
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
STATE-DEPENDENT DELAY AND RANDOM EFFECTS

AMEL BENAISSA AND MOUFFAK BENCHOHRA

Abstract. In this work we study the existence of mild solutions of a functional differ-
ential equation with delay and random effects. We use a random fixed point theorem
with stochastic domain to show the existence of mild random solutions.

Mathematics Subject Classification (2010): 34G20, 34K20, 34K30
Keywords: Functional differential equation, mild random solution, finite delay, Random
fixed point, semigroup theory.

Article history:
Received 24 April 2015
Received in revised form 28 June 2015
Accepted 28 June 2015

1. Introduction

Functional evolution equations with state-dependent delay appear frequently in mathematical model-
ing of several real world problems and for this reason the study of this type of equations has received
great attention in the last few years, see for instance [8, 16, 17]. An extensive theory is developed for
evolution equations [2, 10]. Uniqueness and existence results have been established recently for different
evolution problems in the papers by Baghli and Benchohra for finite and infinite delay in [3, 4, 5]. On the
other hand, the nature of a dynamic system in engineering or natural sciences depends on the accuracy
of the information we have concerning the parameters that describe that system. If the knowledge about
a dynamic system is precise then a deterministic dynamical system arises. Unfortunately in most cases
the available data for the description and evaluation of parameters of a dynamic system are inaccurate,
imprecise or confusing. In other words, evaluation of parameters of a dynamical system is not without
uncertainties. When our knowledge about the parameters of a dynamic system are of statistical nature,
that is, the information is probabilistic, the common approach in mathematical modeling of such systems
is the use of random differential equations or stochastic differential equations. Random differential equa-
tions, as natural extensions of deterministic ones, arise in many applications and have been investigated
by many authors; see [19, 20, 21, 25, 26] and references therein. Between them differential equations
with random coefficients (see, [7, 25]) offer a natural and rational approach (see [24], Chapter 1), since
sometimes we can get the random distributions of some main disturbances by historical experiences and
data rather than take all random disturbances into account and assume the noise to be white noises.

In this work we prove the existence of mild solutions of the following functional differential equation
with delay and random effects (random parameters) of the form:

(1.1) y′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0, T ]

(1.2) y(t, w) = φ(t, w), t ∈ (−∞, 0],
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where (Ω,F, P ) is a complete probability space, w ∈ Ω, f : J ×B ×Ω→ E, φ ∈ B ×Ω are given random
functions which represent random nonlinear of the system, A : D(A) ⊂ E → E is the infinitesimal
generator of a strongly continuous semigroup T (t), t ∈ J, of bounded linear operators in a Banach space
(E, | · |), B is a phase space to be specified later, ρ : J × B → (−∞,+∞), and (E, |.|) is a real Banach
space. For any function y defined on (−∞, T ] × Ω and any t ∈ J we denote by yt(·, w) the element of
B×Ω defined by yt(θ, w) = y(t+ θ, w), θ ∈ (−∞, 0]. Here yt(·, w) represents the history of the state from
time −∞, up to the present time t. We assume that the histories yt(·, w) belong to the abstract phase
B. To our knowledge, the literature on the local existence of random evolution equations with delay is
very limited, so the present paper can be considered as a contribution to this question.

2. Preliminaries

We introduce notations, definitions and theorems which are used throughout this paper.
Let C(J,E) be the Banach space of continuous functions from J into E with the norm

‖y‖∞ = sup { |y(t)| : t ∈ J }.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J → E is Bochner integrable if and only if |y| is Lebesgue integrable. (For

the Bochner integral properties, see the classical monograph of Yosida [27]).
Let L1(J,E) denote the Banach space of measurable functions y : J → E which are Bochner integrable

normed by

‖y‖L1 =
∫ T

0

|y(t)| dt.

Definition 2.1. A map f : J × B × Ω→ E is said to be Carathéodory if:
(i) t→ f(t, y, w) is measurable for all y ∈ B.and for all w ∈ Ω.
(ii) y → f(t, y, w) is continuous for almost each t ∈ J. and for all w ∈ Ω.

(iii) w → f(t, y, w) is measurable for all y ∈ B, and almost each t ∈ J .

For a given set V of functions v : (−∞, T ]→ E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ (−∞, T ]

and
V (J) = {v(t) : v ∈ V, t ∈ (−∞, T ]}.

In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale and
Kato in [14] and follow the terminology used in [18]. Thus, (B, ‖ · ‖B) will be a seminormed linear space
of functions mapping (−∞, 0] into E, and satisfying the following axioms :

(A1) If y : (−∞, T ) → E, T > 0, is continuous on J and y0 ∈ B, then for every t ∈ J the following
conditions hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+ → R+ independent of y with K continuous and
M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .
(A3) The space B is complete.

Denote
KT = sup{K(t) : t ∈ J}, MT = sup{M(t) : t ∈ J}.

Remark 2.2. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.
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2. Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ − ψ‖B = 0 without necessarily
φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of in the first remark, we can see that for all φ, ψ ∈ B such that ‖φ−ψ‖B = 0
: We necessarily have that φ(0) = ψ(0).

We now indicate some examples of phase spaces. For other details we refer, for instance to the book
by Hino et al. [18].

Example 2.3. Let:

BC the space of bounded continuous functions defined from (−∞, 0] to E;
BUC the space of bounded uniformly continuous functions defined from (−∞, 0] to E;

C∞ :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
;

C0 :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1) − (A3). However, BC satisfies
(A1), (A3) but (A2) is not satisfied.

Example 2.4. The spaces Cg, UCg, C∞g and C0
g .

Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=
{
φ ∈ C((−∞, 0], E) :

φ(θ)
g(θ)

is bounded on (−∞, 0]
}

;

C0
g :=

{
φ ∈ Cg : lim

θ→−∞

φ(θ)
g(θ)

= 0
}
, endowed with the uniform norm

‖φ‖ = sup
{
|φ(θ)|
g(θ)

: θ ≤ 0
}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). We consider the following condition on

the function g.

(g1) For all a > 0, sup
0≤t≤a

sup
{
g(t+ θ)
g(θ)

: −∞ < θ ≤ −t
}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.

Example 2.5. The space Cγ .
For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ) exists in E

}
endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

Let Y be a separable Banach space with the Borel σ-algebra BY . A mapping y : Ω −→ Y is said to be
a random variable with values in Y if for each B ∈ BY , y−1(B) ∈ F. A mapping T : Ω×Y −→ Y is called
a random operator if T (., y) is measurable for each y ∈ Y and is generally expressed as T (w, y) = T (w)y;
we will use these two expressions alternatively. Next, we will give a very useful random fixed point
theorem with stochastic domain.
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Definition 2.6. [9] Let C be a mapping from Ω into 2Y . A mapping T : {(w, y) : w ∈ Ω∧y ∈ C(w)} −→
Y is called random operator with stochastic domain C if C is measurable (i.e., for all closed A ⊆ Y, {w ∈
Ω : C(w)∩A 6= ∅} ∈ F) and for all open D ⊆ Y and all y ∈ Y, {w ∈ Ω : y ∈ C(w)∧ T (w, y) ∈ D} ∈ F. T
will be called continuous if every T (w) is continuous. For a random operator T , a mapping y : Ω −→ Y is
called ’random (stochastic) fixed point of T ’ iff for p-almost all w ∈ Ω, y(w) ∈ C(w) and T (w)y(w) = y(w)
and for all open D ⊆ Y, {w ∈ Ω : y(w) ∈ D} ∈ F(’y is measurable’).

Remark 2.7. If C(w) ≡ Y , then the definition of random operator with stochastic domain coincides
with the definition of random operator.

Lemma 2.8. [9] Let C : Ω −→ 2Y be measurable with C(w) closed, convex and solid (i.e., int C(w) 6= ∅)
for all w ∈ Ω. We assume that there exists measurable y0 : Ω −→ Y with y0 ∈ int C(w) for all w ∈ Ω.
Let T be a continuous random operator with stochastic domain C such that for every w ∈ Ω, {y ∈ C(w) :
T (w)y = y} 6= ∅. Then T has a stochastic fixed point.

Let y be a mapping of J ×Ω into X. y is said to be a stochastic process if for each t ∈ J , the function
y(t, ·) is measurable.

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.9. [6] Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski measure
of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE .

The Kuratowski measure of noncompactness satisfies the following properties (for more details see [6]).
(a) α(B) = 0⇐⇒ B is compact (B is relatively compact).
(b) α(B) = α(B).
(c) A ⊂ B =⇒ α(A) ≤ α(B).
(d) α(A+B) ≤ α(A) + α(B).
(e) α(cB) = |c|α(B); c ∈ IR
(f) α(convB) = α(B).

Theorem 2.10. (Mönch)[[1, 22]] Let D be a bounded, closed and convex subset of a Banach space such
that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ 0 =⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.11 ([11]). If H ⊂ C(J,E) is bounded and equicontinuous, then α(H(t)) is continuous on J
and

α

({∫
J

x(s)ds : x ∈ H
})
≤
∫
J

α(H(s))ds,

where H(s) = {x(s) : x ∈ H}, t ∈ J

Lemma 2.12 ([11]). Let D be a bounded, closed and convex subset of Banach space X. If the operator
N : D → D is a strict set contraction, i.e there is a constant 0 ≤ λ < 1 such that α(N(S)) ≤ λα(S) for
any bounded set S ⊂ D, then N has a fixed point in D.

3. Existence of mild solutions

Now we give our main existence result for problem (1.1)-(1.2). Before starting and proving this result,
we give the definition of the mild random solution.

Definition 3.1. A stochastic process y : J × Ω → E is said to be random mild solution of problem
(1.1)-(1.2) if y(t, w) = φ(t), t ∈ (−∞, 0] and the restriction of y(., w) to the interval J is continuous and
satisfies the following integral equation:
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(3.1) y(t, w) = T (t)φ(0, w) +
∫ t

0

T (t− s)f(s, yρ(s,ys)(·, w), w)ds, t ∈ J.

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J ×B → (−∞, T ] is continuous. Additionally, we introduce following hypoth-
esis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.2. The condition (Hφ), is frequently verified by functions continuous and bounded. For more
details, see for instance [18].

Lemma 3.3. ([15], Lemma 2.4) If y : (−∞, T ]→ E is a function such that y0 = φ, then

‖ys‖B ≤ (MT + Lφ)‖φ‖B +KT sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,
where Lφ = sup

t∈R(ρ−)

Lφ(t).

We will need to introduce the following hypotheses which are assumed there after:

(H1) The operator solution T (t)t∈J is uniformly continuous for t > 0. Let M = sup{‖T‖B(E) : t ≥ 0}.
(H2) The function f : J × B × Ω→ E is Carathéodory.
(H3) There exist a function ψ : J ×Ω→ R+ and p : J ×Ω→ R+ such that for each w ∈ Ω, ψ(., w) is

a continuous nondecreasing function and p(., w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B.
(H4) There exists a function L : J × Ω → R+ with L(., w) ∈ L1(J,R+) for each w ∈ Ω such that for

any bounded B ⊆ E
α(f(t, B,w)) ≤ l(t, w)α(B).

(H5) There exist a random function R : Ω→ R+\{0} such that:

M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds ≤ R(w).

(H6) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable.

Theorem 3.4. Suppose that hypotheses (Hφ) and (H1) − (H6) are valid, then the problem (1.1)-(1.2)
has at least one mild random solution on (−∞, T ].

Proof. Let Y = {u ∈ C(J,E) : u(0, w) = φ(0, w) = 0} endowed with the uniform convergence topology
and N : Ω× Y → Y be the random operator defined by

(3.2) (N(w)y)(t) = T (t) φ(0, w) +
∫ t

0

T (t− s) f(s, yρ(s,ys), w) ds, t ∈ J,

where ȳ : (−∞, T ]× Ω→ E is such that ȳ0(·, w) = φ(·, w) and ȳ(·, w) = y(·, w) on J . Let φ̄ : (−∞, T ]×
Ω→ E be the extension of φ to (−∞, T ] such that φ̄(θ, w) = φ(0, w) = 0 on J .

Then we show that the mapping defined by (3.2) is a random operator. To do this, we need to prove
that for any y ∈ Y , N(.)(y) : Ω −→ Y is a random variable. Then we prove that N(.)(y) : Ω → Y is
measurable as a mapping f(t, y, ·), t ∈ J, y ∈ Y is measurable by assumptions (H2) and (H6).

Let D : Ω→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.
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The set D(w) bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by Lemma 17 in
[12]. Let w ∈ Ω be fixed. If y ∈ D(w), from Lemma 3.3 it follows that

‖ȳρ(t,ȳt)‖B ≤ (MT + Lφ)‖φ‖B +KTR(w)

and for each y ∈ D(w), by (H3) and (H5), we have for each t ∈ J

|(N(w)y)(t)| ≤ M‖φ‖B +M

∫ t

0

|f(s, yρ(s,ys), w)|ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ
(
‖yρ(s,ys)‖B, w

)
ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
ds

≤ M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds

≤ R(w).

This implies that N is a random operator with stochastic domain D and N(w) : D(w)→ D(w) for each
w ∈ Ω.

Step 1: N is continuous.
Let yn be a sequence such that yn → y in Y . Then

|(N(w)yn)(t)− (N(w)y)(t)| =
∣∣∣T (t)φ(0, w)

+
∫ t

0

T (t− s)
[
f(s, ynρ(s,yn

s), w)− f(s, yρ(s,ys), w)
]
ds
∣∣∣

≤ M

∫ t

0

|f(s, ynρ(s,yn
s), w)− f(s, yρ(s,ys), w)|ds.

Since f(s, ·, w) is continuous, we have by the Lebesgue dominated convergence theorem

|(N(w)yn)(t)− (N(w)y)(t)| → 0 as n→ +∞.

Thus N is continuous.

Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For this we apply the Mönch
fixed point theorem.
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(a) N maps bounded sets into equicontinuous sets in D(w).
Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set as in Step 2, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)|
≤ |T (τ2)− T (τ1)|‖φ‖B

+
∣∣∣ ∫ τ1

0

[T (τ2 − s)− T (τ1 − s)]f(s, yρ(s,ys), w)ds
∣∣∣

+
∣∣∣ ∫ τ2

τ1

T (τ2 − s)f(s, yρ(s,ys), w)
∣∣∣ds

≤ |T (τ2)− T (τ1)|‖φ‖B

+
∫ τ1

0

|T (τ2 − s)− T (τ1 − s)||f(s, yρ(s,ys), w)| ds

+
∫ τ2

τ1

|T (τ2 − s)f(s, yρ(s,ys), w)| ds

≤ |T (τ2)− T (τ1)|‖φ‖B + ψ
(
(MT + Lφ)‖φ‖B +KTR(w)

)∫ τ1

0

|T (τ2 − s)− T (τ1 − s)|p(s, w)ds

+ Mψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 → 0, since T (t) is uniformly
continuous.
Next, let w ∈ Ω be fixed (therefore we do not write ’w’ in the sequel) but arbitrary.

(b) Now let V be a subset of D(w) such that V ⊂ conv (N(V ) ∪ {0}) . V is bounded and equicontin-
uous and therefore the function v → v(t) = α(V (t)) is continuous on (−∞, T ]. By (H4), Lemma
2.11 and the properties of the measure α we have for each t ∈ (−∞, T ]

v(t) ≤ α (N(V )) (t) ∪ {0})
≤ α (N(V (t))

≤ α
(
T (t) φ(0) +

∫ t

0

T (t− s) f(s, yρ(s,ys)) ds
)

≤ α
(
T (t) φ(0)

)
+ α

(∫ t

0

T (t− s) f(s, yρ(s,ys)) ds
)

≤ M

∫ t

0

l(s)α(
{
yρ(s,ys) : y ∈ V

}
)ds

≤ M

∫ t

0

l(s)K(s) sup
0≤τ≤s

α(V (τ))ds

≤
∫ t

0

l(s)K(s)α(V (s))ds

≤ M

∫ t

0

v(s) l(s)K(s)ds

= M

∫ t

0

l(s)K(s)v(s)ds.

Gronwall’s lemma implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively compact in E. In
view of the Ascoli-Arzelà theorem, V is relatively compact in D(w). Applying now Theorem 2.10 we
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conclude that N has a fixed point y(w) ∈ D(w). Since
⋂
w∈ΩD(w) 6= ∅, the hypothesis that a measurable

selector of intD exists holds. By Lemma 2.8, the random operator N has a stochastic fixed point y∗(w),
which is a mild solution of the random problem (1.1)-(1.2). �

Proposition 3.5. Assume that (Hφ), (H1), (H2), (H5), (H6) are satisfied, then a slight modification of
the proof (i.e. use the Darbo’s fixed point theorem) guarantees that (H4) could be replaced by

(H4)∗ There exists a nonnegative function l(., w) ∈ L1(J, IR+) for each w ∈ Ω, such that

α(f(t, B,w)) ≤ l(t, w)α(B), t ∈ J.

Proof. Consider the Kuratowski measure of noncompactness αC defined on the family of bounded subsets
of the space C(J,E) by

αC(H) = sup
t∈J

e−τL(t)α(H(t)),

where L(t) =
∫ t

0

l̃(s)ds, l̃(t) = Ml(t)K(t), τ > 1.

We show that the operator N : D(w)→ D(w) is a strict set contraction for each w ∈ Ω. We know that
N : D(w) → D(w) is bounded and continuous, we need to prove that there exists a constant 0 ≤ λ < 1
such that αC(NH) ≤ λαC(H) for H ⊂ D(w). For each t ∈ J we have

α((NH)(t)) ≤M
∫ t

0

α(f(s, yρ(s,ys), w)) : y ∈ H)ds.

This implies by (H4)∗ and Theorem 2.1 in [13]

α((NH)(t)) ≤
∫ t

0

M l(s)α(yρ(s,ys) : y ∈ H)ds

≤
∫ t

0

Ml(s)K(s) sup
0≤τ≤s

α(H(τ))ds

≤
∫ t

0

Ml(s)K(s)α(H(s))ds

=
∫ t

0

l̃(s)α(H(s))ds

=
∫ t

0

eτL(s)e−τL(s) l̃(s)α(H(s))ds

≤
∫ t

0

l̃(s) eτL(s) sup
s∈[0,t]

e−τL(s)α(H(s))ds

≤ sup
t∈[0,T ]

e−τL(t)α(H(t))
∫ t

0

l̃(s)eτL(s)ds

= αC(H)
∫ t

0

(eτL(s)

τ

)′
ds

≤ αC(H)
1
τ
eτL(t).

Therefore,

αC(NH) ≤ 1
τ
αC(H).

So, the operator N is a set contraction. As a consequence of Theorem 2.12, we deduce that N has a
fixed point y(w) ∈ D(w). Since

⋂
w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists

holds. By Lemma 2.8, the random operator N has a stochastic fixed point y∗(w), which is a mild solution
of the random problem (1.1)-(1.2). �
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4. An example

Consider the following functional partial differential equation:

(4.1)
∂

∂t
z(t, x, w) =

∂2

∂x2
z(t, x, w) + C0(w)b(t)

∫ t

−∞
F (z(t+ σ(t, z(t+ s, x, w)), x, w))ds,

x ∈ [0, π], t ∈ [0, T ], w ∈ Ω

(4.2) z(t, 0, w) = z(t, π, w) = 0, t ∈ [0, T ], w ∈ Ω

(4.3) z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω,

where C0 are a real-valued random variable, b ∈ L1(J ; R+), F : R → R is continuous, z0 :) −∞, 0] ×
[0, π]× Ω→ R and σ : J × R→ R are given functions.

Suppose that E = L2[0, π], (Ω,F, P ) is a complete probability space. Define the operator A : E → E
by Av = v′′ with domain

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.
Then

Av =
∞∑
n=1

n2(v, vn)vn, v ∈ D(A)

where ωn(s) =
√

2
π sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It is well know (see [23])

that A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 in E and is given by

T (t)v =
∞∑
n=1

exp(−n2t)(v, vn)vn, v ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) be the space of uniformly bounded continuous functions endowed with the follow-
ing norm:

‖φ‖ = sup
s≤0
|φ(s)|, for φ ∈ B.

If we put φ ∈ BCU(IR−;E), x ∈ [0, π] and w ∈ Ω

y(t, x, w) = z(t, x, w), t ∈ [0, T ]
φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω.

Set

f(t, φ(x), w) = C0(w)b(t)
∫ t

−∞
F (z(t+ σ(t, z(t+ s, x, w)), x, w))ds,

and
ρ(t, φ)(x) = σ(t, z(t, x, w)).

Let φ ∈ B be such that (Hφ) holds, and let t → φt be continuous on R(ρ−), and let f satisfies the
conditions (H3), (H4), (H5)

Then the problem (1.1)-(1.2) in an abstract formulation of the problem (4.1)-(4.3), and conditions
(H1) − (H6) are satisfied. Theorem 3.4 implies that the random problem (4.1)-(4.3) has at least one
random mild solution.
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