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Abstract. The domination number is an important vulnerability parameter that it has
become one of the most widely studied topics in graph theory, and also most often stud-
ied property of vulnerability of communication networks. Recently, Dankelmann et al.
defined the exponential domination number in [11]. We investigate a refinement that in-
volves the edge exponential domination number of this parameter. LetG = (V (G), E(G))
be a simple graph. An exponential edge dominating set of graph G is a kind of distance

edge domination subset D ⊆ E(G) such that
∑

e∈S(1/2)d(e,f) ≥ 1,∀e ∈ E(G), where

d(e, f) is the length of a shortest path in 〈E(G) − (D − {e})〉 if such a path exist, and
∞ otherwise. The minimum exponential edge domination number, γ′e(G) is the smallest
cardinality of an exponential edge dominating set. In this paper, the above mentioned
new parameter is defined and examined. Then upper bounds, lower bounds and exact
formulas are obtained for any graph G. Finally, the exact values have been determined
for some well-known graph families.
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1. Introduction

Vulnerability is an important concept in network analysis. The vulnerability of a communication
network is defined as the measurement of the global strength of its underlying graph. The design of a
good communication network must take into account notions such as reliability and vulnerability. When
the network requirements are expressed in terms of graph theoretical parameters, the problem of analysis
and design of networks becomes finding a graph G satisfying some specified requirement [6, 7].

The communication systems are often exposed to failures and attacks. The vulnerability value of
a communication network shows the resistance of the network after the disruption of some centers or
connection lines until a communication breakdown [6, 7]. In the literature, various measures have been
defined to measure the robustness of network and a variety of graph theoretic parameters have been used
to derive formulas to calculate network vulnerability. Graph vulnerability relates to the study of graph
when some of its elements (vertices or edges) are removed. The measures of graph vulnerability are usually
invariants that measure how a deletion of one or more network elements changes properties of the network.
The best known measure of reliability of a graph is its connectivity. The vertex (edge) connectivity
is defined to be the minimum number of vertices (edges) whose deletion results in a disconnected or
trivial graph [5]. The vertex and edge connectivity are denoted by k(G) and k′(G), respectively. Then
toughness [19], integrity [3], domination number [4, 13], and edge domination number [12], etc. have been
proposed for measuring the vulnerability of networks. Recently, some average vulnerability parameters
such as average lower independence number [2, 8], average lower domination number [8, 18], average
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lower 2-domination number [17], average connectivity number [9], average lower bondage number [15]
and average lower reinforcement number [16] have been defined.

Let G = (V (G), E(G)) be a simple undirected graph of order n. We begin by recalling some standard
definitions that we need throughout this paper. For any vertex v ∈ V (G), the open neighborhood of v is
NG(v) = {u ∈ V (G)|uv ∈ E(G)} and closed neighborhood of v is NG[v] = NG(v)∪{v}. The degree of v in
G denoted by deg(v), is the size of its open neighborhood [4, 13]. The distance d(u, v) between two vertices
u and v in G is the length of a shortest path between them. The diameter of G, denoted by diam(G) is
the largest distance between two vertices in V (G) [4, 13]. Let e1 = (u1, v1) and e2 = (u2, v2) be two edges
of G. The distance between e1 and e2 is defined as d(e1, e2) = min{(u1, u2), (u1, v2), (v1, u2), (v1, v2)}. If
d(e1, e2) = 0, then these edges are called neighbour edges [13].

A set S ⊆ V (G) is a dominating set if every vertex in V (G) − S is adjacent to at least one vertex in
S. The minimum cardinality taken over all dominating sets of G is called the domination number of G
is denoted by γ(G) [4, 13]. The concept of edge domination was introduced by Mitchell and Hedetniemi
[12]. A subset D of E is called an edge dominating set of G if every edge not in D is adjacent to some
edge in D. The edge domination number γ′(G) of G is the minimum cardinality taken over all edge
dominating sets of G. The literature on domination has been surveyed and detailed in the two books by
Haynes, Hedetniemi, and Slater [13, 14].

There are different application of domination problems. For instance, dominating sets in graphs are
natural models for facility location problems in operations research [13] or domination number is the one
of the most important vulnerability parameter for networks [13, 18].

In 2009, Dankelmann introduced the concept of exponential domination[11]. This new parameter
is closely in relation with distance of each pair of vertices. The exponential domination number is
the theoretical vulnerability parameters for a network that is represented by a graph [1, 11]. An ex-
ponential dominating set of graph G is a kind of distance domination subset S ⊆ V (G) such that∑

v∈S(1/2)d(u,v)−1 ≥ 1,∀v ∈ V (G), where d(u, v) is the length of a shortest path in 〈V (G)− (S−{u})〉 if
such a path exist, and∞ otherwise. The minimum exponential domination number, γe(G) is the smallest
cardinality of an exponential dominating set. We call such an edge set is a minimum exponential set
which is denoted by γe-set.

Our aim in this paper is to define a new vulnerability parameter, so called exponential edge domination
number. In Section 2, some well-known basic results are given for exponential domination number. In
Section 3, we define a new parameter namely as exponential edge domination number denoted by γ′e(G).
In Section 4, we determine upper bounds, lower bounds and exact solutions of the exponential edge
domination number for any graph G. Finally, the exponential edge domination numbers of the popular
well-known graphs are computed in Section 5.

2. Basic Results

In this section some well-known basic results are given with regard to exponential domination number.

Theorem 2.1. [11] The exponential domination number of
(a) the path graph Pn of order n ≥ 1 is γe(Pn) = dn+1

4 e.

(b) the cycle graph Cn of order n ≥ 3 is γe(Cn) =

{
2 , if n = 4;
dn4 e , if n 6= 4.

Theorem 2.2. [11] For every graph G, γe(G) ≤ γ(G), and also γe(G) = 1 if and only if γ(G) = 1.

Theorem 2.3. [1] Let G be any connected graph with n vertices and ∃v ∈ V (G) such that deg(v) = n−1.
Then, γe(G) = 1

Theorem 2.4. [11] If G is a connected graph of diameter d, then γe(G) ≥ dd+2
4 e.

Theorem 2.5. [11] If G is a connected graph of order n, then γe(G) ≤ 2
5 (n+ 2).
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Theorem 2.6. [11] Let G be a connected graph of order n and T be a spanning tree of G. Then γe(G) ≤
γe(T ).

3. The Exponential Edge Domination Number

In this section, we introduce a new graph theoretical parameter: the exponential edge domination
number. For this new parameter we are inspired by the notion of exponential domination number. Let
G be a graph, and let D ⊆ E(G). We denote by 〈D〉 the subgraph of G induced by D. For each edge
e ∈ D and for each f ∈ E(G) − D, we define d(e, f) = d(f, e) to be the length of the shortest path in
〈E(G)− (D − {e})〉 if such a path exist, and ∞ otherwise. Let wD(e) be the weight of D at the edge e.
It is defined as follows:

wD(e) =

{ ∑
e∈S(1/2)d(e,f) , if e /∈ D;

2 , if e ∈ D.

If, for each e ∈ E(G), we have wD(e) ≥ 1, then D is an exponential edge set. The smallest cardinality
of an exponential edge dominating set is the exponential edge domination number, γ′e(G), and such a
set is a minimum exponential edge dominating set, or γ′e(G)-set for short.If e ∈ D, f ∈ E(G) −D and

(1/2)d(e,f) ≥ 1, then we say that e exponentially edge dominates f . Note that if D is an exponential
edge dominating set, then every edge of E(G)−D is exponentially edge dominated, but the converse is
not true.

Example 3.1. Let we calculate the exponential edge domination number of the graph P8 in Figure 1.

Figure 1. The graph P8

The Tables 1 and 2 show us the weight ofD1 andD2 at all edges of the graph P8, whereD1 = {e1, e4, e6}
and D2 = {e2, e6}, respectively.

Table 1. Weight of D1 at all edges of the graph P8

e d(e, e1) d(e, e4) d(e, e6) wD1(e)
e1 − − − 2
e2 0 1 ∞ 1.5
e3 1 0 ∞ 1.5
e4 − − − 2
e5 ∞ 0 0 2
e6 − − − 2
e7 ∞ ∞ 0 1

For the sets D1 and D2, ∀e ∈ E(P8), wD1
(e) ≥ 1 and wD2

(e) ≥ 1 are satisfied. So, the sets D1 and
D2 are two exponential edge dominating set.
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Table 2. Weight of D2 at all edges of the graph P8

e d(e, e2) d(e, e6) wD2(e)
e1 0 ∞ 1
e2 − − 2
e3 0 2 1.25
e4 1 1 1
e5 2 0 1.25
e6 − − 2
e7 ∞ 0 1

Similarly, we can get a lot of exponential edge dominating sets of the graph P8, but for exponential
edge domination number we need the minimum cardinality of among all exponential edge dominating
sets. Then, we have

γ′e(P8) = min{|D1|, |D2|} = min{3, 2} = 2.

If we think a graph as a modeling of network, the exponential edge domination number may be
more sensitive than other measures of vulnerability as like connectivity, edge connectivity, domination
number, edge domination number and exponential domination number for distinguish two graphs whose
number of the vertices and edges are the same. For example, consider two graphs G1 and G2 in Figure 2,
where |V (G1)| = |V (G2)| = 10 and |E(G1)| = |E(G2)| = 11. They have not only equal connectivity but
also equal edge connectivity, domination number, edge domination number and exponential domination
number such as k(G1) = k(G2) = 1, k′(G1) = k′(G2) = 1, γ(G1) = γ(G2) = 3, γ′(G1) = γ′(G2) = 3 and
γe(G1) = γe(G2) = 2.

Figure 2. The graphs G1 and G2

These values could be easily checked by readers. So, how can we distinguish between the graphs G1

and G2?
When the exponential edge domination numbers of these two graphs G1 and G2 are computed, γ′e(G1) = 3
and γ′e(G2) = 2 are obtained. The results could be checked by readers. Thus, the exponential edge
domination number may be used for distinguish between these two graphs G1 and G2.

4. Some General Results

Theorem 4.1. For every graph G, γ′e(G) ≤ γ′(G), and also γ′e(G) = 1 if and only if γ′(G) = 1.

Proof. Because of the definition of edge domination number and exponential edge domination number,
the proof is clear. �
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Theorem 4.2. Let G be a graph of order n. If G has at least one vertex with degree (n − 1), then
γ′e(G) ≤ 2.

Proof. Let vc be center vertex with degree n − 1, and let e1 and v1 be edge which is incident to vc,
also be vertex which incident to e1, respectively. Clearly, the edge e1 exponentially dominates all edges
which are incident to the vertex vc and all edges which are incident to vertex v1. If all vertices of G
are exponentially dominated with the edge e1, clearly we have γ′e(G) = 1. If all vertices of G are not
exponentially dominated by the edge e1, then e1 contributes 1/2 to edges which are not adjacent to
the edge e1. Let e2 be any edge which is adjacent to vc. If the edge e2 is added to exponential edge
dominating set, then clearly e2 contributes 1/2 to edges which are not adjacent to the edge e1. As a
result, we get γ′e(G) ≤ 2.
The proof is completed. �

Theorem 4.3. Let G be a graph of order n. If G has at least two vertices whose degree (n − 1), the

minimum degree δ(G) = n− 2 and |E(G)| ≥ n2−3n+4
2 , then γ′e(G) = 2.

Proof. Let v1 and v2 be two vertices with degree n − 1, and let ex be edge between the vertices v1 and
v2. If the edge ex is added to the set D, then 2n − 4 edges are exponentially dominated by ex, where
D is a minimum exponentially edge dominating set. Due to the minimum degree δ(G) = n − 2 and

|E(G)| ≥ n2−3n+4
2 , all vertices exponentially edge dominated if any edge of the graph G is added to the

set D. So, we get γ′e(G) = 2.
The proof is completed. �

5. The Exponential Edge Domination Number of Some Well-Known Graphs

In this section we calculate the exponential edge domination number of some well known graphs such
as the path graph Pn, the cycle graph Cn, the complete graph Kn, the star graph S1,n and the wheel
graph W1,n.

Theorem 5.1. The exponential edge domination number of the path graph Pn of order (n ≥ 2) is given
by γ′e(Pn) = dn4 e.

Proof. Let D be a minimum exponential dominating set of Pn, and also let V (Pn) = {v0, v1, ..., vn−1}
and E(Pn) = {e0, e1, ..., ediam(Pn)−1}, respectively. Let D = {e4i+1|i ∈ {0, ..., bdiam(Pn)−2

4 c}. Any edge
e in D dominates all adjacent edges. Consider the edges f ∈ (E(Pn) − NPn [e]). These edges are at
distance 1 to exactly two edges in D. This implies wD(e) >≥ 1 for all e ∈ E(Pn). Thus, the edges of D
dominate either all edges of E(Pn) or some edges of E(Pn) which are not dominated, and then we have

γ′e(Pn) ≥ |D| = 1 + bdiam(Pn)−2
4 c.

Let D∗ be a minimum exponential edge dominating set of Pn, and also D∗ contains all edges of D.
We have four cases depending on n.

Case 1. n ≡ 0(mod4).

Clearly, we get γ′e(Pn) ≥ |D∗| = 1 + diam(Pn)−3
4 = diam(Pn)+1

4 .

Case 2. n ≡ 1(mod4).
An edge en−2 is not dominated by the edges of D∗. Thus, this edge must be added to D∗, and then

we have

γ′e(Pn) ≥ |D∗| = 1 + 1 +
diam(Pn)− 4

4
=
diam(Pn) + 4

4
.
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Case 3. n ≡ 2(mod4).
Two edges en−2 and en−3 are not dominated by the edges of D∗. Thus, one of them must be added

to D∗, and then we have

γ′e(Pn) ≥ |D∗| = 1 + 1 +
diam(Pn)− 5

4
=
diam(Pn) + 3

4
.

Case 4. n ≡ 3(mod4).

Clearly, we get γ′e(Pn) ≥ |D∗| = 1 + diam(Pn)−2
4 = diam(Pn)+2

4 .

It is easy to say that from the Case 1, {e1} is minimum exponential edge dominating set of P4 and
γ′e(P4) = 1. Furthermore, if n > 4 and D∗ is a minimum exponential edge dominating set of Pn, then
D∗ ∩ {e0, e1, e2} is an exponential edge dominating set of P4 and D∗−{e0, e1, e2} is an exponential edge
dominating set of Pn−4. By an inductive argument, we obtain

γ′e(Pn) ≤ γ′e(P4) + γ′e(Pn−4).

From the Case 1, we have
n

4
≤ γ′e(Pn) ≤ 1 +

n− 5 + 1

4
=
n

4
.

Thus, we obtain γ′e(Pn) = n
4 .

Examining the other cases as above, we obtain γ′e(Pn) = n+3
4 from the Case 2, γ′e(Pn) = n+2

4 from the

Case 3 and γ′e(Pn) = n+1
4 from the Case 4.

Consequently, we obtain γ′e(Pn) = dn4 e.
The proof is completed. �

Theorem 5.2. The exponential edge domination number of the cycle graph Cn of order (n ≥ 5) is given
by γ′e(Cn) = dn4 e.

Proof. The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1. �

Theorem 5.3. The exponential edge domination number of the wheel graph W1,n of order (n + 1) is
given by γ′e(W1,n) = 2.

Proof. By the Theorem 4.2, we have γ′e(W1,n) ≤ 2. On the other hand, by the Theorem 4.1, we have
γ′e(W1,n) ≥ 2. Because of the edge domination number of W1,n is not equal 1. So, γ′e(W1,n) = 2 is
obtained.
The proof is completed. �

Theorem 5.4. The exponential edge domination number of the star graph S1,n of order (n+ 1) is given
by γ′e(S1,n) = 1.

Proof. By the Theorem 4.1, the proof of Theorem 5.4 is clear. �

Theorem 5.5. The exponential edge domination number of the complete graph Kn of order n is given
by γ′e(Kn) = 2.

Proof. By the Theorem 4.3, the proof of Theorem 5.5 is clear. �

6. Conclusion

In this study, a new graph theoretical parameter namely the exponential edge domination number has
been presented for the network vulnerability. The stability of popular interconnection networks which
are complete graphs, the path graphs, the cycle graphs, the star graphs and the wheel graphs has been
studied and their exponential edge domination numbers have been computed. As a further study, exact
formulas or bounds may be obtained for any graph G, graph operations and trees.
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