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1. Introduction, Definitions and Notations.

Let f be an entire function of two complex variables holomorphic in the closed
polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}
and Mf (r1, r2) = max {|f (z1, z2)| : |zi| ≤ ri, i = 1, 2}. Then in view of maximum prin-
cipal and Hartogs theorem {[7], p. 2, p. 51}, Mf (r1, r2) is an increasing functions of r1,
r2.

The following definition is well known:

Definition 1.1. {[7], p. 339, (see also [1])} The order v2ρf and the lower order v2λf of an
entire function f of two complex variables are defined as

v2ρ (f)

v2λ (f)
= lim

r1,r2→∞

sup
inf

log logMf (r1, r2)

log (r1r2)
.

If we consider the above definition for single variable, then the definition coincides
with the classical definition of order (see [13]) which is as follows:

Definition 1.2. [13] The order ρ (f) and the lower order λ (f) of an entire function f
are defined in the following way:

ρ (f)
λ (f)

= lim
r→∞

sup
inf

log logMf (r)

log r
,

where Mf (r) = max {|f (z)| : |z| = r}.
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If f is non-constant then Mf (r) is strictly increasing and continuous, and its
inverse Mf

−1 : (|f (0)| ,∞) → (0,∞) exists and is such that lim
s→∞

Mf
−1 (s) = ∞. Bernal

[2, 3] introduced the definition of relative order of g with respect to f , denoted by ρf (g)
as follows :

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

The definition coincides with the classical one [13] if g (z) = exp z.
During the past decades, several authors ( see [5, 8, 9, 10, 11, 12]) made close

investigations on the properties of relative order of entire functions of single variable. In
the case of relative order, it was then natural for Banerjee and Dutta [4] to define the
relative order of entire functions of two complex variables as follows:

Definition 1.3. [4] The relative order between two entire functions of two complex vari-
ables denoted by v2ρg (f) is defined as:

v2ρg (f) = inf {µ > 0 : Mf (r1, r2) < Mg (rµ1 , r
µ
2 ) ; r1 ≥ R (µ) , r2 ≥ R (µ)}

= lim sup
r1,r2→∞

logM−1
g Mf (r1, r2)

log (r1r2)

where f and g are entire functions holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and the definition coincides with Definition 1.1 {see [4]} if g (z) = exp (z1z2) .

Extending this notion, Dutta [6] introduced the idea of relative order of entire
functions of several complex variables in the following way:

Definition 1.4. [6] Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions of
n complex variables z1, z2, ..., zn with maximum modulus functions Mf (r1, r2, ..., rn) and
Mg (r1, r2, ..., rn) respectively then the relative order of f with respect to g, denoted by

vnρg (f) is defined by

vnρg (f) = inf {µ > 0 : Mf (r1, r2, ..., rn) < Mg (rµ1 , r
µ
2 , ..., r

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

The above definition can equivalently be written as

vnρg (f) = lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Similarly, one can define the relative lower order of f with respect to g denoted by vnλg (f)
as follows :

vnλg (f) = lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.
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Further an entire function f of several complex variables for which relative order
and relative lower order with respect to another entire function g of several complex
variables are the same is called a function of regular relative growth with respect to g.
Otherwise, f is said to be irregular relative growth.with respect to g.

In this connection just we state the following two definitions which will be needed
in the sequel:

Definition 1.5. [6] The function f(z1, z2, ..., zn) is said to have Property (R) if for any
σ > 1 and for all large r1, r2, ..., rn,

[Mf (r1, r2, ..., rn)]2 < Mf (rσ1 , r
σ
2 , ..., r

σ
n) .

For examples of functions with or without the Property (R), one may see [6].

Definition 1.6. A pair of functions f(z1, z2, ..., zn) and g(z1, z2, ..., zn) of n complex
variables are mutually said to have Property (X) if for all sufficiently large values of
r1, r2, ..., rn, both

Mf ·g (r1, r2, ..., rn) > Mf (r1, r2, ..., rn)

and
Mf ·g (r1, r2, ..., rn) > Mg (r1, r2, ..., rn)

hold simultaneously.

One can easily verify that the functions f(z1, z2, ..., zn) = exp (z1z2...zn) and
g(z1, z2, ..., zn) = exp (z1z2...zn)2 have the Property (X).

Here, in this paper, we aim at investigating some basic properties of relative order
and relative lower order of entire functions of several complex variables with respect
to another one under somewhat different conditions. We do not explain the standard
definitions and notations in the theory of entire function of several complex variables as
those are available in [7].

2. Lemma

In this section we present a lemma which will be needed in the sequel.

Lemma 2.1. [6] Suppose that f be a non constant entire function of several complex
variables, α > 1 and 0 < β < α. Then

Mf (αr1, αr2, ..., αrn) > βMf (r1, r2, ..., rn)

all sufficiently large r1, r2, ..., rn.

3. Theorems.

In this section we present the main results of the paper.

Theorem 3.1. Let us consider f1, f2 and g1 be any three entire functions of several
complex variables. Also let at least f1 or f2 is of regular relative growth with respect to
g1. Then

vnλg1 (f1 ± f2) ≤ max { vnλg1 (f1) , vnλg1 (f2)} .
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The equality holds when vnλg1 (fi) > vnλg1 (fj) with at least fj is of regular relative growth
with respect to g1 where i, j = 1, 2 and i 6= j.

Proof. If vnλg1 (f1 ± f2) = 0 then the result is obvious. So we suppose that vnλg1 (f1 ± f2)
> 0. We can clearly assume that vnλg1 (fk) is finite for k = 1, 2. Further let max
{vnλg1 (f1) , vnλg1 (f2)} = ∆ and f2 is of regular relative growth with respect to g1.

Now for any arbitrary ε > 0 from the definition of vnλg1 (f1), we have for a sequence
values of r1, r2, ..., rn tending to infinity that

Mf1 (r1, r2, ..., rn) < Mg1

(
r
( vnλg1 (f1)+ε)
1 , r

( vnλg1 (f1)+ε)
2 , ..., r

( vnλg1 (f1)+ε)
n

)
(3.1) i.e., Mf1 (r1, r2, ..., rn) < Mg1

(
r

(∆+ε)
1 , r

(∆+ε)
2 , ..., r(∆+ε)

n

)
.

Also for any arbitrary ε > 0 from the definition of vnρg1 (f2) (= vnλg1 (f2)), we
obtain for all sufficiently large values of r1, r2, ..., rn that

Mf2 (r1, r2, ..., rn) <

Mg1

(
r
( vnλg1 (f2)+ε)
1 , r

( vnλg1 (f2)+ε)
2 , ..., r

( vnλg1 (f2)+ε)
n

)
(3.2) i.e., Mf2 (r1, r2, ..., rn) < Mg1

(
r

(∆+ε)
1 , r

(∆+ε)
2 , ..., r(∆+ε)

n

)
.

Since Mf1±f2 (r1, r2, ..., rn) ≤ Mf1 (r1, r2, ..., rn) + Mf2 (r1, r2, ..., rn) for sufficiently
for large r1, r2, ..., rn, we obtain from (3.1) and (3.2) for a sequence values of r1, r2, ..., rn
tending to infinity that

(3.3) Mf1±f2 (r1, r2, ..., rn) < 2Mg1

(
r

(∆+ε)
1 , r

(∆+ε)
2 , ..., r(∆+ε)

n

)
.

Therefore in view of Lemma 2.1, we obtain from (3.3) for a sequence values of
r1, r2, ..., rn tending to infinity that

Mf1±f2 (r1, r2, ..., rn) < Mg1

(
3r

(∆+ε)
1 , 3r

(∆+ε)
2 , ..., 3r(∆+ε)

n

)
i.e., Mf1±f2 (r1, r2, ..., rn) < Mg1

(
r

(∆+3ε)
1 , r

(∆+3ε)
2 , ..., r(∆+3ε)

n

)
.

Since ε > 0 are arbitrary, we get from above that

vnλg1 (f1 ± f2) ≤ ∆ = max {vnλg1 (f1) , vnλg1 (f2)} .
Similarly, if we consider that f1 is of regular relative growth with respect to g1 or

both f1 and f2 are of regular relative growth with respect to g1, then one can easily verify
that

(3.4) vnλg1 (f1 ± f2) ≤ ∆ = max {vnλg1 (f1) , vnλg1 (f2)} .
Now let vnλg1 (f1) > vnλg1 (f2) and at least f2 is of regular relative growth with

respect to g1. Also let f = f1±f2. Then in view of (3.4) we get that vnλg1 (f) ≤ vnλg1 (f1) .
As, f1 = (f ± f2) and in this case we obtain that vnλg1 (f1) ≤ max {vnλg1 (f) , vnλg1 (f2)} .
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As we assume that vnλg1 (f2) < vnλg1 (f1) , therefore we have vnλg1 (f1) ≤ vnλg1 (f) and
hence

vnλg1 (f1 ± f2) ≥ vnλg1 (f1) = max {vnλg1 (f1) , vnλg1 (f2)} .
Further if we consider vnλg1 (f1) < vnλg1 (f2) and at least f1 is of regular relative growth
with respect to g1, then one can also verify that

(3.5) vnλg1 (f1 ± f2) ≥ ∆ = max {vnλg1 (f1) , vnλg1 (f2)} .
So the conclusion of the second part of the theorem follows from (3.4) and (3.5). �

Now we state the following theorem due to Dutta [6] :

Theorem 3.2. [6] Let us consider f1, f2 be any two entire functions of several complex
variables with relative order vnρg1 (f1) and vnρg1 (f2) with respect to another entire function
g1 of several complex variables. Then

vnρg1 (f1 ± f2) ≤ max { vnρg1 (f1) , vnρg1 (f2)} .
The equality holds when vnρg1 (f1) 6= vnρg1 (f2).

Theorem 3.3. Let f1, g1 and g2 be any three entire functions of several complex variables
such that vnλg1 (f1) and vnλg2 (f1) exits. Then

vnλg1±g2 (f1) ≥ min { vnλg1 (f1) , vnλg2 (f1)} .
The equality holds when vnλg1 (f1) 6= vnλg2 (f1).

Proof. If vnλg1±g2 (f1) =∞, then the result is obvious. So we suppose that vnλg1±g2 (f1) <
∞. We can clearly assume that vnλgk (f1) is finite for k = 1, 2. Further let Ψ = min
{vnλg1 (f1) , vnλg2 (f1)} . Now for any arbitrary ε > 0 from the definition of vnλgk (f1), we
have for all sufficiently large values of r1, r2, ..., rn that

Mgk

(
r
( vnλgk (f1)−ε)
1 , r

( vnλgk (f1)−ε)
2 , ..., r

( vnλgk (f1)−ε)
n

)
<

Mf1 (r1, r2, ..., rn)

where k = 1, 2.
Therefor from above we get for all sufficiently large values of r1, r2, ..., rn that

(3.6) Mgk

(
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

)
< Mf1 (r1, r2, ..., rn) where k = 1, 2.

Since Mg1±g2 (r1, r2, ..., rn) ≤ Mg1 (r1, r2, ..., rn) + Mg2 (r1, r2, ..., rn) for sufficiently
for large r1, r2, ..., rn, we obtain from above and Lemma 2.1 for all sufficiently large values
of r1, r2, ..., rn that

Mg1±g2

(
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

)
< Mg1

[
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

]
+Mg2

[
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

]
i.e., Mg1±g2

(
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

)
< 2Mf1 (r1, r2, ..., rn)
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i.e., Mg1±g2

((
1

3

)
r

(Ψ−ε)
1 ,

(
1

3

)
r

(Ψ−ε)
2 , ...,

(
1

3

)
r(Ψ−ε)
n

)
< Mf1 (r1, r2, ..., rn)

i.e., Mg1±g2

(
r

(Ψ−3ε)
1 , r

(Ψ−3ε)
2 , ..., r(Ψ−3ε)

n

)
< Mf1 (r1, r2, ..., rn)

Since ε > 0 are arbitrary, we get from above that

(3.7) vnλg1±g2 (f1) ≥ Ψ = min { vnλg1 (f1) , vnλg2 (f1)} .

Now let vnλg1 (f1) < vnλg2 (f1) and g = g1 ± g2. Then in view of (3.7) we get that

vnλg (f1) ≥ vnλg1 (f1) . Further, g1 = (g ± g2) and in this case we obtain that vnλg1 (f1) ≥
min {vnλg (f1) , vnλg2 (f1)} . As we assume that vnλg1 (f1) < vnλg2 (f1) , therefore we have

vnλg1 (f1) ≥ vnλg (f1) and hence

vnλg1±g2 (f1) ≥vn λg1 (f1) = min { vnλg1 (f1) , vnλg2 (f1)} .

Similarly, if we consider vnλg1 (f1) > vnλg2 (f1), then one can also derive that

(3.8) vnλg1±g2 (f1) ≤ Ψ = min { vnλg1 (f1) , vnλg2 (f1)} .

So the conclusion of the second part of the theorem follows from (3.7) and (3.8). �

Theorem 3.4. Let f1, g1 and g2 be any three entire functions of several complex variables
such that vnρg1 (f1) and vnρg2 (f1) exits. Also let f1 is of regular relative growth with respect
to at least any one of g1 or g2. Then

vnρg1±g2 (f1) ≥ min {vnρg1 (f1) , vnρg2 (f1)} .

The equality holds when vnρgi (f1) < vnρgj (f1) with at least f1 is of regular relative growth
with respect to gj where i, j = 1, 2 and i 6= j.

We omit the proof of Theorem 3.4 as it can easily be carried out in the line of
Theorem 3.3.

Theorem 3.5. Let f1, f2, g1 and g2 be any four entire functions of several complex
variables. Then

vnρg1±g2 (f1 ± f2) ≤

max [min {vnρg1 (f1) , vnρg2 (f1)} ,min {vnρg1 (f2) , vnρg2 (f2)}]

when the following two conditions holds:
(i) vnρgi (f1) < vnρgj (f1) with at least f1 is of regular relative growth with respect to gj for
i = 1, 2, j = 1, 2 and i 6= j; and
(ii) vnρgi (f2) < vnρgj (f2) with at least f2 is of regular relative growth with respect to gj
for i = 1, 2, j = 1, 2 and i 6= j.
The equality holds when vnρg1 (fi) < vnρg1 (fj) and vnρg2 (fi) < vnρg2 (fj) holds simultane-
ously for i = 1, 2; j = 1, 2 and i 6= j.
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Proof. Let the conditions (i) and (ii) of the theorem hold. Therefore in view of Theorem
3.2 and Theorem 3.4 we get that

max [min { vnρg1 (f1) , vnρg2 (f1)} ,min { vnρg1 (f2) , vnρg2 (f2)}]
= max [ vnρg1±g2 (f1) , vnρg1±g2 (f2)]

≥ vnρg1±g2 (f1 ± f2) .(3.9)

Since vnρg1 (fi) < vnρg1 (fj) and vnρg2 (fi) < vnρg2 (fj) hold simultaneously for i =
1, 2; j = 1, 2 and i 6= j, we obtain that

either min { vnρg1 (f1) , vnρg2 (f1)} > min { vnρg1 (f2) , vnρg2 (f2)} or

min { vnρg1 (f2) , vnρg2 (f2)} > min { vnρg1 (f1) , vnρg2 (f1)} holds.

Now in view of the conditions (i) and (ii) of the theorem, it follows from above
that

either vnρg1±g2 (f1) > vnρg1±g2 (f2) or vnρg1±g2 (f2) > vnρg1±g2 (f1)

which is the condition for holding equality in (3.9).
Hence the theorem follows. �

Theorem 3.6. Let f1, f2, g1 and g2 be any four entire functions of several complex vari-
ables. Then

vnλg1±g2 (f1 ± f2) ≥
min [max { vnλg1 (f1) , vnλg1 (f2)} ,max { vnλg2 (f1) , vnλg2 (f2)}]

when the following two conditions holds:
(i) vnλg1 (fi) > vnλg1 (fj) with at least fj is of regular relative growth with respect to g1 for
i = 1, 2, j = 1, 2 and i 6= j; and
(ii) vnλg2 (fi) > vnλg2 (fj) with at least fj is of regular relative growth with respect to g2

for i = 1, 2, j = 1, 2 and i 6= j.
The equality holds when vnλgi (f1) < vnλgj (f1) and vnλgi (f2) < vnλgj (f2) hold simultane-
ously for i = 1, 2; j = 1, 2 and i 6= j.

Proof. Suppose that the conditions (i) and (ii) of the theorem holds. Therefore in view
of Theorem 3.1 and Theorem 3.3, we obtain that

min [max { vnλg1 (f1) , vnλg1 (f2)} ,max { vnλg2 (f1) , vnλg2 (f2)}]
= min [ vnλg1 (f1 ± f2) ,vn λg2 (f1 ± f2)]

≥ vnλg1±g2 (f1 ± f2) .(3.10)

Since vnλgi (f1) < vnλgj (f1) and vnλgi (f2) < vnλgj (f2) holds simultaneously for
i = 1, 2; j = 1, 2 and i 6= j, we get that

either max { vnλg1 (f1) , vnλg1 (f2)} < max { vnλg2 (f1) , vnλg2 (f2)} or

max { vnλg2 (f1) , vnλg2 (f2)} < max { vnλg1 (f1) , vnλg1 (f2)} holds.

Since condition (i) and (ii) of the theorem holds, it follows from above that

either vnλg1 (f1 ± f2) < vnλg2 (f1 ± f2) or vnλg2 (f1 ± f2) < vnλg1 (f1 ± f2)
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which is the condition for holding equality in (3.10).
Hence the theorem follows. �

Now we state the following two remarks which are immediately follows from our
previous discussion:

Remark 3.7. Let f1, f2 and g1 be any three entire functions of several complex variables.
Also let both f1 and f2 are of regular relative growth with respect to g1 with vnρg1 (f1) 6=
vnρg1 (f2). Then

vnλg1 (f1 ± f2) = vnρg1 (f1 ± f2) = max {vnρg1 (f1) , vnρg1 (f2)} .

Remark 3.8. Let f1, g1 and g2 be any three entire functions of several complex variables.
Also let f1 is of regular relative growth with respect to both of g1 and g2 with vnρg1 (f1) 6=
vnρg2 (f1). Then

vnλg1±g2 (f1) = vnρg1±g2 (f1) = min {vnρg1 (f1) , vnρg2 (f1)} .

Theorem 3.9. Let f1, f2 and g1 be any three entire functions of several complex variables.
Also let at least f1 or f2 is of regular relative growth with respect to g1. Then

vnλg1 (f1 · f2) ≤ max { vnλg1 (f1) , vnλg1 (f2)}
provided g1 has the Property (R). The equality holds when f1 and f2 satisfy Property (X).

Proof. Suppose that vnλg1 (f1 · f2) > 0. Otherwise if vnλg1 (f1 · f2) = 0 then the result
is obvious. Let us consider that f2 is of regular relative growth with respect to g1. Also
suppose that max {vnλg1 (f1) ,vn λg1 (f2)} = ∆. We can clearly assume that vnλg1 (fk) is
finite for k = 1, 2. Since Mf1·f2 (r1, r2, ..., rn) < Mf1 (r1, r2, ..., rn) ·Mf2 (r1, r2, ..., rn) for all
large r1, r2, ..., rn, we have from (3.1) , (3.2) for a sequence values of r1, r2, ..., rn tending
to infinity that

Mf1·f2 (r1, r2, ..., rn) <
[
Mg1

(
r

(∆+ε)
1 , r

(∆+ε)
2 , ..., r(∆+ε)

n

)]2

.

Also in view of Definition 1.5, we obtain from above for any δ > 1 and for a
sequence values of r1, r2, ..., rn tending to infinity that

Mf1·f2 (r1, r2, ..., rn) < Mg1

(
r
δ(∆+ε)
1 , r

δ(∆+ε)
2 , ..., rδ(∆+ε)

n

)
,

since g1 has the Property (R). Since ε > 0 is arbitrary, now letting δ → 1+, we get from
above that

vnλg1 (f1 · f2) ≤ ∆ = max {vnλg1 (f1) , vnλg1 (f2)} .
Similarly, if we consider that f1 is of regular relative growth with respect to g1 or

both f1 and f2 are of regular relative growth with respect to g1, then also one can easily
verify that

(3.11) vnλg1 (f1 · f2) ≤ ∆ = max { vnλg1 (f1) , vnλg1 (f2)} .
Now let f1 and f2 are satisfy Property (X), then of course we haveMf1·f2 (r1, r2, ..., rn) >

Mf1 (r1, r2, ..., rn) and Mf1·f2 (r1, r2, ..., rn) > Mf2 (r1, r2, ..., rn) for all sufficiently large
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values of r1, r2, ..., rn. Therefore from the definition of relative lower order, we get for a
sequence values of r1, r2, ..., rn tending to infinity that

Mf1 (r1, r2, ..., rn) < Mf1·f2 (r1, r2, ..., rn)

≤Mg1

(
r
( vnλg1 (f1·f2)+ε)
1 , r

( vnλg1 (f1·f2)+ε)
2 , ..., r

( vnλg1 (f1·f2)+ε)
n

)
.

Since ε > 0 are arbitrary, we get from above that vnλg1 (f1 · f2) ≥ vnλg1 (f1). Similarly

vnλg1 (f1 · f2) ≥ vnλg1 (f2) and therefore

(3.12) vnλg1 (f1 · f2) ≥ ∆ = max {vnλg1 (f1) , vnλg1 (f2)} .
Hence the theorem follows from (3.11) and (3.12). �

Remark 3.10. In Theorem 4.1 (ii) of [6], Dutta [6] said nothing about the condition of
equality but the equality of Theorem 4.1 (ii) of [6] holds when f1 and f2 are satisfying the
Property (X) which can easily be derived in the line of Theorem 3.9.

Theorem 3.11. Let f1, g1 and g2 be any three entire functions of several complex
variables. Also let λg1 (f1) and λg2 (f1) exists. Then

vnλg1·g2 (f1) ≥ min {vnλg1 (f1) , vnλg2 (f1)}
provided g1 · g2 has the Property (R). The equality holds when g1 and g2 satisfy Property
(X).

Proof. Suppose that vnλg1·g2 (f1) < ∞. Otherwise if vnλg1·g2 (f1) = ∞ then the result is
obvious. Also suppose that min {vnλg1 (f1) ,vn λg2 (f1)} = Ψ. We can clearly assume that

vnλgk (f1) is finite for k = 1, 2.
AsMg1·g2 (r1, r2, ..., rn) < Mg1 (r1, r2, ..., rn)·Mg2 (r1, r2, ..., rn) for all large r1, r2, ..., rn,

we get in view of (3.6) for all sufficiently large values of r1, r2, ..., rn that

Mg1·g2

(
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

)
< [Mf1 (r1, r2, ..., rn)]2[

Mg1·g2

(
r

(Ψ−ε)
1 , r

(Ψ−ε)
2 , ..., r(Ψ−ε)

n

)] 1
2
< Mf1 (r1, r2, ..., rn) .

Now in view of Definition 1.5 we obtain from above for any δ > 1 and for all
sufficiently large values of r1, r2, ..., rn that

Mg1·g2

(
r

(Ψ−ε)
δ

1 , r
(Ψ−ε)
δ

2 , ..., r
(Ψ−ε)
δ

n

)
< Mf1 (r1, r2, ..., rn)

since g1 · g2 has the Property (R). Since ε > 0 is arbitrary, now letting δ → 1+, we obtain
from above that

(3.13) vnλg1·g2 (f1) ≥ Ψ = min { vnλg1 (f1) , vnλg2 (f1)} .
Now let g1 and g2 are satisfy Property (X), then of course we haveMg1·g2 (r1, r2, ..., rn) >

Mg1 (r1, r2, ..., rn) and Mg1·g2 (r1, r2, ..., rn) > Mg2 (r1, r2, ..., rn) for all sufficiently large val-
ues of r1, r2, ..., rn. Therefore from the definition of relative lower order, we get for all

Galaxy
Text Box
137



sufficiently large values of r1, r2, ..., rn that

Mg1

(
r
( vnλg1·g2 (f1)−ε)
1 , r

( vnλg1·g2 (f1)−ε)
2 , ..., r

( vnλg1·g2 (f1)−ε)
n

)
<

Mg1·g2

(
r
( vnλg1·g2 (f1)−ε)
1 , r

( vnλg1·g2 (f1)−ε)
2 , ..., r

( vnλg1·g2 (f1)−ε)
n

)
≤Mf1 (r1, r2, ..., rn) .

Since ε > 0 are arbitrary, we get from above that vnλg1 (f1) ≥ vnλg1·g2 (f1). Similarly

vnλg2 (f1) ≥ vnλg1·g2 (f1) and therefore

(3.14) vnλg1·g2 (f1) ≤ Ψ = min { vnλg1 (f1) , vnλg2 (f1)} .
Hence the theorem follows from (3.13) and (3.14). �

Theorem 3.12. Let f1, g1 and g2 be any three entire functions of several complex vari-
ables. Also let f1 is of regular relative growth with respect to at least any one of g1 or g2.
Then

vnρg1·g2 (f1) ≥ min { vnρg1 (f1) , vnρg2 (f1)}
provided g1 · g2 has the Property (R). The equality holds when g1 and g2 satisfy Property
(X).

We omit the proof of Theorem 3.12 as it can easily be carried out in the line of
Theorem 3.11.

Now we state the following two theorems without their proofs as those can easily
be carried out with the help of Remark 3.10, Theorem 3.9, Theorem 3.11 and Theorem
3.12 and

in the line of Theorem 3.5 and Theorem 3.6 respectively.

Theorem 3.13. Let f1, f2, g1 and g2 be any four entire functions of several complex
variables. Also let g1 · g2 be satisfy the Property (R). Then,

vnρg1·g2 (f1 · f2) =

max [min { vnρg1 (f1) , vnρg2 (f1)} ,min { vnρg1 (f2) , vnρg2 (f2)}] ,
when the following four conditions holds:
(i) f1 is of regular relative growth with respect to at least any one of g1 or g2;
(ii) f2 is of regular relative growth with respect to at least any one of g1 or g2;
(iii) f1 and f2 satisfy Property (X); and
(iv) g1 and g2 satisfy Property (X).

Theorem 3.14. Let f1, f2, g1 and g2 be any four entire functions of several complex
variables. Also let g1 · g2, g1 and g2 be satisfy the Property (R). Then,

vnλg1·g2 (f1 · f2) =

min [max { vnλg1 (f1) , vnλg1 (f2)} ,max { vnλg2 (f1) , vnλg2 (f2)}] ,
when the following four conditions holds:
(i) At least f1 or f2 is of regular relative growth with respect to g1;
(ii) At least f1 or f2 is of regular relative growth with respect to g2;
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(iii) f1 and f2 satisfy Property (X); and
(iv) g1 and g2 satisfy Property (X).
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