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ON THE STANLEY DEPTH OF THE PATH IDEAL OF A CYCLE
GRAPH
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ABSTRACT. We give tight bounds for the Stanley depth of the quotient ring of the path
ideal of a cycle graph. In particular, we prove that it satisfies the Stanley inequality.
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INTRODUCTION

Let K be a field and S = K|[zy,...,x,] the polynomial ring over K. Let M be a Z"-graded S-module.
A Stanley decomposition of M is a direct sum D : M = @;_, m;K[Z;] as a Z™-graded K-vector space,
where m; € M is homogeneous with respect to Z"-grading, Z; C {z1,...,z,} such that m; K[Z;] =
{um; : v e K[Z;]} C M is a free K[Z;]-submodule of M. We define sdepth(D) = min;—; _,|Z;| and
sdepth(M) = max{sdepth(D)| D is a Stanley decomposition of M}. The number sdepth(M) is called
the Stanley depth of M.

Herzog, Vladoiu and Zheng show in [10] that sdepth(M) can be computed in a finite number of steps
if M =1I/J, where J C I C S are monomial ideals. In [13], Rinaldo give a computer implementation
for this algorithm, in the computer algebra system CoCoA [6]. In [2], J. Apel restated a conjecture firstly
given by Stanley in [14], namely that sdepth(M) > depth(M) for any Z"-graded S-module M. This
conjecture proves to be false, in general, for M = S/I and M = J/I, where 0 # I C J C S are monomial
ideals, see [7]. For a friendly introduction in the thematic of Stanley depth, we refer the reader [11].

Let A C 2[" be a simplicial complex. A face F' € A is called a facet, if F is maximal with respect to
inclusion. We denote F(A) the set of facets of A. If F' € F(A), we denote xp = [[;cp2;. Then the
facet ideal I(A) associated to A is the squarefree monomial ideal I = (zp : F € F(A)) of S. The facet
ideal was studied by Faridi [8] from the depth perspective.

The line graph of lenght n, denoted by L., is a graph with the vertex set V = [n] and the edge
set B = {{1,2},{2,3},...,{n — 1,n}}. Let A, ., be the simplicial complex with the set of facets
FAnm) = {{1,2,....m},{2,3,....m+1},....,{n —m+1,n—m+2,...,n}}, where 1 < m < n.
We denote I, = (X122 T, T2T3 Tty - - - Tn—m+1Tn—m+2 - - Tn) , the associated facet ideal.
Note that I,, ,, is the m-path ideal of the graph L,,, provided with the direction given by 1 <2 < ... < n,
see [9] for further details.

According to [9, Theorem 1.2], the projective dimension of S/I,, ,, is:

20=d) " = d(mod (m + 1)) with 0 < d < m — 1,

d(S/Lym) =< ot
Pd(S/Inm) {W,nzm(mod(m—&—l)).
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By Auslander-Buchsbaum formula (see [15]), it follows that depth(S/I, ) = n — pd(S/I,,m) and, by
a straightforward computation, we can see depth(S/IL, ) =n+1— {g:_” — {;’Lfl
proved in [5] that sdepth(S/I, ) = ¢(n,m).

The cycle graph of length n, denoted by C,,, is a graph with the vertex set V' = [n] and the edge set E =
{{1,2},{2,3},...,{n—1,n},{n,1}}. Let A,, ,,, be the simplicial complex with the set of facets F(A,, ,,) =
{{1,2,...,m},{2,3,...,m+1},--- ,{n—m+1,n—m+2,...,n},{n—m+2,...,n,1}, ..., {n,1,...,m—
1}}. We denote Jpm = (Z1@2 - - Ty T2T3  ** Ty 1s - - » T 18n—m+2 = - Loy - -, T - - - Tyt ), the
associated facet ideal. Note that .J, ,,, is the m-path ideal of the graph C,.

Let p = {mj_lJ and d =n — (m+ 1)p. According to [1, Corollary 5.5],

—‘ =: p(n,m). We

2p+1, d#0,

A(S/ ) =
pd(S/Jnm) {2p7d:().

By Auslander-Buchsbaum formula, it follows that depth(S/J, m) = n — pd(S/Jpm) = n — {milJ -

o(n —1,m). We also prove that, sdepth(Jy m/In,m) = depth(Jn,m/Inm) = ¢(n —1,m) + m — 1, see
Proposition 1.6. These results generalize [4, Theorem 1.9] and [4, Proposition 1.10].

{mLH—‘ = p(n—1,m). Our main result is Theorem 1.4, in which we prove that ¢(n, m) > sdepth(S/Jp m) >

1. MAIN RESULTS
First, we recall the well known Depth Lemma, see for instance [15, Lemma 1.3.9].

Lemma 1.1. (Depth Lemma) If 0 - U — M — N — 0 is a short exact sequence of modules over a
local ring S, or a Noetherian graded ring with Sy local, then

a) depth M > min{depth N, depth U}.

b) depth U > min{depth M, depth N + 1}.

¢) depth N > min{depth U — 1,depth M }.

In [12], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:

Lemma 1.2. Let 0 > U — M — N — 0 be a short exact sequence of Z™-graded S-modules. Then:
sdepth(M) > min{sdepth(U), sdepth(N)}.

The following result is well known. However, we present an original proof.

Lemma 1.3. Let I C S be a nonzero proper monomial ideal. Then, I is principal if and only if
sdepth(S/I)=n—1.

Proof. Assume sdepth(S/I) = n — 1 and let S/I = @._, u;K[Z;] be a Stanley decomposition with
|Z;] = n —1 for all ¢, and u; € S monomials. Since 1 ¢ I, we may assume that uq; = 1. Let z;, be
the variable which is not in Z;. If z;, € I, since S/(z;,) = K[Z1] and K[Z;] C S/I, then I = (z;,).
Otherwise, we may assume that us = x;,.

Let zj, be the variable which is not in Zy. If z;,x;, € I, then, one can easily see that I = (xj ;,).
If 2;,2;, ¢ I, then we may assume uz = z;,2;, and so on. Thus, we have u; = zj, ---z;, ,, for all
1 <4 < r+1, where z;, is the variable which is not in Z;. Moreover, I = (up41), and therefore I is
principal.

In order to prove the other implication, assume that I = (u) and write u = [[\_, z;,. We let u; =
M.z, and Z; = {21,...,2,} \ {;,}, for all 1 < i < r. Then, S/I = @|_, u;K[Z] is a Stanley
decomposition with |Z;| = n — 1 for all 4. Therefore sdepth(S/I) =n — 1. O

Our main result, is the following theorem.
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Theorem 1.4. ¢(n,m) > sdepth(S/Jp m) > depth(S/Jp m) = ¢(n —1,m).

Proof. If n = m, then J, ,, = (21...x,) is a principal ideal, and, according to Lemma 1.3 we are done.
Also, if m = 1, then J,1 = (x1,...,2,) and so there is nothing to prove, since S/.J, 1 = K. The case
m = 2 follows from [4, Proposition 1.8] and [4, Theorem 1.9].

Assume n > m > 3. If n = m + 1, then we consider the short exact sequence

0—S/(Jnn=1:2n) = S/Jnn-1—S/(Jnn-1,Tn) — 0.

Note that (Jun—1 @ Tn) = (1 Tn—2,T2 Tp—1,T3+ Tp_1T1," ", Tn_1T1 """ Tn—3)
Therefore, by induction hypothesis and [10, Lemma 3.6],
sdepth(S/(Jnn—1: xn)) = depth(S/(Jnm-1:2n)) =1+ ¢(n—2,n—2)=n—2.
Also, (Jun-1,Zn) = (x1---Zp_1,%y,) and thus S/(Jyn-1,2n) = Klz1,...,2n-1]/(x1---2p—1). There-
fore, by Lemma 1.3, we have sdepth(S/(Jpn.n—1, %)) = n — 2 = depth(S/(Jn n-1,2n))-
Now, assume n > m + 1 > 3. We consider the ideals Lo = Jp m, Liy1 = (Lk : p_g) and Up =
(Li,Tp—k), for 0 < k < m — 2. Note that

Jnfl,n72s~

L1 = Jnm : Tpema2 - Tn) = (T1, T2 Tint1s- - Tn—2m+1 " - Tn—ms Tn—m+1)-
If n —2m < 2, then L,,—1 = (21, Zn—m+1) and thus sdepth(S/L,,—1) = depth(S/Ly,—1) = n —2 =
©(n,m), since U}Lflj =1 and [::Fll—‘ =2.
Iftn—2m>2 then S/Ly—1 2 KXo, ..., Tnem, Tnm+2,--Tn]/ (T2 Tina1, - Tn—2m+1 " Tnem)
and therefore, by [10, Lemma 3.6] and [5, Theorem 1.3], we have sdepth(S/L,,—1) = depth(S/L,,—1) =

n—1-— L”’mJ - {”’m—‘ = ¢(n,m). On the other hand, for example by [3, Proposition 2.7],

m+1 m+1
sdepth(S/Ly,—1) > sdepth(S/Jp, m). Thus, sdepth(S/J,.m) < @(n, m).
For any 0 < k < m, we have Ly = (T1 Tm—k T2 " Timtls- - Tn—m—k " Tn—k—1,
Tn—m+1"""Tn—k, Tn—m+2 " Ln—kLly- -, Tn—kT1 """ xm—k—l)- Therefore, Uy, = (Il o Tm—ks
X Tpgls- ey Tnemek** Tn—k—1,Ln—k), for k < m — 2. We consider two cases:

(Y)Un—m—-—k<2and 0 <k <m—2, then Uy, = (21 -+ Typ—, Tn—x) and therefore sdepth(S/Uy)
depth(S/Ux) =n —2 = p(n,m), since {”—HJ =1 and ["*1—‘ =2.

m+1 m—+1|
(5) f n —m —k > 2, then, for any 0 < j < k < m — 2, we consider the ideals Vj ; :=
(X1 Tm—jy T2 Tong1s -y Tnmm—k - Tn—k—1) I Sk = K[zr1,...,np_g—1]. Note that S/U, =

(Sk/Vik)[®n—k+1,---,%n] and thus, by [10, Lemma 3.6], depth(S/U;) = depth(Sk/Vik) + k and
sdepth(S/Uy) = sdepth(Sk/ Vi) + k.
For any 0 < j < k <m — 2, we claim that Vk,j/Vk,jH is isomorphic to

(K[xm_j+2,...,:cn_k_l]/(xm_j+2~~~:E2m_j+1,...,:cn_m_ko-~wn_k_1))[x1,...,xm_j].
Indeed, if w € Vi ; \ Vi j41 is a monomial, then 1 - - - @y —j|u and zp,—j11 t u. AlSO, Ty jyo - Tam—jt1 1
U, oovy, Tpem—k " Tn—k—1 { u. Denoting v = u/(x1---zpm_;), we can write v = v, with v’ €
K[xm—j—}-Qa s axn—k—l] \ (xm—j—Q—Z o To2me—jly s Tn—m—k " 'xn—k—l) and v” S K[xl, cee 7xm—j]~

By [10, Lemma 3.6] and [5, Theorem 1.3], sdepth(Vi ; /Vi j+1) = depth(Vi ;/Vi j+1) = m—j+p(n—k—
m+j—2,m)=n—k—1— L"fmflkaJ — {”7’”717’“”—‘ =n—k+1— L"ikﬂ-J — {nikﬂ—‘ > p(n,m)—k.

m+1 m+1 m—+1 m-+1
On the other hand, Vi o = I—k—1.m for any 0 < k < m — 2 and therefore, by [5, Theorem 1.3],

sdepth(S/Vi o) = depth(S/Vio) = p(n —k—1,m) =n—k — V’L;];J - {%—‘ > o(n,m) — k, for any
k > 1. From the short exact sequences 0 — Vi ;/Vi j+1 — S/Vijy1 = S/Vi; = 0,0 < j < k, Lemma
1.1 and Lemma 1.2, it follows that sdepth(S/Vj j4+1) > depth(S/Vi j11) = ¢(n,m) —k, for all 0 < j <
k < m — 2. Thus sdepth(S/Uy) > depth(S/Ux) > ¢(n,m), for all 0 < k < m — 2.0n the other hand,
sdepth(S/Vp,0) = depth(S/Vo.0) = ¢(n — 1,m), and thus sdepth(S/Uy) = depth(S/Uy) = p(n — 1,m).

Now, we consider short exact sequences

0—S/Liy1 — S/Ly — S/U;, — 0, for0<k<m.
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By Lemma 1.1 and Lemma 1.2 we get sdepth(S/Ly) > depth(S/Ly) = p(n,m), for any 0 < k <m — 2,
and sdepth(S/Lg) > depth(S/Lg) = p(n —1,m). O

Corollary 1.5. If [%J = {mLHJ and Lﬁiﬂ = {miﬂ—‘, then

sdepth(S/ Jn.m) = depth(S/J.m) = ©(n, m).
Proposition 1.6. sdepth(Jy m/In,m) > depth(Jp m/Inm) = ¢(n —1,m) +m — 1.
Proof. We claim that Jy, 1,/ I m is isomorphic to

Klzo, ..., Tnom]

xn_mﬂmxnmﬂ(ﬂfz---xm,x3-~-fcm+2..-7fcn72m+1--~$nfm))[xn_m+2’”'7In’x1]@
K.Tg ey Ly — 1
@l'n_m+3"'l‘nxll‘2((x3 e— i. ’3 : nxm—;} ) - ))[xn—m+37~-~7xnaxlax2]@
Trrdmy rdmA3y ey dn—=2m+2 """ dn—m+1
Klxpm,...,xn_2
"'@J?nl‘l"'.’l,‘m,l( [m7 rn ] )[l‘n,l'l...,.’lim,l].
(Tms Tong1 = T2my -+ oy Tpmn—1* " Tp—2)

Indeed, let u € Jym \ Inn,m be a monomial. If z,,_pq0 - zpz1|u, then z,_pq1 fw and zo - - 2, fu. It
follows that:

UE Tpomg2 Tnl1(K[T2, ..., Tnm]/(T2 Ty, X3 Tig2 o+, Tn—2ma1 * Tem)) [Tr—mt2s - - -, Ty T1]-
If xp_myo - xpxy fu and Tp—pmis - Tpr1x2|u then z, 101w and 23 - - - 2, + u. Thus:

K[.’L‘g, s ;mnferl]

’U/ESCn,m+3"'SUn(E1$2( )[$n7m+3,...,$n7$1,$2].
(1'3 o Tmy L4 Tm43y -0 oy Tn—2m+42 """ zn—m+1)
Finally, if &p—mao - Tp®1 1 U, -y Tpo1Tp®1 - Tm—o { w and T,T1 - Tym_1|u, then it follows that
ZTpn—1 1w and x,, 1 u. Therefore:
Klxpy,...,xn 0
R R Y | [Py s 0] VMTr, T1 - oy Tt
(T Tyt T2my - Tnmm—1 " Tp—2)

As in the proof of Theorem 3.1 (see the computations for Vj ;’s), by applying Lemma 1.1 and Lemma
1.2, it follows that sdepth(Jy m/Inm) > depth(Jnm/Inm) = e(n—m—2,m)+m =¢p(n—1,m)+m—1,
as required. O

Inspired by [4, Conjecture 1.12] and computer experiments [6], we propose the following:

Conjecture 1.7. For any n > 3(m + 1) + 1, we have sdepth(S/Jp, m) = ¢(n,m).
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