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1. Introduction and preliminaries

In this paper, a meromorphic function will always mean meromorphic in the complex plane C.
Throughout this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory (see [9], [25]). A meromorphic function
ϕ (z) is called a small function with respect to f (z) if T (r, ϕ) = o (T (r, f)) as r → +∞ except possibly
a set of r of finite linear measure, where T (r, f) is the Nevanlinna characteristic function of f.

To express the rate of fast growth of meromorphic functions, we recall the following definitions. For
the definition of the iterated order of a meromorphic function, we use the same definition as in [13], ([6],
p. 317), ([14], p. 129). For all r ∈ R, we define exp1 r := er and expp+1 r := exp

(

expp r
)

, p ∈ N. We also

define for all r sufficiently large log1 r := log r and logp+1 r := log
(

logp r
)

, p ∈ N. Moreover, we denote
by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1. ([13], [14]) Let f be a meromorphic function. Then the iterated p−order ρp (f) of f is
defined as

ρp (f) = lim sup
r→+∞

logp T (r, f)

log r
(p ≥ 1 is an integer) .

If f is an entire function, then the iterated p−order ρp (f) of f is defined by

ρp (f) = lim sup
r→+∞

logp T (r, f)

log r
= lim sup

r→+∞

logp+1M (r, f)

log r
,

where M (r, f) = max|z|=r |f (z)|. For p = 1, this notation is called order and for p = 2 hyper-order.
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Definition 1.2. ([13]) The finiteness degree of the order of a meromorphic function f is defined as

i (f) =















0, for f rational,
min {j ∈ N : ρj (f) < +∞} , for f transcendental for which

some j ∈ N with ρj (f) < +∞ exists,
+∞, for f with ρj (f) = +∞ for all j ∈ N.

Definition 1.3. ([4], [21]) The iterated p−type of a meromorphic function f of iterated p−order ρp (f)
(0 < ρp (f) <∞) is defined as

τp (f) = lim sup
r→+∞

logp−1 T (r, f)

rρp(f)
(p ≥ 1 is an integer) .

Similarly, the iterated p−type of an entire function f of iterated p−order ρp (f) (0 < ρp (f) <∞) is
defined as

τM,p (f) = lim sup
r→+∞

logpM (r, f)

rρp(f)
(p ≥ 1 is an integer) .

Definition 1.4. ([13]) Let f be a meromorphic function. Then the iterated exponent of convergence of
the sequence of zeros of f (z) is defined as

λp (f) = lim sup
r→+∞

logpN
(

r, 1
f

)

log r
(p ≥ 1 is an integer) ,

where N
(

r, 1
f

)

is the integrated counting function of zeros of f (z) in {z : |z| ≤ r}. For p = 1, this

notation is called exponent of convergence of the sequence of zeros and for p = 2 hyper-exponent of
convergence of the sequence of zeros. Similarly, the iterated exponent of convergence of the sequence of
distinct zeros of f (z) is defined as

λp (f) = lim sup
r→+∞

logpN
(

r, 1
f

)

log r
(p ≥ 1 is an integer) ,

where N
(

r, 1
f

)

is the integrated counting function of distinct zeros of f (z) in {z : |z| ≤ r}. For p = 1, this

notation is called exponent of convergence of the sequence of distinct zeros and for p = 2 hyper-exponent
of convergence of the sequence of distinct zeros.

Definition 1.5. ([13]) The growth index of the convergence exponent of the sequence of the zeros of
f(z) is defined by

iλ (f) =











0, if N
(

r, 1
f

)

= O (log r) ,

min {j ∈ N, λj (f) <∞} , if some j ∈ N with λj (f) <∞,
+∞, if λj (f) = ∞ for all j ∈ N.

Remark 1.6. Similarly, we can define the growth index of the convergence exponent of the sequence of
distinct zeros iλ(f) of f(z).

Consider the complex differential equation

(1.1) f (k) +A (z) f = 0

and the differential polynomial

(1.2) gf = dkf
(k) + dk−1f

(k−1) + · · ·+ d0f,

where A (z) and dj (z) (j = 0, 1, · · · , k) are meromorphic functions in the complex plane.
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Recently, many articles focused on the study of the complex oscillation theory of solutions and
differential polynomials generated by solutions of differential equations in the unit disc and in the complex
plane C, see ([4], [7], [8], [15], [16], [17], [18], [19]). In [4], the author and Z. Latreuch investigated
the growth and oscillation of differential polynomials generated by solutions of (1.1), and obtained the
following results:

Theorem 1.7. ([4]) Let A (z) be a meromorphic function of finite iterated p−order. Let dj (z)
(j = 0, 1, · · · , k) be finite iterated p−order meromorphic functions that are not all vanishing identically
such that

h =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .
α0,k−1 α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6≡ 0,

where the sequence of functions αi,j (j = 0, · · · , k − 1) are defined by

αi,j =

{

α′
i,j−1 + αi−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −Aαk−1,j−1, for i = 0

and

αi,0 =

{

di, for all i = 1, · · · , k − 1,
d0 − dkA, for i = 0.

If f (z) is an infinite iterated p−order meromorphic solution of (1.1) with ρp+1 (f) = ρ, then the differ-
ential polynomial (1.2) satisfies

ρp (gf ) = ρp (f) = ∞

and

ρp+1 (gf ) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution of (1.1) such that

ρp (f) > max {ρp (A) , ρp (dj) (j = 0, 1, · · · , k)} ,

then

ρp (gf ) = ρp (f) .

Theorem 1.8. ([4]) Under the hypotheses of Theorem 1.7, let ϕ (z) 6≡ 0 be a meromorphic function with
finite iterated p−order such that

ψ (z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ α1,0 . . αk−1,0

ϕ′ α1,1 . . αk−1,1

. . . . .

. . . . .
ϕ(k−1) α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h (z)

is not a solution of (1.1), where h 6≡ 0 and αi,j (i = 0, .., k − 1; j = 0, · · · , k − 1) are defined in Theorem
1.7. If f (z) is an infinite iterated p−order meromorphic solution of (1.1) with ρp+1 (f) = ρ, then the
differential polynomial (1.2) satisfies

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) = ∞

and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution of (1.1) such that

ρp (f) > max {ρp (A) , ρp (ϕ) , ρp (dj) (j = 0, 1, · · · , k)} ,
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then

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) .

In ([11], [12]), Juneja, Kapoor and Bajpai investigated some properties of entire functions of [p, q]-
order and obtained some results concerning their growth. In [22], in order to maintain accordance with
general definitions of the entire function f of iterated p−order ([13], [14]), Liu-Tu-Shi gave a minor
modification of the original definition of the [p, q]-order given in ([11], [12]). By this new concept of
[p, q]-order, the [p, q]-order of solutions of complex linear differential equations (1.1) was investigated in
the unit disc and in the complex plane (see, e.g. [1], [2], [3], [5], [10], [20], [21], [23], [24]). Now, we
shall introduce the definition of meromorphic functions of [p, q]-order, where p, q are positive integers
satisfying p ≥ q ≥ 1. In order to keep accordance with Definition 1.1, we will give a minor modification
to the original definition of [p, q]-order (e.g. see, ([11], [12])).

Definition 1.9. ([21]) Let p ≥ q ≥ 1 be integers. If f (z) is a transcendental meromorphic function, then
the [p, q]-order of f (z) is defined by

ρ[p,q] (f) = lim sup
r 7−→+∞

logp T (r, f)

logq r
.

If f is a transcendental entire function, then the [p, q]-order of f (z) is defined by

ρ[p,q] (f) = lim sup
r 7−→+∞

logp T (r, f)

logq r
= lim sup

r→+∞

logp+1M (r, f)

logq r
.

It is easy to see that 0 ≤ ρ[p,q] (f) ≤ ∞. By Definition 1.9, we have that ρ[1,1] (f) = ρ1 (f) = ρ (f) ,
ρ[2,1] (f) = ρ2 (f) and ρ[p+1,1] (f) = ρp+1 (f) .

Remark 1.10. ([21]) If f (z) is a meromorphic function satisfying 0 ≤ ρ[p,q] (f) ≤ ∞, then
(i) ρ[p−n,q] = ∞ (n < p), ρ[p,q−n] = 0 (n < q), ρ[p+n,q+n] = 1 (n < p) for n = 1, 2, 3, · · ·
(ii) If [p′, q′] is any pair of integers satisfying q′ = p′ + q − p and p′ < p, then ρ[p′,q′] = 0 if 0 < ρ[p,q] < 1
and ρ[p′,q′] = ∞ if 1 < ρ[p,q] <∞.
(iii) ρ[p′,q′] = ∞ for q′ − p′ > q − p and ρ[p′,q′] = 0 for q′ − p′ < q − p.

Definition 1.11. ([21]) A transcendental meromorphic function f (z) is said to have index-pair [p, q] if
0 < ρ[p,q] (f) <∞ and ρ[p−1,q−1] (f) is not a nonzero finite number.

Remark 1.12. ([21]) Suppose that f1 is a meromorphic function of [p, q]-order ρ1 and f2 is a meromorphic
function of [p1, q1]-order ρ2, let ρ1 ≤ ρ2. We can easily deduce the result about their comparative growth:
(i) If p1 − p > q1 − q, then the growth of f1 is slower than the growth of f2.
(ii) If p1 − p < q1 − q, then f1 grows faster than f2.
(iii) If p1−p = q1− q > 0, then the growth of f1 is slower than the growth of f2 if ρ2 ≥ 1, and the growth
of f1 is faster than the growth of f2 if ρ2 < 1.
(iv) Especially, when p1 = p and q1 = q then f1 and f2 are of the same index-pair [p, q]. If ρ1 > ρ2, then
f1 grows faster than f2; and if ρ1 < ρ2, then f1 grows slower than f2. If ρ1 = ρ2, Definition 1.9 does not
show any precise estimate about the relative growth of f1 and f2.

Definition 1.13. ([21]) Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function satisfying 0 <
ρ[p,q] (f) = ρ <∞. Then the [p, q]−type of f (z) is defined by

τ[p,q] (f) = lim sup
r→+∞

logp−1 T (r, f)
[

logq−1 r
]ρ .

Similarly, the [p, q]−type of an entire function f of [p, q]−order 0 < ρ[p,q] (f) = ρ <∞ is defined as

τM,[p,q] (f) = lim sup
r→+∞

logpM (r, f)
[

logq−1 r
]ρ .
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Definition 1.14. ([21]) Let p ≥ q ≥ 1 be integers. The [p, q]-exponent of convergence of the zeros
sequence of a meromorphic function f (z) is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN
(

r, 1
f

)

logq r
.

Similarly, the [p, q]-exponent of convergence of the sequence of distinct zeros of f (z) is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN
(

r, 1
f

)

logq r
.

The remainder of the paper is organized as follows. In Section 2, we shall show our main results
which improve and extend many results in the above-mentioned papers. Section 3 is for some lemmas
and basic theorems. The last section is for the proofs of our main results.

2. Main Results

In this paper, we continue to consider this subject and investigate the complex oscillation theory
of differential polynomials generated by meromorphic solutions of differential equations in the complex
plane. The main purpose of this paper is to study the controllability of solutions of the differential
equation

(2.1) f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0.

In fact, by making use of the concept of meromorphic functions of [p, q]−order, we study the growth
and oscillation of higher order differential polynomial (1.2) with meromorphic coefficients of [p, q]−order
generated by solutions of equation (2.1). Before we state our results, we define the sequence of functions
αi,j (j = 0, · · · , k − 1) by

(2.2) αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

and

(2.3) αi,0 = di − dkAi, for i = 0, · · · , k − 1.

We define also h by

(2.4) h =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .
α0,k−1 α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and ψ (z) by

(2.5) ψ (z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ α1,0 . . αk−1,0

ϕ′ α1,1 . . αk−1,1

. . . . .

. . . . .
ϕ(k−1) α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h (z)
,

where h 6≡ 0 and αi,j (i = 0, .., k − 1; j = 0, · · · , k − 1) are defined in (2.2) and (2.3), and ϕ 6≡ 0 is a
meromorphic function with ρ[p,q] (ϕ) <∞. The following theorems are the main results of this paper.
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Theorem 2.1. Let p ≥ q ≥ 1 be integers, and let Ai (z) (i = 0, 1, · · · , k − 1) be meromorphic functions
of finite [p, q]−order. Let dj (z) (j = 0, 1, · · · , k) be finite [p, q]−order meromorphic functions that are
not all vanishing identically such that h 6≡ 0. If f (z) is an infinite [p, q]−order meromorphic solution of
(2.1) with ρ[p+1,q] (f) = ρ, then the differential polynomial (1.2) satisfies

ρ[p,q] (gf ) = ρ[p,q] (f) = ∞

and
ρ[p+1,q] (gf ) = ρ[p+1,q] (f) = ρ.

Furthermore, if f is a finite [p, q]−order meromorphic solution of (2.1) such that

(2.6) ρ[p,q] (f) > max
{

ρ[p,q] (Ai) (i = 0, 1, · · · , k − 1) , ρ[p,q] (dj) (j = 0, 1, · · · , k)
}

,

then
ρ[p,q] (gf ) = ρ[p,q] (f) .

Remark 2.2. In Theorem 2.1, if we do not have the condition h 6≡ 0, then the conclusions of Theorem
2.1 cannot hold. For example, if we take di = dkAi (i = 0, · · · , k − 1) , then h ≡ 0. It follows that
gf ≡ 0 and ρ[p,q] (gf ) = 0. So, if f (z) is an infinite [p, q]−order meromorphic solution of (2.1), then
ρ[p,q] (gf ) = 0 < ρ[p,q] (f) = ∞, and if f is a finite [p, q]−order meromorphic solution of (2.1) such that
(2.6) holds, then ρ[p,q] (gf ) = 0 < ρ[p,q] (f).

Theorem 2.3. Under the hypotheses of Theorem 2.1, let ϕ (z) 6≡ 0 be a meromorphic function of finite
[p, q]−order such that ψ (z) is not a solution of (2.1). If f (z) is an infinite [p, q]−order meromorphic
solution of (2.1) with ρ[p+1,q] (f) = ρ, then the differential polynomial (1.2) satisfies

λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) = ∞

and
λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ[p+1,q] (f) = ρ.

Furthermore, if f is a finite [p, q]−order meromorphic solution of (2.1) such that

(2.7) ρ[p,q] (f) > max
{

ρ[p,q] (Ai) (i = 0, 1, · · · , k − 1), ρ[p,q] (ϕ) , ρ[p,q] (dj) (j = 0, 1, · · · , k)
}

,

then
λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) .

Corollary 2.4. Let p ≥ q ≥ 1 be integers, and let A0 (z) , · · · , Ak−1 (z) be entire functions satisfying one
of the following two conditions:
(i)max{ρ[p,q] (Ai) : i = 1, 2, · · · , k − 1} < ρ[p,q] (A0) = ρ (0 < ρ < +∞) or that (ii)max{ρ[p,q] (Ai) :
i = 1, 2, · · · , k − 1} ≤ ρ[p,q] (A0) = ρ (0 < ρ < +∞) and max{τM,[p,q] (Ai) : ρ[p,q] (Ai) = ρ[p,q] (A0)} <
τM,[p,q] (A0) = τ (0 < τ < +∞) . Let dj (z) (j = 0, 1, · · · , k) be finite [p, q]−order entire functions that
are not all vanishing identically such that h 6≡ 0. If f 6≡ 0 is a solution of (2.1), then the differential
polynomial (1.2) satisfies

ρ[p,q] (gf ) = ρ[p,q] (f) = ∞

and
ρ[p,q] (gf ) = ρ[p+1,q] (f) = ρ[p,q] (A0) = ρ.

Corollary 2.5. Under the hypotheses of Corollary 2.4, let ϕ (z) 6≡ 0 be an entire function of finite
[p, q]−order such that ψ (z) 6≡ 0. Then the differential polynomial (1.2) satisfies

λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) = ∞

and
λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ[p+1,q] (f) = ρ[p,q] (A0) = ρ.

In the following we give two applications of the above results without the additional conditions h 6≡ 0
and ψ is not a solution of (2.1).

Galaxy
Text Box
51



Corollary 2.6. Let p ≥ q ≥ 1 be integers, and let A (z), B (z) be entire functions. Assume that ρ[p,q] (A) <
ρ[p,q] (B) = ρ (0 < ρ < +∞) and that τ[p,q] (A) < τ[p,q] (B) = τ (0 < τ < +∞) if ρ[p,q] (B) = ρ[p,q] (A).
Let dj (z) (j = 0, 1, 2) be finite [p, q]−order entire functions that are not all vanishing identically such
that

max
{

ρ[p,q] (dj) : j = 0, 1, 2
}

< ρ[p,q] (A) .

If f 6≡ 0 is a solution of the differential equation

(2.8) f ′′ +A (z) f ′ +B (z) f = 0,

then the differential polynomial gf = d2f
′′ + d1f

′ + d0f satisfies ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and
ρ[p+1,q] (gf ) = ρ[p+1,q] (f) = ρ[p,q] (B) .

Corollary 2.7. Under the hypotheses of Corollary 2.6, let ϕ (z) 6≡ 0 be an entire function of finite
[p, q]−order. Then the differential polynomial gf = d2f

′′ + d1f
′ + d0f satisfies

λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) = ∞

and

λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ[p+1,q] (f) = ρ[p,q] (B) .

Remark 2.8. The present article may be understood as an extension and improvement of the recent
article of the author and Z. Latreuch [4] from equation (1.1) to equation (2.1) and from p-order to
[p, q]−order.

3. Some lemmas

Lemma 3.1. ([23]) Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function for which ρ[p,q] (f) =
β < +∞, and let k ≥ 1 be an integer. Then for any ε > 0,

m

(

r,
f (k)

f

)

= O
(

expp−1

{

(β + ε) logq r
})

,

holds outside of a possible exceptional set E of finite linear measure.

Lemma 3.2. ([21]) Let p ≥ q ≥ 1 be integers, and let A0, A1, · · · , Ak−1, F 6≡ 0 be meromorphic
functions. If f is a meromorphic solution of the differential equation

(3.1) f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = F,

such that max
{

ρ[p,q] (F ) , ρ[p,q] (Ai) (i = 0, · · · , k − 1)
}

< ρ[p,q] (f) < +∞, then λ[p,q] (f) = λ[p,q] (f) =
ρ[p,q] (f).

In the following, we extend Lemma 3.2 when ρ[p,q] (f) = +∞ and ρ[p+1,q] (f) = ρ < +∞.

Lemma 3.3. Let p ≥ q ≥ 1 be integers, and let A0, A1, · · · , Ak−1, F 6≡ 0 be finite [p, q]−order meromor-
phic functions. If f is a meromorphic solution of equation (3.1) with ρ[p,q] (f) = +∞ and ρ[p+1,q] (f) =

ρ < +∞, then λ[p,q] (f) = λ[p,q] (f) = ρ[p,q] (f) = ∞ and λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ.

Proof. By (3.1), we can write

(3.2)
1

f
=

1

F

(

f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)

.

If f has a zero at z0 of order α (> k) and if A0, A1, · · · , Ak−1 are all analytic at z0, then F must have a
zero at z0 of order α− k. Hence,

(3.3) N

(

r,
1

f

)

≤ k N

(

r,
1

f

)

+N

(

r,
1

F

)

+

k−1
∑

i=0

N (r,Ai) .
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By (3.2), we have

(3.4) m

(

r,
1

f

)

≤

k
∑

j=1

m

(

r,
f (j)

f

)

+

k−1
∑

i=0

m (r,Ai) +m

(

r,
1

F

)

+O (1) .

Applying the Lemma 3.1, we have for ρ[p+1,q] (f) = ρ < +∞

(3.5) m

(

r,
f (j)

f

)

= O
(

expp
{

(ρ+ ε) logq r
})

(j = 1, · · · , k)

holds for all r outside a set E ⊂ (0,+∞) with a linear measure m (E) = δ < +∞. By (3.3)-(3.5), we get

T (r, f) = T

(

r,
1

f

)

+O (1)

(3.6) ≤ kN

(

r,
1

f

)

+
k−1
∑

i=0

T (r,Ai) + T (r, F ) +O
(

expp
{

(ρ+ ε) logq r
})

(|z| = r /∈ E).

Set σ = max
{

ρ[p,q] (Ai) (i = 0, · · · , k − 1) , ρ[p,q] (F )
}

. Then for sufficiently large r, we have

(3.7) T (r,A0) + · · ·+ T (r,Ak−1) + T (r, F ) ≤ (k + 1) expp
{

(σ + ε) logq r
}

.

Thus, by (3.6) and (3.7), we obtain

T (r, f) ≤ k N

(

r,
1

f

)

+ (k + 1 ) expp
{

(σ + ε) logq r
}

(3.8) +O
(

expp
{

(ρ+ ε) logq r
})

(|z| = r /∈ E) .

Hence, for any f with ρ[p,q] (f) = +∞ and ρ[p+1,q] (f) = ρ, by (3.8), we have λ[p,q] (f) ≥ ρ[p,q] (f) = +∞

and λ[p+1,q] (f) ≥ ρ[p+1,q] (f). Since λ[p+1,q] (f) ≤ λ[p+1,q] (f) ≤ ρ[p+1,q] (f) we obtain

λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ.

�

Lemma 3.4. Let p ≥ q ≥ 1 be integers, and let f , g be non-constant meromorphic functions of [p, q]-
order. Then we have

ρ[p,q] (f + g) ≤ max
{

ρ[p,q] (f) , ρ[p,q] (g)
}

and

ρ[p,q] (fg) ≤ max
{

ρ[p,q] (f) , ρ[p,q] (g)
}

.

Furthermore, if ρ[p,q] (f) > ρ[p,q] (g) , then we obtain

ρ[p,q] (f + g) = ρ[p,q] (fg) = ρ[p,q] (f) .

Proof. Set ρ[p,q] (f) = ρ1 and ρ[p,q] (g) = ρ2. For any given ε > 0, we have

T (r, f + g) ≤ T (r, f) + T (r, g) +O (1)

≤ expp
{

(ρ1 + ε) logq r
}

+ expp
{

(ρ2 + ε) logq r
}

+O (1)

(3.9) ≤ 2 expp
{

(max {ρ1, ρ2}+ ε) logq r
}

+O (1)

and

(3.10) T (r, fg) ≤ T (r, f) + T (r, g) ≤ 2 expp
{

(max {ρ1, ρ2}+ ε) logq r
}

for all r sufficiently large. Since ε > 0 is arbitrary, from (3.9) and (3.10), we easily obtain

(3.11) ρ[p,q] (f + g) ≤ max
{

ρ[p,q] (f) , ρ[p,q] (g)
}
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and

(3.12) ρ[p,q] (fg) ≤ max
{

ρ[p,q] (f) , ρ[p,q] (g)
}

.

Suppose now that ρ[p,q] (f) > ρ[p,q] (g) . Considering that

(3.13) T (r, f) = T (r, f + g − g) ≤ T (r, f + g) + T (r, g) +O (1)

and

T (r, f) = T

(

r,
fg

g

)

≤ T (r, fg) + T

(

r,
1

g

)

(3.14) = T (r, fg) + T (r, g) +O (1) .

By (3.13) and (3.14), by the same method as above we obtain that

(3.15) ρ[p,q] (f) ≤ max
{

ρ[p,q] (f + g) , ρ[p,q] (g)
}

= ρ[p,q] (f + g) ,

(3.16) ρ[p,q] (f) ≤ max
{

ρ[p,q] (fg) , ρ[p,q] (g)
}

= ρ[p,q] (fg) .

By using (3.11) and (3.15) we obtain ρ[p,q] (f + g) = ρ[p,q] (f) and by (3.12) and (3.16), we get ρ[p,q] (fg) =
ρ[p,q] (f) . �

Lemma 3.5. Let p ≥ q ≥ 1 be integers, and let f, g be meromorphic functions with [p, q]−order 0 <
ρ[p,q] (f) , ρ[p,q] (g) <∞ and [p, q]−type 0 < τ[p,q] (f) , τ[p,q] (g) <∞. Then the following statements hold:
(i) If ρ[p,q] (g) < ρ[p,q] (f) , then

(3.17) τ[p,q] (f + g) = τ[p,q] (fg) = τ[p,q] (f) .

(ii) If ρ[p,q] (f) = ρ[p,q] (g) and τ[p,q] (g) 6= τ[p,q] (f) , then

(3.18) ρ[p,q] (f + g) = ρ[p,q] (fg) = ρ[p,q] (f) .

Proof. (i) Suppose that ρ[p,q] (f) > ρ[p,q] (g) . By using the definition of the [p, q]−type and since
ρ[p,q] (f + g) = ρ[p,q] (f), we get

τ[p,q] (f + g) = lim sup
r→+∞

logp−1 T (r, f + g)
(

logq−1 r
)ρ[p,q](f+g)

≤ lim sup
r→+∞

logp−1 (T (r, f) + T (r, g) +O (1))
(

logq−1 r
)ρ[p,q](f)

≤ lim sup
r→+∞

logp−1 T (r, f)
(

logq−1 r
)ρ[p,q](f)

+ lim sup
r→+∞

logp−1 T (r, g) +O (1)
(

logq−1 r
)ρ[p,q](f)

= lim sup
r→+∞

logp−1 T (r, f)
(

logq−1 r
)ρ[p,q](f)

+ lim sup
r→+∞

(

logp−1 T (r, g)
(

logq−1 r
)ρ[p,q](g)

(

logq−1 r
)ρ[p,q](g)

(

logq−1 r
)ρ[p,q](f)

)

≤ lim sup
r→+∞

logp−1 T (r, f)
(

logq−1 r
)ρ[p,q](f)

(3.19) +lim sup
r→+∞

(

logq−1 r
)ρ[p,q](g)

(

logq−1 r
)ρ[p,q](f)

lim sup
r→+∞

logp−1 T (r, g)
(

logq−1 r
)ρ[p,q](g)

= τ[p,q] (f) .

Since ρ[p,q] (f + g) = ρ[p,q] (f) > ρ[p,q] (g) , then by (3.19), we obtain

τ[p,q] (f) = τ[p,q] (f + g − g) ≤ τ[p,q] (f + g) .
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Hence τ[p,q] (f + g) = τ[p,q] (f) . By the same method as before, we have

τ[p,q] (fg) = lim sup
r→+∞

logp−1 T (r, fg)
(

logq−1 r
)ρ[p,q](fg)

≤ lim sup
r→+∞

logp−1 (T (r, f) + T (r, g))
(

logq−1 r
)ρ[p,q](f)

(3.20) ≤ lim sup
r→+∞

logp−1 T (r, f)
(

logq−1 r
)ρ[p,q](f)

+ lim sup
r→+∞

logp−1 T (r, g) +O (1)
(

logq−1 r
)ρ[p,q](f)

≤ τ[p,q] (f) .

Since ρ[p,q] (fg) = ρ[p,q] (f) > ρ[p,q] (g) = ρ[p,q]

(

1
g

)

, then by (3.20), we obtain

τ[p,q] (f) = τ[p,q]

(

fg
1

g

)

≤ τ[p,q] (fg) .

Thus, τ[p,q] (fg) = τ[p,q] (f) .
(ii) Without loss of generality, we suppose that τ[p,q] (f) > τ[p,q] (g) . It’s easy to see that

ρ[p,q] (f + g) ≤ ρ[p,q] (f) = ρ[p,q] (g) .

If we suppose that ρ[p,q] (f + g) < ρ[p,q] (f) = ρ[p,q] (g), then by (3.17)

τ[p,q] (g) = τ[p,q] (f + g − f) = τ[p,q] (f)

which is a contradiction. Hence ρ[p,q] (f + g) = ρ[p,q] (f) = ρ[p,q] (g) . Also, we have

ρ[p,q] (fg) ≤ ρ[p,q] (f) = ρ[p,q] (g) .

If we suppose ρ[p,q] (fg) < ρ[p,q] (f) = ρ[p,q]

(

1
f

)

= ρ[p,q] (g), then by (3.17), we can write

τ[p,q] (g) = τ[p,q]

(

fg
1

f

)

= τ[p,q] (f) ,

which is a contradiction. Hence ρ[p,q] (fg) = ρ[p,q] (f) = ρ[p,q] (g) . �

Lemma 3.6. ([24]) Let p ≥ q ≥ 1 be integers, and let A0 (z) , · · · , Ak−1 (z) be entire functions satisfying
one of the following two conditions:
(i)max{ρ[p,q] (Ai) : i = 1, 2, · · · , k − 1} < ρ[p,q] (A0) = ρ (0 < ρ < +∞) or that (ii)max{ρ[p,q] (Ai) :
i = 1, 2, · · · , k − 1} ≤ ρ[p,q] (A0) = ρ (0 < ρ < +∞) and max{τM,[p,q] (Ai) : ρ[p,q] (Ai) = ρ[p,q] (A0)} <
τM,[p,q] (A0) = τ (0 < τ < +∞) . Then every solution f 6≡ 0 of (2.1) satisfies ρ[p,q] (f) = +∞ and
ρ[p+1,q] (f) = ρ[p,q] (A0) = ρ.

In the following, we give a special case of the result given by L. M. Li and T. B. Cao in [21]. This result
is a similar result to Lemma 3.6 for entire solutions f when the [p, q]−order and the [p, q]−type of the
coefficients of (2.1) are defined by the Nevanlinna characteristic function T (r, f).

Lemma 3.7. Let p ≥ q ≥ 1 be integers, and let A0 (z) , · · · , Ak−1 (z) be entire functions satisfying one
of the following two conditions:
(i)max{ρ[p,q] (Ai) : i = 1, 2, · · · , k − 1} < ρ[p,q] (A0) = ρ (0 < ρ < +∞) or that
(ii)max{ρ[p,q] (Ai) : i = 1, 2, · · · , k− 1} ≤ ρ[p,q] (A0) = ρ (0 < ρ < +∞) and max{τ[p,q] (Ai) : ρ[p,q] (Ai) =
ρ[p,q] (A0)} < τ[p,q] (A0) = τ (0 < τ < +∞) . Then every solution f 6≡ 0 of (2.1) satisfies ρ[p,q] (f) = +∞
and ρ[p+1,q] (f) = ρ[p,q] (A0) = ρ.
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Lemma 3.8. Assume that f 6≡ 0 is a solution of equation (2.1). Then the differential polynomial gf
defined in (1.2) satisfies the system of equations



























gf = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),
g′f = α0,1f + α1,1f

′ + · · ·+ αk−1,1f
(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

· · ·

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1),

where

αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

and
αi,0 = di − dkAi, for i = 0, · · · , k − 1.

Proof. Suppose that f is a solution of (2.1). We can rewrite (2.1) as

(3.21) f (k) = −

k−1
∑

i=0

Aif
(i)

which implies

(3.22) gf = dkf
(k) + dk−1f

(k−1) + · · ·+ d1f
′ + d0f =

k−1
∑

i=0

(di − dkAi) f
(i).

We can rewrite (3.22) as

(3.23) gf =

k−1
∑

i=0

αi,0f
(i),

where αi,0 are defined in (2.3). Differentiating both sides of equation (3.23) and replacing f (k) with

f (k) = −
k−1
∑

i=0

Aif
(i), we obtain

g′f =

k−1
∑

i=0

α′
i,0f

(i) +

k−1
∑

i=0

αi,0f
(i+1) =

k−1
∑

i=0

α′
i,0f

(i) +

k
∑

i=1

αi−1,0f
(i)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) + αk−1,0f

(k)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) −

k−1
∑

i=0

αk−1,0Aif
(i)

(3.24) =
(

α′
0,0 − αk−1,0A0

)

f +

k−1
∑

i=1

(

α′
i,0 + αi−1,0 − αk−1,0Ai

)

f (i).

We can rewrite (3.24) as

(3.25) g′f =

k−1
∑

i=0

αi,1f
(i),

where

(3.26) αi,1 =

{

α′
i,0 + αi−1,0 − αk−1,0Ai, for all i = 1, · · · , k − 1,

α′
0,0 −A0αk−1,0, for i = 0.
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Differentiating both sides of equation (3.25) and replacing f (k) with f (k) = −
k−1
∑

i=0

Aif
(i), we obtain

g′′f =
k−1
∑

i=0

α′
i,1f

(i) +
k−1
∑

i=0

αi,1f
(i+1) =

k−1
∑

i=0

α′
i,1f

(i) +
k
∑

i=1

αi−1,1f
(i)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +

k−1
∑

i=1

αi−1,1f
(i) + αk−1,1f

(k)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +
k−1
∑

i=1

αi−1,1f
(i) −

k−1
∑

i=0

Aiαk−1,1f
(i)

(3.27) =
(

α′
0,1 − αk−1,1A0

)

f +

k−1
∑

i=1

(

α′
i,1 + αi−1,1 −Aiαk−1,1

)

f (i)

which implies that

(3.28) g′′f =

k−1
∑

i=0

αi,2f
(i),

where

(3.29) αi,2 =

{

α′
i,1 + αi−1,1 −Aiαk−1,1, for all i = 1, · · · , k − 1,

α′
0,1 −A0αk−1,1, for i = 0.

By using the same method as above we can easily deduce that

(3.30) g
(j)
f =

k−1
∑

i=0

αi,jf
(i), j = 0, 1, · · · , k − 1,

where

(3.31) αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

and

(3.32) αi,0 = di − dkAi, for all i = 0, 1, · · · , k − 1.

By (3.23)-(3.32), we obtain the system of equations

(3.33)



























gf = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),
g′f = α0,1f + α1,1f

′ + · · ·+ αk−1,1f
(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

· · ·

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1).

This completes the proof of Lemma 3.8. �
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4. Proof of the Theorems and the Corollaries

Proof of Theorem 2.1

Proof. Suppose that f is an infinite [p, q]−order meromorphic solution of (2.1) with ρ[p+1,q] (f) = ρ. By
Lemma 3.8, gf satisfies the system of equations

(4.1)



























gf = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),
g′f = α0,1f + α1,1f

′ + · · ·+ αk−1,1f
(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

· · ·

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1),

where

(4.2) αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

and

(4.3) αi,0 = di − dkAi, for all i = 0, 1, · · · , k − 1.

By Cramer’s rule, and since h 6≡ 0, then we have

(4.4) f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gf α1,0 . . αk−1,0

g′f α1,1 . . αk−1,1

. . . . .

. . . . .

g
(k−1)
f α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h
.

It follows that

(4.5) f = C0gf + C1g
′
f + · · ·+ Ck−1g

(k−1)
f ,

where Cj are finite [p, q]−order meromorphic functions depending on αi,j , where αi,j are defined in (4.2)
and (4.3).

If ρ[p,q] (gf ) < +∞, then by (4.5) we obtain ρ[p,q] (f) < +∞, which is a contradiction. Hence
ρ[p,q] (gf ) = ρ[p,q] (f) = +∞.

Now, we prove that ρ[p+1,q] (gf ) = ρ[p+1,q] (f) = ρ. By (1.2), we get ρ[p+1,q] (gf ) ≤ ρ[p+1,q] (f) and
by (4.5) we have ρ[p+1,q] (f) ≤ ρ[p+1,q] (gf ). This yield ρ[p+1,q] (gf ) = ρ[p+1,q] (f) = ρ.

Furthermore, if f is a finite [p, q]−order meromorphic solution of equation (2.1) such that

(4.6) ρ[p,q] (f) > max
{

ρ[p,q] (Ai) , ρ[p,q] (dj) : i = 0, · · · , k − 1, j = 0, 1, · · · , k
}

,

then

(4.7) ρ[p,q] (f) > max
{

ρ[p,q] (αi,j) : i = 0, · · · , k − 1, j = 0, · · · , k − 1
}

.

By (1.2) and (4.6) we have ρ[p,q] (gf ) ≤ ρ[p,q] (f) . Now, we prove ρ[p,q] (gf ) = ρ[p,q] (f) . If ρ[p,q] (gf ) <
ρ[p,q] (f) , then by (4.5) and (4.7) we get

ρ[p,q] (f) ≤ max
{

ρ[p,q] (Cj) (j = 0, · · · , k − 1) , ρ[p,q] (gf )
}

< ρ[p,q] (f)

which is a contradiction. Hence ρ[p,q] (gf ) = ρ[p,q] (f) . �

Remark 4.1. By (4.5), we can see that the condition h 6≡ 0 is equivalent to the condition gf , g
′
f , g

′′
f , · · · , g

(k−1)
f

are linearly independent over the field of meromorphic functions of finite [p, q]−order.

Proof of Theorem 2.3
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Proof. Suppose that f is an infinite [p, q]−order meromorphic solution of equation (2.1) with ρ[p+1,q] (f) =
ρ. Set w (z) = gf − ϕ. Since ρ[p,q] (ϕ) < ∞, then by Lemma 3.4 and Theorem 2.1 we have ρ[p,q] (w) =

ρ[p,q] (gf ) = ∞ and ρ[p+1,q] (w) = ρ[p+1,q] (gf ) = ρ. To prove λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ∞ and

λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ we need to prove λ[p,q] (w) = λ[p,q] (w) = ∞ and λ[p+1,q] (w) =
λ[p+1,q] (w) = ρ. By gf = w + ϕ, and using (4.5), we get

(4.8) f = C0w + C1w
′ + · · ·+ Ck−1w

(k−1) + ψ (z) ,

where

ψ (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1).

Substituting (4.8) into (2.1), we obtain

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ(k) +Ak−1 (z)ψ
(k−1) + · · ·+A0 (z)ψ

)

= H,

where φj (j = 0, · · · , 2k − 2) are meromorphic functions of finite [p, q]-order. Since ψ (z) is not a

solution of (2.1), it follows that H 6≡ 0. Then by Lemma 3.3, we obtain λ[p,q] (w) = λ[p,q] (w) = ∞ and

λ[p+1,q] (w) = λ[p+1,q] (w) = ρ, i. e.,

λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ∞

and

λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ.

Suppose that f is a finite [p, q]−order meromorphic solution of equation (2.1) such that (2.7) holds.
Set w (z) = gf −ϕ. Since ρ[p,q] (ϕ) < ρ[p,q] (f) , then by Lemma 3.4 and Theorem 2.1 we have ρ[p,q] (w) =

ρ[p,q] (gf ) = ρ[p,q] (f) . To prove λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) we need to prove λ[p,q] (w) =
λ[p,q] (w) = ρ[p,q] (f) . Using the same reasoning as above, we get

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ(k) +Ak−1 (z)ψ
(k−1) + · · ·+A0 (z)ψ

)

= H,

where φj (j = 0, · · · , 2k − 2) are meromorphic functions with [p, q]−order ρ[p,q] (φj) < ρ[p,q] (f) (j =
0, · · · , 2k − 2) and

ψ (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1), ρ[p,q] (H) < ρ[p,q] (f) .

Since ψ (z) is not a solution of (2.1), it follows that H 6≡ 0. Then by Lemma 3.2, we obtain λ[p,q] (w) =

λ[p,q] (w) = ρ[p,q] (f) , i. e., λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) . �

Proof of Corollary 2.4

Proof. Suppose f 6≡ 0 is a solution of (2.1). Then by Lemma 3.6, we have ρ[p,q] (f) = ∞ and ρ[p+1,q] (f) =
ρ[p,q] (A0) . Thus, by Theorem 2.1 we obtain ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (gf ) = ρ[p+1,q] (f) =
ρ[p,q] (A0) . �

Proof of Corollary 2.5

Proof. Suppose f 6≡ 0 is a solution of (2.1). Then by Lemma 3.6, we have ρ[p,q] (f) = ∞ and ρ[p+1,q] (f) =
ρ[p,q] (A0) . Since ϕ (z) 6≡ 0 is an entire function of finite [p, q]−order such that ψ (z) 6≡ 0, then ρ[p,q] (ψ) <

∞ and ψ is not a solution of (2.1). Thus, by Theorem 2.3 we obtain λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) =
ρ[p,q] (f) = ∞ and

λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ[p+1,q] (f) = ρ[p,q] (A0) .
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Proof of Corollary 2.6

Proof. Suppose that f is a nontrivial solution of (2.8). Then by Lemma 3.7, we have

ρ[p,q] (f) = ∞ and ρ[p+1,q] (f) = ρ[p,q] (B) .

On the other hand, we have

(4.9) gf = d2f
′′ + d1f

′ + d0f.

It follows by Lemma 3.8 that

(4.10)

{

gf = α0,0f + α1,0f
′,

g′f = α0,1f + α1,1f
′.

By (2.3) we obtain

(4.11) αi,0 =

{

d1 − d2A, for i = 1,
d0 − d2B, for i = 0.

Now, by (2.2) we get

αi,1 =

{

α′
1,0 + α1,0 −Aα1,0, for i = 1,
α′
0,0 −Bα1,0, for i = 0.

Hence

(4.12)

{

α0,1 = d2BA− (d2B)
′
− d1B + d′0,

α1,1 = d2A
2 − (d2A)

′
− d1A− d2B + d0 + d′1

and

h =

∣

∣

∣

∣

α0,0 α1,0

α0,1 α1,1

∣

∣

∣

∣

= −d22B
2 − d0d2A

2 +
(

−d2d1 + d′1d2 + 2d0d2 − d21
)

B

+(d′2d0 − d2d
′
0 + d0d1)A+ d1d2AB − d1d2B

′ + d0d2A
′

+d22B
′A− d22BA

′ + d′0d1 − d0d
′
1 − d20.

First we suppose that d2 6≡ 0. By d2 6≡ 0, B 6≡ 0 and Lemma 3.5 we have ρ[p,q] (h) = ρ[p,q] (B) > 0. Hence
h 6≡ 0. Now suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0. Then, by using a similar reasoning as
above we get h 6≡ 0. By h 6≡ 0 and (4.10), we obtain

(4.13) f =
α1,0g

′
f − α1,1gf

h
.

By (4.9) we have ρ[p,q] (gf ) ≤ ρ[p,q] (f) (ρ[p+1,q] (gf ) ≤ ρ[p+1,q] (f)) and by (4.13) we have ρ[p,q] (f) ≤
ρ[p,q] (gf ) (ρ[p+1,q] (f) ≤ ρ[p+1,q] (gf )). Then ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (gf ) = ρ[p+1,q] (f) =
ρ[p,q] (B). �

Proof of Corollary 2.7

Proof. Set w (z) = d2f
′′ + d1f

′ + d0f − ϕ. Then, by ρ[p,q] (ϕ) < ∞, Lemma 3.4 and Corollary 2.6, we
have ρ[p,q] (w) = ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (w) = ρ[p+1,q] (gf ) = ρ[p+1,q] (f) = ρ[p,q] (B). To

prove λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) = ∞ and

λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) = ρ[p+1,q] (f) = ρ[p,q] (B)

we need to prove λ[p,q] (w) = λ[p,q] (w) = ∞ and λ[p+1,q] (w) = λ[p+1,q] (w) = ρ[p,q] (B) . Using gf = w+ϕ,
we get from (4.13)

(4.14) f =
α1,0w

′ − α1,1w

h
+ ψ,
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where

(4.15) ψ (z) =
α1,0ϕ

′ − α1,1ϕ

h
.

Substituting (4.14) into equation (2.8), we obtain

(4.16)
α1,0

h
w′′′ + φ2w

′′ + φ1w
′ + φ0w = (ψ′′ +A (z)ψ′ +B (z)ψ) = C,

where φj (j = 0, 1, 2) are meromorphic functions with ρ[p,q] (φj) < ∞ (j = 0, 1, 2). First, we prove that
ψ 6≡ 0. Suppose that ψ ≡ 0. Then by (4.15), we obtain

(4.17) α1,1 = α1,0
ϕ′

ϕ
.

Hence, by Lemma 3.1 we have

m(r, α1,1) ≤ m(r, α1,0) +O
(

expp−1

{

(µ+ ε) logq r
}) (

ρ[p,q] (ϕ) = µ <∞
)

,

outside of a possible exceptional set E of finite linear measure, that is

m(r, d2A
2 − (d2A)

′
− d1A− d2B + d0 + d′1) ≤ m(r, d1 − d2A)

(4.18) +O
(

expp−1

{

(µ+ ε) logq r
})

, r /∈ E.

(i) If d2 6≡ 0, then we obtain the contradiction

ρ[p,q] (B) ≤ ρ[p,q] (A)

when ρ[p,q] (A) < ρ[p,q] (B) and we obtain the contradiction

τ[p,q] (B) ≤ τ[p,q] (A)

when ρ[p,q] (A) = ρ[p,q] (B) .
(ii) If d2 ≡ 0 and d1 6≡ 0, then we obtain the contradiction

ρ[p,q] (A) ≤ ρ[p,q] (d1) .

(iii) If d2 = d1 ≡ 0 and d0 6≡ 0, then we have by (4.17)

d0 = 0×
ϕ′

ϕ
≡ 0,

which is a contradiction. It is clear now that ψ 6≡ 0 cannot be a solution of (2.8) because ρ[p,q] (ψ) <∞.

Hence C 6≡ 0. By Lemma 3.3, we obtain λ[p,q] (w) = λ[p,q] (w) = ∞ and λ[p+1,q] (w) = λ[p+1,q] (w) =

ρ[p,q] (B) , i.e., λ[p,q] (gf − ϕ) = λ[p,q] (gf − ϕ) = ρ[p,q] (f) = ∞ and λ[p+1,q] (gf − ϕ) = λ[p+1,q] (gf − ϕ) =
ρ[p+1,q] (f) = ρ[p,q] (B) . �
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