and has a simple pole at k + 1 with the residue 1 and, also, 6p/(z,w) is an entire
function. O

Proposition 1.1. Let 0 - U - M — N — 0 be a graded short exact sequence of S-modules. Then
Cv(z,w) = Cu(z,w) + (v(z,w).

Proof. Tt follows from H(M,n) = H(U,n) + H(N,n), n > 0, and (1.3). O
Proposition 1.2. For any k > 0, it holds that Cpr—p) (2, w) = Cu (2, w + k).
Proof. Since M(—k),, = M,,_, it follows that H(M(—k),n) =0 for all 0 < n < k and H(M(—k),n) =
H(M,n — k), for all n > k. Consequently, by (1.3), we get
= H(M(—k),n) H(M,n—k = H(M
_ s = —_—_—m _— = 5 k .
Cur(—k) (2, w) nz::o (n+w)? nz::k (n+w)” HE:On—HH-w = Cum(z,w + k)
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Corollary 1.3. If f € Sy is regular on M, then
C% (Z’ w) = CM(Z’ w) - CM(va + k)
Proof. We consider the short exact sequence

. M
0—>M(—k;)—f>M—>——>0.

M
The conclusion follows from Proposition 1.1 and Proposition 1.2. (]
Corollary 1.4. If fi,..., f, € S is a regular sequence on M, consisting of homogeneous elements with
deg(fi) = ki, then
P
CW(Z):CM(Z,U})-FZ(—I)E Z CM(Z7’LU—|—]€“++I{/’”)
=1 1<i1 <+ <ig<p
Proof. 1t follows from Corollary 1.3, using induction on k > 1. O
Let
. . . H(M,n
(1.9) () = i (Gur(,w) — HOM, 0w ) = 3 HELT)
n=1

Note that (ar(z) codify all the information about the Hilbert function of M with the exception of H(M,0).
Let

a(M)—1
(1.10) On(z) == Z %

Note that 657(z) is an entire function. Also, if (M) < 1 then 0;(2) is identically zero.
Proposition 1.5. We have that

m—1 D—-1 .
1 . jtaM)+1
) = () + Y o S daesli+a(a)c(z — b, T AIDEL)
k=0 §=0
The function (p(z) is meromorphic with poles at most in the set {1,...,m} which are all simple with

residues

D
1 .
RM(]{} + 1) = Resz:kHCM(z) = B ZdM’k(j)’ 0<k<m-—1.
j=0

Proof. The proof is similar to the proof of Theorem 1.1, therefore we will omite it. Also, the result could
be derived from the proof of [6, Proposition 3.4(i)]. O

Let k > 1 be an integer and let

M(kj) = é Mn—i—k-

n=—k
Given a real number w > k, we consider the function

H(M,n+k) ~~ H(M,n)
(n 4+ w)? 7Z(n+w—k;)z

(1.11) Cur)(z,w) := Z

n=—k
Let a(S) := deg(Hgs(t)) be the a-invariant of S. Assume S is Gorenstein. Then, according to [5,
Proposition 3.6.11], the canonical module of S, wg is isomorphic to S(a(S)). Consequently, we get
Cuws (7, w) = Cs(z,w — a(9)), where w > max{0,a(s)}.

= C]M(Zaw - k)

n=0

Proposition 1.6. Let S be a Cohen-Macaulay domain with the canonical module wg. Then S is Goren-
stein if and only if s (z,w) = (s(z,w — a(9)).

59


Galaxy
Text Box
59


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2019, VOLUME 9, ISSUE 1, p.56-65

Proof. Note that (. (z,w) = (s(z,w — a(S)) is equivalent to H,(t) = t**%) Hg(t). Hence, according to
[5, Theorem 4.4.5(2)], this is equivalent to S is Gorenstein. O

Remark 1.7. Assume that S = K[z1,...,,] is the ring of polynomials with deg(z;) = a;, 1 < i <r.
The Hilbert series of S is

1
Hg(t) =
s(?) (1 —tar)..- (1 —tar)’
hence a(S) = —(a1 + - -+ + a,). It is well known that S is Gorenstein, therefore
ws = S(a(S)) =5(—a1— - —ay).

It follows that
Cus(z,w) = Cs(z,w+ a1 + - +a,), (V)w>0.
In the next section we will discuss the case of graded modules over S.

2. GRADED MODULES OVER THE RING OF POLYNOMIALS.

Let a = (ai,...,a,) be a sequence of positive integers. In the following, S = Klx1,...,z,] is the
ring of polynomials in r indeterminates, with deg(z;) = a;, 1 <14 < r. The restricted partition function
associated to a is p : N = N,

.
pa(n) := the number of integer solutions (z1,...,z,) of Z a;x; =n with z; > 0.
i=1
For a kindly introduction on the restricted partition function we reffer to [2]. One can easily see that
pa(n) = H(S,n), (V)n > 1, hence

(2.1) (s(z,w) = Ga(z,w) =) m

n=0

is the Zeta-Barnes function associated to the sequence a. We also have

= := lim zZ,w) —w®) = 3 M
(2. Go(2) = Gale) = Jim Gl —w7) = P2

See [6] for further details on the properties of the function (4(2).

Proposition 2.1. Let M be a finitely generated graded S-module. Then:
(1) Cu(z,w) =30 (—1)° ijiﬂij(M)(a(z,w +7), where ;;(M) := dimg (Tor;(M, K)), are the
graded Betti numbers of M and p is the projective dimension of M.
(2) Cur(2) = 3o (—1)° s manginy Big (M)Ca(z: ) + oo (M)Ca(2).
Proof. (1) Let
(2.3) F:0-F - —>F—=>F—-M=0,

be the minimal free resolution of M. We have that F; = B, S(—j)%. By (2.1), Proposition 1.1 and
Proposition 1.2, it follows that
CFi(va) = Z/BijCa(zaw +.7)
>0
The result follows from Proposition 1.1 applied several times to the exact sequence (2.3). (2) By (2.1), it
follows that

(2.4) ii{‘no Ca(z,J +w) = Ca(z,5), (V)j > 1.
Using (2.2), (2.4) and (1) we get the required result. O
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The Bernoulli numbers By are defined by

> ¢
z z
— B2
er —1 Z% i
By=1, B = —%, By = %7 B, = —% and B, = 0if n > 3 is odd. For k£ > 0 we have the Faulhaber’s
identity
k
1 k+1
1k Lok ... k_ Bonlth—t.
+2 et = ; , ) B
The Bernoulli-Barnes polynomials By(x;az,...,a,) are defined by
r, Tz e 4
Z"e z
= Be(x;a1,...,a0.)—.
(6(112 _ 1) .. (earz _ 7“) — Z(ZL’ ai a )E'

According to formula (3.9) in Ruijsenaars [8],
(_1)r—€

(& —=Dlr—20)!

The Bernoulli-Barnes numbers are defined by

B@(ala c '7a7’) = BZ(O;alﬂ c '7a7“)'

(2.5) Res,—Ca(z,w) = B, _¢(w;aq,...,a.), 1 <L<

The Bernoulli-Barnes numbers and the Bernoulli numbers are related by
l in— -
Be(ar,nar) = 3, (zlz)B e Balhear T
i1t =0
see Bayad and Beck [4, Page 2] for further details. According to [6, Theorem 3.10],
(_1)7“7@
(L =Dlr—=20)!
Note that (2.6) can be deduced from (2.5).

(2.6) Res,—¢Ca(z) = B,_¢(ay,...,;an), 1 <L<r.

Corollary 2.2. Let M be a finitely generated graded S-module and w > 0. Then

_qyitr—t .
(1) Rar(w,0) =327 50 Bij(M)mBr,g(w +ja1,...,a.), 1 <0<
_1)itr—¢ .

(2) RM(E) = f:O E]ZO ﬁl](M)mBr—é(j7 A1y vy a’T)7 1 S L S T..
Proof. The results follow from Proposition 2.1 and the formulas (2.5) and (2.6). O
Example 2.3. Let a = (ay,...,a,) be a sequence of positive integers, D = lem(ayq, ..., a,). We consider

D D

the ideal I = (zy',...,27") C S. Note that I is an Artinian complete intersection monomial ideal

generated in degree D, w.r.t. the a-grading. According to (2.2) and Corollary 1.4, we have

s

(2.7 Gsya(evw) = Osyazw) = -1 () + D),

=0

On the other hand, one can easily check that

(1—tD)7” a1 (2-1) (2 _1)
Hg)r(t) = =(14+t% 4 ... ¢ co (1o oG
S/I() (17t01)...(1,tar) ( + + + : ) ( + + + )
is a reciprocal polynomial of degree Dr —a; — --- — a,. The coefficient of " in Hg/;(t) equals to

D D
fa(n):#{(l‘ly-“axr)ezr:a1$1+"'+arxr:n70§x1<;_17---7ogxr<;_1}'
1 T
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y (2.7) it follows that

Dr—ai—-—a, r I
> st w =317 (7t D)
n=0 j=0 J

See Rgdseth and Sellers [7] for further details on the coefficients fa(n).

Example 2.4. Let S = K[z1,z2] with deg(x;) = 2, deg(z2) = 3. Let a = (2,3). The polynomial
f =23 — 23 € S is homogeneous of degree 6. Let R = S/(f). R has the minimal graded free resolution

(2.8) 0—>S(—6)l£>S—>R—>O

It follows that the non-zero Betti numbers of R are Sgo(R) = 1 and f15(R) = 1. Let w > 0. According
to (2.1) and Corollary 1.3 (or (2.8) and Proposition 2.1(1)) we have

_ _ N pam) s~ pan)
CR(Zaw) = Ca(sz) Ca(sz+6) - nz::() (n—}—w)z nz:;) (n+w +6)z -
pa pan_ — 1
_Z n+w Z n+w nZQ (n+w)? _E+<(2w+2)

In particular, the Hilbert series of R is

& 2 2
Z t 2 —t+1
— n __ —
H=1 t 1 1—t 1—t 7

hence a(R) = a(R) = 1. It follows that 0z(z,w) = -=. Also,

Cr(z) = T (Calzw) = =) = C(2,2) and O() = 0.

3. THE STANDARD GRADED CASE

Let S be a standard graded K-algebra, that is S = @, ~( Sn, So = K and S = K[S1]. Let M be a
finitely generated graded S-module. According to the Hilbert-Serre’s Theorem, it holds that
has(t)
(t—1m’
where hy € Z[t], m = dim(M) and hps(1) # 0. Also, there exists a polynomial Pys(t) € Z[t] of degree
m — 1, such that

(3.1) Hy(t) =

H(M,n) = Py(n), (V)n >0,

which is called the Hilbert polynomial of M.
The number e(M) := hy(1) is called the multiplicity of the module M.

Proposition 3.1. If Py(t) = dprm—1t™ "1 + -+ + darat + daro is the Hilbert polynomial of M, then

Cu (zw)—HMzw—l—ZdeZ() 2z —k+ 0, a(M) +w)

is a meromorphic function on C with the poles in the set {1,2,...,m} which are simple with residues

m—1
Ry (w,k+1) := Res,—p+1Cm (2, w) Z ( ) e deg 0<k<m-1.
(=

Proof. Tt is the particular case of Theorem 1.1 for a = (1,...,1). O
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Proposition 3.2. We have that

m—1
Cu(2) = 0 (2) + > daraC(z =k + £, (M) + 1)
k=0
is a meromorphic function on C with the poles in the set {1,2,...,m} which are simple with residues
RM(g + 1) = ReSZ:g+1CM(Z) = dM,g.
Proof. Tt is the particular case of Proposition 1.5 for a = (1,...,1). O
If dim M > 1, then we can write
m—1
t+m—1—k
3.2 Py (t) = —1kes (M
(32 wio = S nsean(' " )
According to [5, Proposition 4.1.9], we have
WAL
(33) v = " 0 < <om 1

Corollary 3.3. If m =dim M > 1, then
e(M) =eog(M) = (m — Dldrrm—1 = (m — 1)IRp(m).
Proof. 1t follows from (3.2), (3.3) and Proposition 3.2. O

The higher iterated Hilbert functions H;(M,n), i € N, of a finitely generated S-module M are defined
recursively as follows:

(3.4) Ho(M,n) := H(M,n), and Hy(M,n) =Y H;_1(M,n), i > 1.
j=0

The functions H;(M,n) are of polynomial type of degree m + i — 1, hence

(3.5) Hi(M,n) = P(M,n) = diyy ppisn™ T oo diypyn+ diyy o, (V)0 0.
We define the higher Zeta-Barnes type functions associated to M as follows:
, o~ H,;(M,n)
3.6 v (z,w) = ————=i>0.
(3.6) Ciu (2, w) ;(Hw)z iz
and
(3.7) Cu(2) = liglo(éh(z,w) — H(M,0)w™), i > 0.
w

Let

(M) :=min{ng € N : H;(M,n) = P;(M,n),(V)n > ng}.
We define ‘ ‘

ol (M)—1 ol (M)—1
i HZ'(M, n) i Hi(M7 n)
QIM(Z',IU): T;) m and HM(Z): ; 7

Proposition 3.4. With the above notations:

(1) ¢4y(z,w) = 04 (2, w) + Zzn:g_l dlM’k Z?:o (]Z)(—w)ZC(z —k+{4,a' (M) + w) is a meromorphic
function on C with the poles in the set {1,2,...,m + i} which are simple with residues

m-+i—1
_ ) ,
Ry (w,k+1):= Res,—p+1Cm(z,w) = E (k> (—w)efkdﬁwj, 0<k<m+i-1
l=k
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(2) Ci(2) =04,(z )Jrzmﬂ ! dy 1 C(z =k + £, (M) +1) is a meromorphic function on C with the
poles in the set {1,2,...,m+ z} which are simple with residues
Ry (k+1) = Res,—p11Cu(2) =diyp, 0<k<m+i—1.
Proof. Is similar to Proposition 3.1 and Proposition 3.2. (]
Corollary 3.5. We have that e(M) = m!R},(m + 1).
Proof. According to [5, Remark 4.1.6], Hi(M,n) = dy;,,n™ + -+ + dj;n + dj o, (V)n > 0, and
e(M) =mld}, .. Now, apply Proposition 3.4(2). O
Remark 3.6. Let S = K[zy,...,z,] and I C S a graded ideal. We say that S/I has a pure resolution
of type (di,...,dp) if its minimal resolution is
0— S(—dy)Pr — - = S(=d)) =S — S/IT -0,

where p is the projective dimension of S/I, di < dy < --- < dj, and §; = ijo Bi;(S/I), 1 <i < p, are
the Betti numbers of S/I. According to Corollary 3.3, e(S/I) = Rg/;(m), where m = dim(S/I). On the
other hand, according to Corollary 2.2(2), we have

T m

(38) RS/I Zﬂz _1 ! T_m)!Brfm(di;]-alw'-vl)'

Suppose S/I is Cohen-Macaulay and has a pure resolution of type (d1,...,d,). According to [5, Theorem
4.1.15),
dido---d
(3.9) ;= (—1)"t! H and e(S/T) = ———L.
d; p:
J#t
The Auslédnder-Buchsbaum formula [5, Theorem 1.3.3] implies p = r — m, hence (3.8) and (3.9) give the
identity:
P
G| d - d By(di;1,1,...,1) = (m — 1){(=1)Pdydy - - - dp.

i=0 VE)

4. THE NON-GRADED CASE

Let (S,m, K) be a Noetherian local ring, where m is the maximal ideal of S and K = S/m is the
residue field. Let M be a finitely generated S-module, with m = dim(M), and let I C S be an ideal such
that m"M C I'M for some n > 1. The associated graded ring is

1
gr[ @I’n’+1: 12@ tt .
n>0

The associated graded module of M, with respect to I, is

"M
ng(M) = In i)’
n>0

which has a structure of a gr;(S)-module. According to [5, Theorem 4.5.6], it holds that
dim(gr; (M)) = dim(M) = m.
The Hilbert-Samuel function of M, w.r.t. I, is
Xar(n) = Hy(gry(M),n) = H(gr;(M),i) = dimg L,
i=0
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The multiplicity of M with respect to I is e(M,I) := e(gr;(M)). For n > 0, according to [5, Remark
4.1.6], we have that

M, T
(4.1) xm(n) = el " )nm + terms in lower powers of n.
m!
We consider the functions
(4.2) (2 w) = Cgy any (2, w) and Gy 1(2) = Gy ary(2), 02> 0.

Proposition 4.1. It holds that
e(M,I) = m!Resz:mHC}w’l(z).

Proof. This follows from (4.1), (4.2) and Corollary 3.5. O
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