ON A GENERALIZED GAUSS CONVERGENCE CRITERION

ILEANA BUCUR

Abstract

In this paper we combine the well known Raabe-Duhamel, Kummer, Bertrand ... criterions of convergence for series with positive terms and we obtain a new one which is more powerful than those cited before. Even the famous Gauss criterion, which was in fact our starting point, is a consequence of this new convergence test.

Mathematics Subject Classification (2010): 40A05
Keywords: series, Gauss convergence criterion

Article history:

Received 20 June 2015
Received in revised form 30 June 2015
Accepted 2 July 2015

1. Preliminary and first Results

It is well known that the sequence $\left(\left(1+\frac{1}{n}\right)^{n}\right)_{n \geq 1}$ (resp. $\left.\left(\left(1+\frac{1}{n}\right)^{n+1}\right)_{n \geq 1}\right)$ increases (respectively decreases) to the real number $e=2,73 \ldots$

Sometimes is useful to rephrase this assertion in a more powerful form:
Lemma 1. The function f (resp. g) defined by

$$
f(x)=\left(1+\frac{1}{x}\right)^{x} \quad\left(\text { resp. } g(x)=\left(1+\frac{1}{x}\right)^{x+1}\right), \quad x \in(0, \infty)
$$

is increasing (resp. decreasing) to the real number e when x tends to ∞.
Notations. The function $E_{1}:(-\infty, \infty) \rightarrow(0, \infty)$ given by $E_{1}(x)=e^{x}$ being increasing, bijective and continuous (in fact $E_{1} \in \mathcal{C}^{\infty}(\mathbb{R})$), the functions $E_{p}, p \in \mathbb{N}^{*}$, inductively defined by

$$
E_{p+1}(x)=E_{1}\left(E_{p}(x)\right)=E_{p}\left(E_{1}(x)\right)=\underbrace{\left(E_{1} \circ E_{1} \circ E_{1} \circ \ldots \circ E_{1}\right)}_{p+1 \text { times }}(x)
$$

belong also to the class \mathcal{C}^{∞} and we have

$$
\begin{gathered}
E_{1}(\mathbb{R})=(0, \infty), E_{2}(\mathbb{R})=E_{1}(0, \infty)=(1, \infty) \\
E_{3}(\mathbb{R})=E_{1}(1, \infty)=(e, \infty), E_{4}(\mathbb{R})=E_{1}(e, \infty)=\left(e^{e}, \infty\right) \\
E_{5}(\mathbb{R})=E_{1}\left(e^{e}, \infty\right)=\left(e^{e^{e}}, \infty\right) \ldots
\end{gathered}
$$

Let us denote by $A_{1}, A_{2}, \ldots, A_{p}, \ldots$ the elements of \mathbb{R}_{+}given by $A_{1}=0, A_{2}=1=E_{1}\left(A_{1}\right), A_{3}=e=$ $E_{1}\left(A_{2}\right), A_{4}=e^{e}=E_{1}\left(A_{3}\right) \ldots A_{p+1}=E_{1}\left(A_{p}\right) \ldots$

Obviously we have $0=A_{1}<A_{2}<A_{3}<A_{4}<\ldots<A_{p}<A_{p+1}<\ldots$ and the functions $E_{1}, E_{2}, \ldots, E_{p} \ldots$ defined on the interval $(-\infty, \infty)$ belong to the class $\mathcal{C}^{\infty}(\mathbb{R})$, they are strictly increasing and $E_{1}(-\infty, \infty)=(0, \infty)=\left(A_{1}, \infty\right), E_{2}(-\infty, \infty)=(1, \infty)=\left(A_{2}, \infty\right), E_{3}(-\infty, \infty)=\left(A_{3}, \infty\right)$, $\ldots, E_{p}(-\infty, \infty)=\left(A_{p}, \infty\right)$.

One may show inductively that

$$
E_{p}^{\prime}(x)=E_{1}(x) E_{2}(x) \cdots E_{p}(x), \quad \forall p \geq 1
$$

and therefore, if we denote by l_{p} the inverse of the function $E_{p}, l_{p}:\left(A_{p}, \infty\right) \rightarrow(-\infty, \infty)$, the function l_{p} belongs to the class $\mathcal{C}^{\infty}\left(A_{p}, \infty\right)$ and we have

$$
E_{q} \circ E_{p}=E_{p} \circ E_{q}=E_{p+q}, \quad E_{p}^{-1} \circ E_{q}^{-1}=E_{q}^{-1} \circ E_{p}^{-1}=E_{p+q}^{-1}
$$

Hence, for any $t \in E_{p+q}(-\infty, \infty)=\left(A_{p+q}, \infty\right)$ we have

$$
\begin{gathered}
E_{p+q}^{-1}(t)=E_{p}^{-1} \circ E_{q}^{-1}(t)=E_{q}^{-1} \circ E_{p}^{-1}(t) ; \\
l_{p+q}(t)=\left(l_{p} \circ l_{q}\right)(t)=\left(l_{q} \circ l_{p}\right)(t) \\
E_{q}\left(l_{q+p}(t)\right)=E_{q}\left(l_{q}\left(l_{p}(t)\right)\right)=l_{p}(t)
\end{gathered}
$$

and therefore

$$
\begin{gathered}
t \in\left(A_{p+q}, \infty\right) \Rightarrow l_{p+q}^{\prime}(t)=\frac{1}{E_{p+q}^{\prime}\left(l_{p+q}(t)\right)}=\frac{1}{\left(E_{1} E_{2} \cdots E_{p+q}\right)\left(l_{p+q}(t)\right)}= \\
=\frac{1}{E_{1}\left(l_{p+q}(t)\right) E_{2}\left(l_{p+q}(t)\right) \cdot \ldots \cdot E_{p+q}\left(l_{p+q}(t)\right)}=\frac{1}{l_{p+q-1}(t) \cdot l_{p+q-2}(t) \cdot \ldots \cdot l_{1}(t) \cdot t} ; \\
l_{n}^{\prime}(t)=\frac{1}{t \cdot l_{1}(t) \cdot l_{2}(t) \cdot \ldots \cdot l_{n-1}(t)}, \quad \forall t \in\left(A_{n}, \infty\right)
\end{gathered}
$$

We remark also that for any $p \geq 1, p \in \mathbb{N}$ we have

$$
l_{p}\left(A_{p+1}, \infty\right)=(0, \infty) \quad \text { and } \quad l_{p}\left(A_{p+2}, \infty\right)=(1, \infty)
$$

We shall denote by $\Delta_{k}, k \in \mathbb{N}^{*}$, the function defined on $\left(A_{k}, \infty\right)$ given by

$$
\Delta_{k}(x)=l_{k}(x+1)-l_{k}(x)
$$

Lemma 2. a) For any $x \in[e, \infty)=\left[A_{3}, \infty\right)$ and any $y \geq x$ we have

$$
\frac{l_{1}(y)}{l_{1}(x)} \leq \frac{y}{x}
$$

b) For any $x \in\left[A_{k+2}, \infty\right)$ and any $y \geq x$ we have

$$
\frac{l_{k}(y)}{l_{k}(x)} \leq \frac{y}{x}
$$

Proof. a) If we denote $u=l_{1}(x), v=l_{1}(y)$ we have $1 \leq u \leq v$ and therefore

$$
\frac{l_{1}(y)}{l_{1}(x)}=\frac{v}{u}=1+\frac{v-u}{u} \leq 1+(v-u) \leq e^{v-u}=\frac{e^{v}}{e^{u}}=\frac{y}{x}
$$

b) The inequality may be done inductively. For $k=1$ the assertion b) is just the assertion a). We suppose that for $k \geq 1, x \in\left[A_{k+2}, \infty\right), y \geq x$ we have

$$
\frac{l_{k}(y)}{l_{k}(x)} \leq \frac{y}{x}
$$

If $x \in\left[A_{k+3}, \infty\right)$ and $y \geq x$ we have $l_{1}(x) \in\left[A_{k+2}, \infty\right) \subset\left[A_{3}, \infty\right), l_{1}(y) \geq l_{1}(x)$ and therefore by the hypothesis we have

$$
\frac{l_{k}\left(l_{1}(y)\right)}{l_{k}\left(l_{1}(x)\right)} \leq \frac{l_{1}(y)}{l_{1}(x)} \leq \frac{y}{x}
$$

Lemma 3. For any $k \in \mathbb{N}^{*}$ and any $x \in\left[A_{k+1}, \infty\right)$ we have

$$
0 \leq \frac{(x+1) l_{1}(x+1) l_{2}(x+1) \cdot \ldots \cdot l_{k-1}(x+1) \Delta_{k-1}(x)}{l_{k-1}(x)}-1 \leq \frac{1}{x} \cdot 2^{k}
$$

Proof. Taking $k \in \mathbb{N}^{*}, x \geq A_{k+1}$ and applying Lagrange Theorem we deduce the existence of a real number $x^{\prime} \in(x, x+1)$ such that

$$
\Delta_{k-1}(x)=l_{k-1}(x+1)-l_{k-1}(x)=\frac{1}{x^{\prime} l_{1}\left(x^{\prime}\right) l_{2}\left(x^{\prime}\right) \cdot \ldots \cdot l_{k-2}\left(x^{\prime}\right)}
$$

If we denote

$$
F_{k-1}(x)=\frac{(x+1) l_{1}(x+1) l_{2}(x+1) \cdot \ldots \cdot l_{k-1}(x+1) \Delta_{k-1}(x)}{l_{k-1}(x)}-1
$$

we have

$$
F_{k-1}(x)=\frac{x+1}{x^{\prime}} \cdot \frac{l_{1}(x+1)}{l_{1}\left(x^{\prime}\right)} \cdot \frac{l_{2}(x+1)}{l_{2}\left(x^{\prime}\right)} \cdot \ldots \cdot \frac{l_{k-2}(x+1)}{l_{k-2}\left(x^{\prime}\right)} \cdot \frac{l_{k-1}(x+1)}{l_{k-1}(x)}-1
$$

Since the functions $l_{1}, l_{2}, \ldots, l_{k-1}$ are positive and increasing on the interval $\left[A_{k+1}, \infty\right)$ we deduce that the function F_{k-1} is positive on the interval $\left[A_{k+1}, \infty\right)$ and moreover we have

$$
0 \leq F_{k-1}(x) \leq \frac{x+1}{x} \cdot \frac{l_{1}(x+1)}{l_{1}(x)} \cdot \frac{l_{2}(x+1)}{l_{2}(x)} \cdot \ldots \cdot \frac{l_{k-1}(x+1)}{l_{k-1}(x)}-1
$$

We apply now Lemma 2 and we obtain

$$
\begin{gathered}
\frac{x+1}{x}=1+\frac{1}{x}, \frac{l_{1}(x+1)}{l_{1}(x)} \leq 1+\frac{1}{x}, \ldots, \frac{l_{k-1}(x+1)}{l_{k-1}(x)} \leq 1+\frac{1}{x} \\
F_{k-1}(x) \leq\left(1+\frac{1}{x}\right)^{k}-1=\sum_{j=1}^{k} C_{k}^{j} \cdot\left(\frac{1}{x}\right)^{j} \leq \frac{1}{x} \sum_{j=1}^{k} C_{k}^{j}<\frac{1}{x} \cdot 2^{k} .
\end{gathered}
$$

We remember now, under a convenient form, the well known Raabe-Duhamel and Gauss criterions of convergence (or divergence) for the series with positive terms (see [1] or [2]).

From now on $\sum a_{n}$ will be a series of real numbers such that $a_{n}>0$ for all $n \in \mathbb{N}$.
Raabe-Duhamel divergence criterion. If $\frac{a_{n}}{a_{n+1}} \leq 1+\frac{1}{n}$, for n sufficiently large, then the series $\sum a_{n}$ is divergent.

Raabe-Duhamel convergence criterion. If $\alpha \in \mathbb{R}, \alpha>1$ and for n sufficiently large we have $\frac{a_{n}}{a_{n+1}} \geq 1+\frac{\alpha}{n}$ then the series $\sum a_{n}$ is convergent.

Gauss divergence criterion. If there exist $\alpha \in(1, \infty)$ and a (positive) real number M such that $\frac{a_{n}}{a_{n+1}} \leq 1+\frac{1}{n}+\frac{M}{n^{\alpha}}$, for n sufficiently large, then the series $\sum a_{n}$ is divergent.

Gauss convergence criterion. If there exist $r \in(1, \infty), \alpha \in(1, \infty)$ and M a (negative) real number such that $\frac{a_{n}}{a_{n+1}} \geq 1+\frac{r}{n}+\frac{M}{n^{\alpha}}$ for n sufficiently large, then the series $\sum a_{n}$ is convergent.

Kummer divergence criterion. If $\left(k_{n}\right)$ is a sequence of real numbers, $k_{n}>0$, for all $n \in \mathbb{N}$ such that the series $\sum_{n} \frac{1}{k_{n}}$ is divergent and we have

$$
k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1} \leq 0
$$

for n sufficiently large, then the series $\sum_{n} a_{n}$ is divergent.

Kummer convergence criterion. If $\left(k_{n}\right)_{n}$ is a sequence of real numbers $k_{n}>0$, for all $n \in \mathbb{N}$ and if there exists $\alpha>0$ such that

$$
k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1} \geq \alpha
$$

for n sufficiently large, then the series $\sum a_{n}$ is convergent.
Remark 1. If instead of the above sequence $\left(k_{n}\right)_{n}$ of positive numbers we take $k_{n}=n \ln n$ or $k_{n}=n \log _{a} n$, where $a \in(1, \infty)$, we obtain so called Bertrand criterion.

Remark 2. Even Gauss criterion is a consequence of Bertrand criterion.
Remark 3. The sequence $\left(k_{n}\right)_{n \geq A_{p+1}}$ of positive real numbers given by

$$
k_{n}=n l_{1}(n) l_{2}(n) \cdot \ldots \cdot l_{p}(n), n \geq A_{p+1}
$$

is increasing and the series $\sum_{n \geq A_{p+1}} \frac{1}{k_{n}}$ is divergent. Here $p \in \mathbb{N}$ is arbitrary, $p \geq 1$.

2. The main result

From now on we shall use the notations from the preceding section, $\sum a_{n}$ will be a series of real number, $a_{n}>0$ for all n and p will be a natural number, $p \geq 1$.

Theorem $D T_{p}$ (p-divergence criterion). If we have

$$
\frac{a_{n}}{a_{n+1}} \leq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n l_{1}(n) l_{2}(n)}+\ldots+\frac{1}{n l_{1}(n) l_{2}(n) \cdot \ldots \cdot l_{p}(n)},
$$

for n sufficiently large, then the series $\sum a_{n}$ is divergent.
Proof. Let $k_{n}=n l_{1}(n) l_{2}(n) \cdot \ldots \cdot l_{p}(n)$ for $n \in \mathbb{N}, n \geq A_{p+1}$. We know that the series $\sum_{n} \frac{1}{k_{n}}$ is divergent. We try to use Kummer divergence criterion. We have

$$
\begin{gathered}
k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1} \leq(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)+\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)+\left(l_{3} l_{4} \cdot \ldots \cdot l_{p}\right)(n)+\ldots \\
\ldots+\left(l_{p-1} l_{p}\right)(n)+l_{p}(n)+1-(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n+1)= \\
\quad=\left[(n+1)\left(l_{1}(n)-l_{1}(n+1)\right)+1\right] \cdot\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)+ \\
+\left[(n+1) l_{1}(n+1)\left(l_{2}(n)-l_{2}(n+1)\right)+1\right] \cdot\left(l_{3} l_{4} \ldots \cdot l_{p}\right)(n)+ \\
\vdots \\
+\left[(n+1) l_{1}(n+1) l_{2}(n+1) \cdot \ldots \cdot l_{s-1}(n+1)\left(l_{s}(n)-l_{s}(n+1)\right)+1\right]\left(l_{s+1} l_{s+2} \cdot \ldots \cdot l_{p}\right)(n)+ \\
+\ldots+\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-2}\right)(n+1)\left(l_{p-1}(n)-l_{p-1}(n+1)\right)+1\right] \cdot l_{p}(n)+ \\
+ \\
+\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n+1)\left(l_{p}(n)-l_{p}(n+1)\right)+1\right] .
\end{gathered}
$$

Obviously $l_{s}(n)>0$ for all $s \leq p$ and any $n \geq A_{p+1}$. To finish the proof it will be sufficient to show that

$$
(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n)-l_{s}(n+1)\right)+1 \leq 0, \forall n \geq A_{p+1} .
$$

This inequality follows applying Lagrange Theorem, namely there exists $x, n<x<n+1$ such that

$$
l_{s}(n+1)-l_{s}(n)=\frac{1}{x \cdot\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(x)}
$$

and therefore

$$
\begin{gathered}
(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1) \cdot\left(l_{s}(n)-l_{s}(n+1)\right)+1= \\
=-\left(\frac{n+1}{x}\right) \cdot \frac{l_{1}(n+1)}{l_{1}(x)} \cdot \frac{l_{2}(n+1)}{l_{2}(x)} \cdot \ldots \cdot \frac{l_{s-1}(n+1)}{l_{s-1}(x)}+1<0 .
\end{gathered}
$$

Theorem $C T_{p}$ (p - convergence criterion). If there exists $\alpha>1$ such that

$$
\frac{a_{n}}{a_{n+1}} \geq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\ldots+\frac{1}{n l_{1}(n) l_{2}(n) \cdot \ldots \cdot l_{p-1}(n)}+\frac{\alpha}{n l_{1}(n) l_{2}(n) \cdot \ldots \cdot l_{p}(n)}
$$

for n sufficiently large, then the series $\sum a_{n}$ is convergent.
Proof. Using the same sequence $\left(k_{n}\right)_{n}$ we shall use again Kummer (convergence) criterion. We shall try to show that for any $n \in \mathbb{N}$, sufficiently large, we have

$$
k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1} \geq r>0, \quad \text { where } r=\frac{\alpha-1}{2} .
$$

From the calculus performed in the proof of Theorem $D T_{p}$ we have

$$
\begin{gathered}
k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1} \geq\left[(n+1)\left(l_{1}(n)-l_{1}(n+1)\right)+1\right]\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)+ \\
+\sum_{s=2}^{p-1}\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n)-l_{s}(n+1)\right)+1\right] \cdot\left(l_{s+1} l_{s+2} \cdot \ldots \cdot l_{p}\right)(n)+ \\
+\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n+1)\left(l_{p}(n)-l_{p}(n+1)\right)+1\right]+2 r .
\end{gathered}
$$

To finish the proof it will be sufficient to show that

$$
\lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n)-l_{s}(n+1)\right)+1\right] \cdot\left(l_{s+1} l_{s+2} \cdot \ldots \cdot l_{p}\right)(n)=0
$$

for $s \in\{2,3, \ldots, p-1\}$ and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1}(n)-l_{1}(n+1)\right)+1\right]\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)=0= \\
& =\lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1} \cdot \ldots \cdot l_{p-1}\right)(n+1)\left(l_{p}(n)-l_{p}(n+1)\right)+1\right] .
\end{aligned}
$$

For our purpose we shall use the above Lemma 1 and Lemma 3. We have

$$
\begin{gathered}
0 \leq(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n+1)-l_{s}(n)\right)-1= \\
=(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1) \cdot\left(l_{1}\left(\frac{l_{s-1}(n+1)}{l_{s-1}(n)}\right)\right)-1= \\
=\frac{(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1) \Delta_{s-1}(n)}{l_{s-1}(n)} \cdot l_{1}\left[\left(1+\frac{\Delta_{s-1}(n)}{l_{s-1}(n)}\right)^{\frac{l_{s-1}(n)}{\Delta_{s-1}(n)}}\right]-1 \leq \\
\leq\left(\frac{(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1) \Delta_{s-1}(n)}{l_{s-1}(n)}-1\right) l_{1}\left[\left(1+\frac{\Delta_{s-1}(n)}{l_{s-1}(n)}\right)^{\frac{l_{s-1}(n)}{\Delta_{s-1}(n)}}\right] \leq \\
\leq \frac{1}{n} \cdot 2^{s}
\end{gathered}
$$

and therefore, if $n \geq A_{p+1}$, the following inequality holds

$$
\begin{gathered}
0 \leq\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n+1)-l_{s}(n)\right)-1\right]\left(l_{s+1} \cdot \ldots \cdot l_{p}\right)(n) \leq \\
\leq 2^{s} \cdot \frac{\left(l_{s+1} \cdot \ldots \cdot l_{p}\right)(n)}{n}
\end{gathered}
$$

Hence

$$
\lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{s-1}\right)(n+1)\left(l_{s}(n+1)-l_{s}(n)\right)-1\right]\left(l_{s+1} \cdot \ldots \cdot l_{p}\right)(n)=0
$$

In a similar way one can show the assertions

$$
\begin{gathered}
0=\lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1}(n)-l_{1}(n+1)\right)+1\right]\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n) \\
\lim _{n \rightarrow \infty}\left[(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n+1)\left(l_{p}(n)-l_{p}(n+1)\right)-1\right]=0 .
\end{gathered}
$$

Hence $k_{n} \cdot \frac{a_{n}}{a_{n+1}}-k_{n+1}>r$ for n sufficiently large.
Theorem $L T_{p}$. If there exists the following limit

$$
\begin{gathered}
l:=\lim _{n \rightarrow \infty} n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)\left(\frac{a_{n}}{a_{n+1}}-1-\frac{1}{n}-\frac{1}{n l_{1}(n)}-\frac{1}{n\left(l_{1} l_{2}\right)(n)}-\ldots\right. \\
\left.\ldots-\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}\right)
\end{gathered}
$$

then the series $\sum_{n} a_{n}$ converges for $l>1$ and diverges for $l<1$.

3. Examples and counterexamples

In this part we establish some relations between different convergence (or divergence) criterions for series with positive terms.

Notations. If $C^{\prime}, C^{\prime \prime}$ are two criterions of convergence (or divergence) for series $\sum a_{n}$, with $a_{n}>0$ we say that $C^{\prime \prime}$ is stronger than C^{\prime} and we write $C^{\prime} \leq C^{\prime \prime}$, if the conditions in which $C^{\prime \prime}$ acts are automatically fulfilled whenever the conditions in which C^{\prime} acts are fulfilled.

Proposition. If we denote by $C R, C G$ (respectively $D R, D G$) the Raabe convergence, Gauss convergence (respectively Raabe divergence, Gauss divergence) criterions then we have

$$
\begin{aligned}
& C R<C G<C T_{1}<C T_{2}<C T_{3}<\ldots<C T_{p}<C T_{p+1}<\ldots \\
& D R<D G<D T_{1}<D T_{2}<D T_{3}<\ldots<D T_{p}<D T_{p+1}<\ldots
\end{aligned}
$$

Proof. From the inequalities

$$
\begin{aligned}
& 1+\frac{1}{n} \leq 1+\frac{1}{n}+\frac{M}{n^{\alpha}} \leq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)} \leq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n\left(l_{1} l_{2}\right)(n)} \leq \ldots \\
& \ldots \leq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n\left(l_{1} l_{2}\right)(n)}+\frac{1}{n\left(l_{1} l_{2} l_{3}\right)(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)}
\end{aligned}
$$

for any $\alpha>1, M>0$ and n sufficiently large, $n \geq A_{p+1}$, we deduce that

$$
D R \leq D G \leq D T_{1} \leq D T_{2} \leq \ldots \leq D T_{p}
$$

Some examples will show that these inequalities are strict.
If $b_{1}, b_{2}, \ldots, b_{k}$ are real numbers we shall denote by $\prod_{i \leq k} b_{i}$ their product $b_{1} \cdot b_{2} \cdot \ldots \cdot b_{k}$.
Let us take the sequence $\left(a_{n}\right)_{n}$ in \mathbb{R}_{+}given by

$$
a_{n}=\frac{((n-1)!)^{2}}{\prod_{k \leq n-1}\left(1+k+k^{2}\right)}
$$

We have

$$
\frac{a_{n}}{a_{n+1}}=\frac{n^{2}+n+1}{n^{2}}=1+\frac{1}{n}+\frac{1}{n^{2}} .
$$

$D G$ criterion decides the divergence of the series $\sum a_{n}$ but $D R$ criterion doesn't it. Hence $D R<D G$. Let now $b_{n} \in \mathbb{R}_{+}$given by

$$
b_{n}=\frac{(n-1)!(\ln (2))(\ln (3)) \cdot \ldots \cdot(\ln (n-1))}{(1+3 \ln 2)(1+4 \ln 3) \cdot \ldots \cdot(1+n \ln (n-1))}, n \geq 3
$$

We have

$$
\frac{b_{n}}{b_{n+1}}=\frac{1+(n+1) \ln (n)}{n \ln (n)}=1+\frac{1}{n}+\frac{1}{n \ln (n)} .
$$

By $D T_{1}$ - criterion the series $\sum_{n \geq 3} b_{n}$ is divergent. In the same time if we take $\alpha>1$ and $M>0$ we can not have the inequalities

$$
\frac{b_{n}}{b_{n+1}} \leq 1+\frac{1}{n}+\frac{M}{n^{\alpha}}
$$

at least for a sufficiently large n because the inequality $\frac{1}{n \ln (n)} \leq \frac{M}{n^{\alpha}}$ fails for n sufficiently large.
Hence $D G$ - criterion does not decide the nature of the series $\sum b_{n}$ i.e. $D G<D T_{1}$.
Let now $p \in \mathbb{N}, p \geq 2$ and $n_{0} \in \mathbb{N}$ be the smallest natural number greater than A_{p+1}, defined in Section 1. We consider a sequence $\left(b_{n}\right)_{n \geq n_{0}}$ inductively defined by

$$
\begin{gathered}
b_{n_{0}}=1 \\
b_{n+1}=b_{n} \cdot \frac{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)}{1+(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)+\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)+\left(l_{3} l_{4} \cdot \ldots \cdot l_{p}\right)(n)+\ldots+l_{p}(n)}
\end{gathered}
$$

Obviously $b_{n}>0$ and

$$
\frac{b_{n}}{b_{n+1}}=1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)}
$$

Using $D T_{p}$ - criterion we decide that the series $\sum_{n \geq n_{0}} b_{n}$ is divergent. Since

$$
1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}<\frac{b_{n}}{b_{n+1}}, \forall n \geq n_{0}
$$

the $D T_{p-1}$ - criterion does not decide the nature of the series $\sum_{n \geq n_{0}} b_{n}$, i.e. $D T_{p-1}<D T_{p}$. From the preceding considerations we get $D R<D G<D T_{1}<D T_{2}<\ldots<D T_{p}$.

We show now that $C R<C G<C T_{1}<C T_{2}<\ldots<C T_{p}$.
The relations $C R \leq C G \leq C T_{1}$ are obvious.
For an arbitrary $p \in \mathbb{N}, p \geq 1$ we consider a series $\sum a_{n}$ for which there exists $\alpha>1$ such that

$$
\frac{a_{n}}{a_{n+1}} \geq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n\left(l_{1} l_{2}\right)(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}+\frac{\alpha}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)} .
$$

Since

$$
\begin{aligned}
& \lim n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p+1}\right)\left(\frac{a_{n}}{a_{n+1}}\right.\left.-1-\frac{1}{n}-\frac{1}{n l_{1}(n)}-\ldots-\frac{1}{n\left(l_{1} \cdot \ldots \cdot l_{p}\right)(n)}\right) \geq \\
& \geq(\alpha-1) \infty>2,
\end{aligned}
$$

we have for n sufficiently large

$$
\frac{a_{n}}{a_{n+1}} \geq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\ldots+\frac{1}{n\left(l_{1} \cdot \ldots \cdot l_{p}\right)(n)}+\frac{2}{n\left(l_{1} \cdot \ldots \cdot l_{p+1}\right)(n)}
$$

Hence $C T_{p} \leq C T_{p+1}, C R \leq C G \leq C T_{1} \leq C T_{2} \leq \ldots \leq C T_{p}$.
The fact that we have strict inequalities before, may be shown by some examples. More precisely we consider $p \in \mathbb{N}, p>1$ and for any $n \geq\left[A_{p+1}\right]+1=n_{0}$ let $b_{n} \in \mathbb{R}_{+}$given by

$$
\begin{gathered}
b_{n_{0}}=1 \\
b_{n+1}=b_{n} \cdot \frac{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)}{2+l_{p}(n)+\left(l_{p-1} l_{p}\right)(n)+\ldots+\left(l_{2} l_{3} \cdot \ldots \cdot l_{p}\right)(n)+(n+1)\left(l_{1} l_{2} \cdot \ldots \cdot l_{p}\right)(n)}
\end{gathered}
$$

We have

$$
\frac{b_{n}}{b_{n+1}}=1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n\left(l_{1} l_{2}\right)(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}+\frac{2}{n\left(l_{1} \cdot \ldots \cdot l_{p}\right)(n)}
$$

and therefore using $C T_{p}$ - criterion the series $\sum b_{n}$ is convergent. In the same time there is no $\alpha>1$ such that

$$
\frac{b_{n}}{b_{n+1}} \geq 1+\frac{1}{n}+\frac{1}{n l_{1}(n)}+\frac{1}{n\left(l_{1} l_{2}\right)(n)}+\ldots+\frac{1}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-2}\right)(n)}+\frac{\alpha}{n\left(l_{1} l_{2} \cdot \ldots \cdot l_{p-1}\right)(n)}
$$

at least for n sufficiently large. Hence $C T_{p-1}$ - criterion does not decide the convergence of the series $\sum b_{n}$ i.e. $C T_{p-1}<C T_{p}$.

References

[1] N. Boboc, Mathematical Analysis (in Romanian), vol. 1, Editura Universităţii Bucureşti, 1999.
[2] M. Nicolescu, Mathematical Analysis (in Romanian), vol. 1, Editura Tehnică, 1957.
Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Bucharest, Romania

E-mail address: bucurileana@yahoo.com

