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Abstract. In this paper we combine the well known Raabe-Duhamel, Kummer,
Bertrand . . . criterions of convergence for series with positive terms and we obtain a new
one which is more powerful than those cited before. Even the famous Gauss criterion,
which was in fact our starting point, is a consequence of this new convergence test.
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1. Preliminary and first results

It is well known that the sequence ((1 + 1

n
)n)n≥1 (resp. ((1 + 1

n
)n+1)n≥1) increases (respectively

decreases) to the real number e = 2, 73 . . ..
Sometimes is useful to rephrase this assertion in a more powerful form:

Lemma 1. The function f (resp. g) defined by

f(x) =

(

1 +
1

x

)x

(resp. g(x) =

(

1 +
1

x

)x+1

), x ∈ (0,∞)

is increasing (resp. decreasing) to the real number e when x tends to ∞.

Notations. The function E1 : (−∞,∞) → (0,∞) given by E1(x) = ex being increasing, bijective and
continuous (in fact E1 ∈ C∞(R)), the functions Ep, p ∈ N

∗, inductively defined by

Ep+1(x) = E1(Ep(x)) = Ep(E1(x)) = (E1 ◦ E1 ◦ E1 ◦ . . . ◦ E1)
︸ ︷︷ ︸

p+1 times

(x)

belong also to the class C∞ and we have

E1(R) = (0,∞), E2(R) = E1(0,∞) = (1,∞),

E3(R) = E1(1,∞) = (e,∞), E4(R) = E1(e,∞) = (ee,∞),

E5(R) = E1(e
e,∞) = (ee

e

,∞) . . .

Let us denote by A1, A2, . . . , Ap, . . . the elements of R+ given by A1 = 0, A2 = 1 = E1(A1), A3 = e =
E1(A2), A4 = ee = E1(A3) . . .Ap+1 = E1(Ap) . . ..

Obviously we have 0 = A1 < A2 < A3 < A4 < . . . < Ap < Ap+1 < . . . and the functions
E1, E2, . . . , Ep . . . defined on the interval (−∞,∞) belong to the class C∞(R), they are strictly increas-
ing and E1(−∞,∞) = (0,∞) = (A1,∞), E2(−∞,∞) = (1,∞) = (A2,∞), E3(−∞,∞) = (A3,∞),
. . . , Ep(−∞,∞) = (Ap,∞).

One may show inductively that

E′
p(x) = E1(x)E2(x) · · ·Ep(x), ∀ p ≥ 1
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and therefore, if we denote by lp the inverse of the function Ep, lp : (Ap,∞) → (−∞,∞), the function lp
belongs to the class C∞(Ap,∞) and we have

Eq ◦ Ep = Ep ◦ Eq = Ep+q, E−1
p ◦ E−1

q = E−1
q ◦ E−1

p = E−1
p+q.

Hence, for any t ∈ Ep+q(−∞,∞) = (Ap+q,∞) we have

E−1
p+q(t) = E−1

p ◦ E−1
q (t) = E−1

q ◦ E−1
p (t);

lp+q(t) = (lp ◦ lq)(t) = (lq ◦ lp)(t);

Eq(lq+p(t)) = Eq(lq(lp(t))) = lp(t)

and therefore

t ∈ (Ap+q,∞) ⇒ l′p+q(t) =
1

E′
p+q(lp+q(t))

=
1

(E1E2 · · ·Ep+q)(lp+q(t))
=

=
1

E1(lp+q(t))E2(lp+q(t)) · . . . · Ep+q(lp+q(t))
=

1

lp+q−1(t) · lp+q−2(t) · . . . · l1(t) · t
;

l′n(t) =
1

t · l1(t) · l2(t) · . . . · ln−1(t)
, ∀ t ∈ (An,∞).

We remark also that for any p ≥ 1, p ∈ N we have

lp(Ap+1,∞) = (0,∞) and lp(Ap+2,∞) = (1,∞).

We shall denote by ∆k, k ∈ N
∗, the function defined on (Ak,∞) given by

∆k(x) = lk(x+ 1)− lk(x).

Lemma 2. a) For any x ∈ [e,∞) = [A3,∞) and any y ≥ x we have

l1(y)

l1(x)
≤

y

x
.

b) For any x ∈ [Ak+2,∞) and any y ≥ x we have

lk(y)

lk(x)
≤

y

x
.

Proof. a) If we denote u = l1(x), v = l1(y) we have 1 ≤ u ≤ v and therefore

l1(y)

l1(x)
=

v

u
= 1 +

v − u

u
≤ 1 + (v − u) ≤ ev−u =

ev

eu
=

y

x
.

b) The inequality may be done inductively. For k = 1 the assertion b) is just the assertion a). We
suppose that for k ≥ 1, x ∈ [Ak+2,∞), y ≥ x we have

lk(y)

lk(x)
≤

y

x
.

If x ∈ [Ak+3,∞) and y ≥ x we have l1(x) ∈ [Ak+2,∞) ⊂ [A3,∞), l1(y) ≥ l1(x) and therefore by the
hypothesis we have

lk(l1(y))

lk(l1(x))
≤

l1(y)

l1(x)
≤

y

x
. �

Lemma 3. For any k ∈ N
∗ and any x ∈ [Ak+1,∞) we have

0 ≤
(x+ 1)l1(x+ 1)l2(x+ 1) · . . . · lk−1(x+ 1)∆k−1(x)

lk−1(x)
− 1 ≤

1

x
· 2k.
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Proof. Taking k ∈ N
∗, x ≥ Ak+1 and applying Lagrange Theorem we deduce the existence of a real

number x′ ∈ (x, x+ 1) such that

∆k−1(x) = lk−1(x+ 1)− lk−1(x) =
1

x′l1(x′)l2(x′) · . . . · lk−2(x′)
.

If we denote

Fk−1(x) =
(x+ 1)l1(x+ 1)l2(x+ 1) · . . . · lk−1(x+ 1)∆k−1(x)

lk−1(x)
− 1

we have

Fk−1(x) =
x+ 1

x′
·
l1(x+ 1)

l1(x′)
·
l2(x+ 1)

l2(x′)
· . . . ·

lk−2(x+ 1)

lk−2(x′)
·
lk−1(x+ 1)

lk−1(x)
− 1

Since the functions l1, l2, . . . , lk−1 are positive and increasing on the interval [Ak+1,∞) we deduce that
the function Fk−1 is positive on the interval [Ak+1,∞) and moreover we have

0 ≤ Fk−1(x) ≤
x+ 1

x
·
l1(x+ 1)

l1(x)
·
l2(x+ 1)

l2(x)
· . . . ·

lk−1(x+ 1)

lk−1(x)
− 1.

We apply now Lemma 2 and we obtain

x+ 1

x
= 1 +

1

x
,
l1(x+ 1)

l1(x)
≤ 1 +

1

x
, . . . ,

lk−1(x+ 1)

lk−1(x)
≤ 1 +

1

x
,

Fk−1(x) ≤

(

1 +
1

x

)k

− 1 =

k∑

j=1

C
j
k ·

(
1

x

)j

≤
1

x

k∑

j=1

C
j
k <

1

x
· 2k. �

We remember now, under a convenient form, the well known Raabe-Duhamel and Gauss criterions of
convergence (or divergence) for the series with positive terms (see [1] or [2]).

From now on
∑

an will be a series of real numbers such that an > 0 for all n ∈ N.

Raabe-Duhamel divergence criterion. If
an

an+1

≤ 1 +
1

n
, for n su-

fficiently large, then the series
∑

an is divergent.

Raabe-Duhamel convergence criterion. If α ∈ R, α > 1 and for n sufficiently large we have
an

an+1

≥ 1 +
α

n
then the series

∑
an is convergent.

Gauss divergence criterion. If there exist α ∈ (1,∞) and a (positive) real number M such that
an

an+1

≤ 1 +
1

n
+

M

nα
, for n sufficiently large, then the series

∑
an is divergent.

Gauss convergence criterion. If there exist r ∈ (1,∞), α ∈ (1,∞) and M a (negative) real number

such that
an

an+1

≥ 1 +
r

n
+

M

nα
for n sufficiently large, then the series

∑
an is convergent.

Kummer divergence criterion. If (kn) is a sequence of real numbers, kn > 0, for all n ∈ N such

that the series
∑

n

1

kn
is divergent and we have

kn ·
an

an+1

− kn+1 ≤ 0

for n sufficiently large, then the series
∑

n

an is divergent.
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Kummer convergence criterion. If (kn)n is a sequence of real numbers kn > 0, for all n ∈ N and
if there exists α > 0 such that

kn ·
an

an+1

− kn+1 ≥ α

for n sufficiently large, then the series
∑

an is convergent.

Remark 1. If instead of the above sequence (kn)n of positive numbers we take kn = n lnn or
kn = n loga n, where a ∈ (1,∞), we obtain so called Bertrand criterion.

Remark 2. Even Gauss criterion is a consequence of Bertrand criterion.

Remark 3. The sequence (kn)n≥Ap+1
of positive real numbers given by

kn = nl1(n)l2(n) · . . . · lp(n), n ≥ Ap+1

is increasing and the series
∑

n≥Ap+1

1

kn
is divergent. Here p ∈ N is arbitrary, p ≥ 1.

2. The main result

From now on we shall use the notations from the preceding section,
∑

an will be a series of real
number, an > 0 for all n and p will be a natural number, p ≥ 1.

Theorem DTp (p - divergence criterion). If we have

an

an+1

≤ 1 +
1

n
+

1

nl1(n)
+

1

nl1(n)l2(n)
+ . . .+

1

nl1(n)l2(n) · . . . · lp(n)
,

for n sufficiently large, then the series
∑

an is divergent.

Proof. Let kn = nl1(n)l2(n) · . . . · lp(n) for n ∈ N, n ≥ Ap+1. We know that the series
∑

n

1

kn
is

divergent. We try to use Kummer divergence criterion. We have

kn ·
an

an+1

− kn+1 ≤ (n+ 1)(l1l2 · . . . · lp)(n) + (l2l3 · . . . · lp)(n) + (l3l4 · . . . · lp)(n) + . . .

. . .+ (lp−1lp)(n) + lp(n) + 1− (n+ 1)(l1l2 · . . . · lp)(n+ 1) =

= [(n+ 1)(l1(n)− l1(n+ 1)) + 1] · (l2l3 · . . . · lp)(n)+

+[(n+ 1)l1(n+ 1)(l2(n)− l2(n+ 1)) + 1] · (l3l4 · . . . · lp)(n)+

...

+[(n+ 1)l1(n+ 1)l2(n+ 1) · . . . · ls−1(n+ 1)(ls(n)− ls(n+ 1)) + 1](ls+1ls+2 · . . . · lp)(n)+

+ . . .+ [(n+ 1)(l1l2 · . . . · lp−2)(n+ 1)(lp−1(n)− lp−1(n+ 1)) + 1] · lp(n)+

+[(n+ 1)(l1l2 · . . . · lp−1)(n+ 1)(lp(n)− lp(n+ 1)) + 1].

Obviously ls(n) > 0 for all s ≤ p and any n ≥ Ap+1. To finish the proof it will be sufficient to show
that

(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n)− ls(n+ 1)) + 1 ≤ 0, ∀ n ≥ Ap+1.

This inequality follows applying Lagrange Theorem, namely there exists x, n < x < n+ 1 such that

ls(n+ 1)− ls(n) =
1

x · (l1l2 · . . . · ls−1)(x)

and therefore
(n+ 1)(l1l2 · . . . · ls−1)(n+ 1) · (ls(n)− ls(n+ 1)) + 1 =

= −

(
n+ 1

x

)

·
l1(n+ 1)

l1(x)
·
l2(n+ 1)

l2(x)
· . . . ·

ls−1(n+ 1)

ls−1(x)
+ 1 < 0. �
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Theorem CTp (p - convergence criterion). If there exists α > 1 such that

an

an+1

≥ 1 +
1

n
+

1

nl1(n)
+ . . .+

1

nl1(n)l2(n) · . . . · lp−1(n)
+

α

nl1(n)l2(n) · . . . · lp(n)
,

for n sufficiently large, then the series
∑

an is convergent.

Proof. Using the same sequence (kn)n we shall use again Kummer (convergence) criterion. We shall
try to show that for any n ∈ N, sufficiently large, we have

kn ·
an

an+1

− kn+1 ≥ r > 0, where r =
α− 1

2
.

From the calculus performed in the proof of Theorem DTp we have

kn ·
an

an+1

− kn+1 ≥ [(n+ 1)(l1(n)− l1(n+ 1)) + 1](l2l3 · . . . · lp)(n)+

+

p−1
∑

s=2

[(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n)− ls(n+ 1)) + 1] · (ls+1ls+2 · . . . · lp)(n)+

+[(n+ 1)(l1l2 · . . . · lp−1)(n+ 1)(lp(n)− lp(n+ 1)) + 1] + 2r.

To finish the proof it will be sufficient to show that

lim
n→∞

[(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n)− ls(n+ 1)) + 1] · (ls+1ls+2 · . . . · lp)(n) = 0

for s ∈ {2, 3, . . . , p− 1} and

lim
n→∞

[(n+ 1)(l1(n)− l1(n+ 1)) + 1](l2l3 · . . . · lp)(n) = 0 =

= lim
n→∞

[(n+ 1)(l1 · . . . · lp−1)(n+ 1)(lp(n)− lp(n+ 1)) + 1].

For our purpose we shall use the above Lemma 1 and Lemma 3. We have

0 ≤ (n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n+ 1)− ls(n))− 1 =

= (n+ 1)(l1l2 · . . . · ls−1)(n+ 1) ·

(

l1

(
ls−1(n+ 1)

ls−1(n)

))

− 1 =

=
(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)∆s−1(n)

ls−1(n)
· l1





(

1 +
∆s−1(n)

ls−1(n)

) ls−1(n)

∆s−1(n)



− 1 ≤

≤

(
(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)∆s−1(n)

ls−1(n)
− 1

)

l1





(

1 +
∆s−1(n)

ls−1(n)

) ls−1(n)

∆s−1(n)



 ≤

≤
1

n
· 2s

and therefore, if n ≥ Ap+1, the following inequality holds

0 ≤ [(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n+ 1)− ls(n))− 1](ls+1 · . . . · lp)(n) ≤

≤ 2s ·
(ls+1 · . . . · lp)(n)

n
.

Hence

lim
n→∞

[(n+ 1)(l1l2 · . . . · ls−1)(n+ 1)(ls(n+ 1)− ls(n))− 1](ls+1 · . . . · lp)(n) = 0.

In a similar way one can show the assertions

0 = lim
n→∞

[(n+ 1)(l1(n)− l1(n+ 1)) + 1](l2l3 · . . . · lp)(n),

lim
n→∞

[(n+ 1)(l1l2 · . . . · lp−1)(n+ 1)(lp(n)− lp(n+ 1))− 1] = 0.
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Hence kn ·
an

an+1

− kn+1 > r for n sufficiently large. �

Theorem LTp . If there exists the following limit

l := lim
n→∞

n(l1l2 · . . . · lp)(n)(
an

an+1

− 1−
1

n
−

1

nl1(n)
−

1

n(l1l2)(n)
− . . .

. . .−
1

n(l1l2 · . . . · lp−1)(n)
)

then the series
∑

n

an converges for l > 1 and diverges for l < 1.

3. Examples and counterexamples

In this part we establish some relations between different convergence (or divergence) criterions for
series with positive terms.

Notations. If C ′, C ′′ are two criterions of convergence (or divergence) for series
∑

an, with an > 0 we
say that C ′′ is stronger than C ′ and we write C ′ ≤ C ′′, if the conditions in which C ′′ acts are automatically
fulfilled whenever the conditions in which C ′ acts are fulfilled.

Proposition. If we denote by CR, CG (respectively DR, DG) the Raabe convergence, Gauss conver-
gence (respectively Raabe divergence, Gauss divergence) criterions then we have

CR < CG < CT1 < CT2 < CT3 < . . . < CTp < CTp+1 < . . .

DR < DG < DT1 < DT2 < DT3 < . . . < DTp < DTp+1 < . . .

Proof. From the inequalities

1 +
1

n
≤ 1 +

1

n
+

M

nα
≤ 1 +

1

n
+

1

nl1(n)
≤ 1 +

1

n
+

1

nl1(n)
+

1

n(l1l2)(n)
≤ . . .

. . . ≤ 1 +
1

n
+

1

nl1(n)
+

1

n(l1l2)(n)
+

1

n(l1l2l3)(n)
+ . . .+

1

n(l1l2 · . . . · lp)(n)

for any α > 1, M > 0 and n sufficiently large, n ≥ Ap+1, we deduce that

DR ≤ DG ≤ DT1 ≤ DT2 ≤ . . . ≤ DTp.

Some examples will show that these inequalities are strict.
If b1, b2, . . . , bk are real numbers we shall denote by Π

i≤k
bi their product b1 · b2 · . . . · bk.

Let us take the sequence (an)n in R+ given by

an =
((n− 1)!)2

∏

k≤n−1

(1 + k + k2)
.

We have
an

an+1

=
n2 + n+ 1

n2
= 1 +

1

n
+

1

n2
.

DG criterion decides the divergence of the series
∑

an but DR criterion doesn’t it. Hence DR < DG.
Let now bn ∈ R+ given by

bn =
(n− 1)!(ln(2))(ln(3)) · . . . · (ln(n− 1))

(1 + 3 ln 2)(1 + 4 ln 3) · . . . · (1 + n ln(n− 1))
, n ≥ 3.

We have
bn

bn+1

=
1 + (n+ 1) ln(n)

n ln(n)
= 1 +

1

n
+

1

n ln(n)
.
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By DT1 - criterion the series
∑

n≥3

bn is divergent. In the same time if we take α > 1 and M > 0 we can

not have the inequalities
bn

bn+1

≤ 1 +
1

n
+

M

nα

at least for a sufficiently large n because the inequality
1

n ln(n)
≤

M

nα
fails for n sufficiently large.

Hence DG - criterion does not decide the nature of the series
∑

bn i.e. DG < DT1.
Let now p ∈ N, p ≥ 2 and n0 ∈ N be the smallest natural number greater than Ap+1, defined in Section

1. We consider a sequence (bn)n≥n0
inductively defined by

bn0
= 1,

bn+1 = bn ·
n(l1l2 · . . . · lp)(n)

1 + (n+ 1)(l1l2 · . . . · lp)(n) + (l2l3 · . . . · lp)(n) + (l3l4 · . . . · lp)(n) + . . .+ lp(n)
.

Obviously bn > 0 and

bn

bn+1

= 1 +
1

n
+

1

nl1(n)
+ . . .+

1

n(l1l2 · . . . · lp−1)(n)
+

1

n(l1l2 · . . . · lp)(n)
.

Using DTp - criterion we decide that the series
∑

n≥n0

bn is divergent. Since

1 +
1

n
+

1

nl1(n)
+ . . .+

1

n(l1l2 · . . . · lp−1)(n)
<

bn

bn+1

, ∀ n ≥ n0,

the DTp−1 - criterion does not decide the nature of the series
∑

n≥n0

bn, i.e. DTp−1 < DTp. From the

preceding considerations we get DR < DG < DT1 < DT2 < . . . < DTp.

We show now that CR < CG < CT1 < CT2 < . . . < CTp.
The relations CR ≤ CG ≤ CT1 are obvious.
For an arbitrary p ∈ N, p ≥ 1 we consider a series

∑
an for which there exists α > 1 such that

an

an+1

≥ 1 +
1

n
+

1

nl1(n)
+

1

n(l1l2)(n)
+ . . .+

1

n(l1l2 · . . . · lp−1)(n)
+

α

n(l1l2 · . . . · lp)(n)
.

Since

limn(l1l2 · . . . · lp+1)

(
an

an+1

− 1−
1

n
−

1

nl1(n)
− . . .−

1

n(l1 · . . . · lp)(n)

)

≥

≥ (α− 1)∞ > 2,

we have for n sufficiently large

an

an+1

≥ 1 +
1

n
+

1

nl1(n)
+ . . .+

1

n(l1 · . . . · lp)(n)
+

2

n(l1 · . . . · lp+1)(n)
.

Hence CTp ≤ CTp+1, CR ≤ CG ≤ CT1 ≤ CT2 ≤ . . . ≤ CTp.
The fact that we have strict inequalities before, may be shown by some examples. More precisely we

consider p ∈ N, p > 1 and for any n ≥ [Ap+1] + 1 = n0 let bn ∈ R+ given by

bn0
= 1,

bn+1 = bn ·
n(l1l2 · . . . · lp)(n)

2 + lp(n) + (lp−1lp)(n) + . . .+ (l2l3 · . . . · lp)(n) + (n+ 1)(l1l2 · . . . · lp)(n)
.

We have

bn

bn+1

= 1 +
1

n
+

1

nl1(n)
+

1

n(l1l2)(n)
+ . . .+

1

n(l1l2 · . . . · lp−1)(n)
+

2

n(l1 · . . . · lp)(n)
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and therefore using CTp - criterion the series
∑

bn is convergent. In the same time there is no α > 1
such that

bn

bn+1

≥ 1 +
1

n
+

1

nl1(n)
+

1

n(l1l2)(n)
+ . . .+

1

n(l1l2 · . . . · lp−2)(n)
+

α

n(l1l2 · . . . · lp−1)(n)

at least for n sufficiently large. Hence CTp−1 - criterion does not decide the convergence of the series
∑

bn i.e. CTp−1 < CTp.
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