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Abstract. In this note we make some remarks on the classical La-
guerre’s theorem and extend it and some other old results of Walsh
and Gauss-Lucas ([6], Th. XXVIII-XXX) to the so called trace se-

ries associated with transcendental elements of Q̃, the completion
of the algebraic closure of Q in C, with respect to the spectral
norm: ‖x‖ = max

{
|σ(x)| , σ ∈ Gal(Q/Q)

}
.
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1. Introductory remarks on Laguerre theorem

In [6], Theorems XXVIII-XXVIX, we find the following result (due
to E. Laguerre).

Theorem 1.1. (Laguerre) Let f(z) be a polynomial in C[z], z1, z2,
..., zn be its roots in C (not necessarily distinct) and n = deg f be its
degree. Let w be a complex number such that f(w) 6= 0 and w∗ ∈ C

such that

(1)
f /(w)

f(w)
=

n

w − w∗

Let (C) be an arbitrary circumference which contains w and w∗.
Then, either all z1, z2, ..., zn belong to (C) or, in each of the two
connected components of C\(C) we find at least one zi, i.e. (C) sep-
arates the set of roots of f(X). Moreover, if (H) is a circular region
which contains all the roots z1, z2, ..., zn, then w and w∗ cannot be
simultaneously outside (H).
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Here by a circumference (C) we mean either a boundary of an usual
ball B(z0, ρ) = {y ∈ C, |y − z0| < ρ} or a straight line, i.e. (C) is a
circumference in the Riemann sphere C ∪ {∞}. A circular region is a
region (H) bounded by a circumference (C).
There exist many proofs and generalizations of this old and impor-

tant theorem (see [1], [8], [6], [13], [7], [5]). Let us write formula (1) in
another way:

(2)
n∑

j=1

1

w − zj
=

n

w − w∗

and compute w∗ as a function of zj, j = 1, 2, ..., n and w :

(3) w∗ =

∑n
j=1

zj
w−zj∑n

j=1
1

w−zj

=
wf ′(w)− nf(w)

f ′(w)
.

If zj has the algebraic multiplicity kj and if we have k distinct roots of
f(z), say z1, ..., zk, then formula (3) becomes:

(4) w∗ =

∑k
j=1

kjzj
w−zj∑k

j=1
kj

w−zj

.

We define now a new complex function L : C ∪ {∞} → C ∪ {∞} (
L from Laguerre!) by the formula: L(w) = w∗ if w is not a root of
the polynomial f and L(zj) = zj if j = 1, ..., n. This function is a
univalent one. But its inverse L−1(w∗) = w is a (n−1)-valued function
because, given w∗ in formula (1), w is one of the roots of a polynomial
of degree n−1. It is easy to rewrite the statement of Laguerre theorem
1.1 in language of the (Laguerre) function L. In fact this function was
partially studied in [8] for instance.

We define now a new modified Laguerre function L̃ : C → C by

L̃(zj) = zj if j = 1, 2, ..., n and, for w with f(w) 6= 0, we define:

L̃(w) = w̃, where

(5) L̃(w) = w̃ =

∑n
j=1

zj
|w−zj |∑n

j=1
1

|w−zj |

For this new function we prove the following modified Laguerre the-
orem.

Theorem 1.2. Let f(z) ∈ C[z] be a polynomial with complex coeffi-
cients and let z1, z2, ..., zn be its roots, where n = deg f. Let w be

any complex number and w̃ = L̃(w). Then, for any circular region (H)
which contains all the roots z1, z2, ..., zn, w and w̃ cannot be simul-
taneously outside (H). Moreover, if f(w) 6= 0, then any circumference
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(C) which contains w and w̃ separates the set z1, z2, ..., zn, i.e. they
all cannot be in one of the connected components of Cr (C).

We shall prove this theorem by a series of auxiliary results.
Moreover, our method can be easily extended to a compact subset

K of C instead of a finite set of points {z1, ..., zn}.
First of all we can reduce our elementary considerations to the case of

a straight line ”circumference”, i.e. to a circumference (C1) which has
the infinite point ∞ on it. Indeed, let us take a point w1 /∈ {w,w∗} on a
circular circumference (C) and transfer everything through the rational
linear-fractional transformation z → 1

z−w
. Since this transformation

caries circular regions into circular regions and caries them back, the
statements of Theorem 1.2 are invariant to such transformations.
In what follows we identify the complex number field C with an usual

plane P in which we fix a Cartesian coordinate system {O,
−→
i ,

−→
j }. So,

to any point M(x, y) we associate the complex number z = x+ iy, i =√
−1, the affix ofM and conversely, to z = x+iy, x, y ∈ R, we associate

the point M(x, y). A loaded point in C (or in P) is a pair [z,m] (or
[M(x, y),m]), where z ∈ C and m ∈ (0,∞). We shall identify a simple
(”unloaded”) point z of C with the loaded point [z, 1]. We can also say
that the function f : C → (0,∞), f(z) = m if [z,m] are loaded points
which cover all C, is a density function on C. In the following we think
that any complex number z ”has a density m in it”. If m = 1 it is a
simple point in C. Two loaded points [M1(x1, y1),m1], [M2(x2, y2),m2]
are considered to be equal if M1 ≡ M2 and, in this case, m1 = m2

(since the density function is an usual univalent function). If a loaded
point [M(x, y),m] is considered k-times, k = 1, 2, ... (it has multiplicity
k), we identify it with [M(x, y), km].
Like usual, if S = {[M1(x1, y1),m1], ..., [Mn(xn, yn),mn]} is a system

of n loaded points in C, the loaded point [G(xG, yG),
∑n

j=1mj], where

xG =
∑n

j=1
xjmj

∑n
j=1

mj
and yG =

∑n
j=1

yjmj
∑n

j=1
mj

, is called the centre of mass of S.

It is easy to prove the following elementary result:

Lemma 1.3. Let S = {[M1(x1, y1),m1], [M2(x2, y2),m2]} be a set of
two distinct loaded points in C. Then,
a) the center of mass [G(xG, yG),m1 + m2] is a point on the open

segment (M1,M2).
b) if (d) is a straight line which passes through G(xG, yG) and does

not contain the entire segment [M1M2], then (d) separates the set of
points {M1,M2}, i.e. M1,M2 cannot simultaneously be in one of the
two (open) connected components of Cr (d).
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Lemma 1.4. Let S = {[M1(x1, y1),m1], ..., [Mn(xn, yn),mn]} , n > 1,
be a system of n distinct loaded points in C with its center of mass
[G(xG, yG),

∑n
j=1 mj] and let (d) be a straight line which contains the

point G(xG, yG) and does not contain all the points Mj(xj, yj), j =
1, 2, ..., n. Then (d) separates the set S, i.e. S is not contained in any
of the two connected components of Cr (d). In particular, if B(α, r) is
an open disc of radius r and center α ∈ C which contains all the points
M1, ...,Mn, then the point G(xG, yG) is contained in B(α, r). The same
statement is true if we substitute the ball B(α, r) with a rectangle D
which contains all the points M1, ...,Mn.

Proof. We use mathematical induction relative to n. For n = 2 the
statement is true from Lemma 1.3. Let us assume that n > 2 and that
the statement is true for any k ≤ n − 1. We shall prove it for k = n.
Let us take the system S1 = {[M1(x1, y1),m1], [M2(x2, y2),m2]} and let
[M∗

2 (x
∗, y∗),m1+m2] be its centre of mass. It is not difficult to see that

the centre of mass of S is equal to the centre of mass of the new sys-
tem S2 = {[M∗

2 (x
∗, y∗),m1 +m2], [M3(x3, y3),m3]..., [Mn(xn, yn),mn]}

of n − 1 loaded points. Let now (d) be a straight line which contains
this last centre of mass and does not contain all the points of S. If it
contained all the points of S2, thenM1 andM2 would belong to one and
the same connected component of C r (d) and the proof of the state-
ment would be done. Since S2 contains at most n−1 distinct points, we
apply the induction hypothesis and find that not all the points of S2 are
in one of the two connected components of Cr(d) which are also convex
subsets of C. If all the points of S were in one of these connected com-
ponents, say C1, then the centre of mass [M∗

2 (x
∗, y∗),m1+m2] would be

there and not both M1,M2 would be in C1 and the proof again would
be done. Thus, the statement of the lemma is true for any n = 2, 3, ....
The other statements are now obvious. �

Let now K be a compact subset of C with its boundary ∂K a contin-
uous piecewise smooth curve, i.e. a curve which is smooth but a finite
number of points of it, at which it is continuous. We suppose that
K r ∂K is an open nonempty subset of C. Let f : K → R+ = (0,∞)
be a piecewise continuous (density) function (i.e. a continuous function
except a set of area zero) defined on K with nonnegative real values.
Then the pair [K, f ] is called a loaded region in C and its centre of
mass [G(xG, yG),mass[K, f ]] is computed as follows:

(6) mass[K, f ] =

∫∫

K

f(x, y)dxdy,
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xG =

∫∫
K
xf(x, y)dxdy

mass[K, f ]
, yG =

∫∫
K
yf(x, y)dxdy

mass[K, f ]

where the integral is the usual Riemann double integral. The following
result is a natural ”generalization” of Lemma 1.4.

Proposition 1.5. Let [K, f ] be a loaded region as above, let

[G(xG, yG),mass[K, f ]]

be its centre of mass and let (d) a straight line which contains G. Then
K cannot be contained in one of the connected components of Cr (d).
In particular, if K ⊂ B(α, r), then [G(xG, yG),mass[K, f ]] ∈ B(α, r).

Proof. Let us assume that one connected component, say C1, of Cr(d),
contains the whole K. We can easily embed K into the interior of a
rectangular area D ⊂ C1. So, G cannot belong to D. Now, it is easy
to divide K into two compact subsets K1 and K2, K1 ∪ K2 = K,
area(K1 ∩K2) = 0, area(K1) 6= 0 and area(K2) 6= 0. Let [G1(x1, y1),
mass(K1)] and [G2(x2, y2), mass(K2)] be the centre of mass of K1 and
K2 respectively. It is easy to see that G is also the centre of mass of the
system S = {[G1(x1, y1),mass(K1)], [G2(x2, y2),mass(K2)]} of the two
loaded points. Thus G is on the segment (G1, G2) which is contained
in the rectangle D, a contradiction! Hence K cannot be contained in
C1. �

Now we can prove Theorem 1.2.

Proof. (for Theorem 1.2). In our case, S = {[z1, 1
|w−z1|

], ..., [zn,
1

|w−zn|
]}

is a system of loaded points and
[
w̃,

∑n
j=1

1
|w−zj |

]
is its centre of mass.

Then we simply apply Lemma 1.4 and the statements of Theorem 1.2
are proved. �

Remark 1.6. Let K be a compact subset of C as in Proposition 1.5
and let w be a complex number which is outside K. For any z ∈ K
we define f(z) = 1

|w−z|
. In this way [K, f ] becomes a loaded compact

subset of C. Let G(xG, yG) be its centre of mass (w = u+iv, z = x+iy):

mass[K, f ] =

∫∫

K

1

|w − z|dxdy,

xG =

∫∫
K

x
|w−z|

dxdy

mass[K, f ]
, yG =

∫∫
K

y
|w−z|

dxdy

mass[K, f ]
.

Then, Proposition 1.5 can be applied and we find a natural generaliza-
tion of Theorem 1.2 to the loaded compact [K, f ], where f(z) = 1

|w−z|
.

This last result says that from the point of view of the Newtonian field
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centered at w, we can substitute the compact subset K with the loaded
point [L(w),mass[K, f ]]. Moreover, this point cannot be outside any
disc which contains K.

Remark 1.7. Let Q be the algebraic closure of the rational number
field Q in C. Then, it is not difficult to see that the Laguerre function
L : C ∪ {∞} → C ∪ {∞},

(7) L(w) = w∗ =
wf ′(w)− nf(w)

f ′(w)

(see also formula (3)) satisfies the following properties:
1) L(Q) = Q if z1, ..., zn ∈ Q. Moreover, L−1(w∗), w∗ ∈ Q, is a

subset of Q which contains at most n − 1 distinct elements, i.e. the
roots of the algebraic equation in w, (w − w∗)f ′(w) − nf(w) = 0.
Here f(w) = (w − z1)...(w − zn). Moreover, for any Q-automorphism
σ ∈ Gal(Q/Q), the absolute Galois group of Q, and w ∈ Q, we have:
L(σ(w)) = σ(L(w)), i.e L is a Gal(Q/Q)-equivariant mapping, when
it is restricted to Q.
2) L(w1) = ∞ if and only if w1 is a critical point of f, i.e. if and

only if f ′(w1) = 0. In particular, L is a meromorphic function with the
critical points of f as poles.
3) L(w) = w if and only if w ∈ {z1, ..., zn}.
4) L(∞) =

∑n
i=1

zi
n

.

2. A Laguerre type theorem for a pseudo-orbit C(α) of a

transcendental element α of Q̃

Now, we intend to extend the result of Laguerre (Theorem 1.1) to the

trace series-functions associated with an element α ∈ Q̃, the completion
of Q (the algebraic closure of Q in C) relative to the spectral norm:
‖x‖ = max {|σ(x)| , σ ∈ G} , where x ∈ Q and G = Gal(Q/Q) is the
absolute Galois group of Q (see [9], [10], [11]). The notion of a trace
function has deep roots in [2], [3] and connections with [12].
Let {αn}n be a Cauchy sequence in Q with respect to spectral norm.

Its class in Q̃ will be denoted by α = {αn}n or α
‖.‖
= lim

n→∞
αn. For any

σ ∈ G the sequence of complex numbers {σ(αn)}n is convergent in C,
say to α(σ), the σ-component of α (see [9]). The function ϕ(α) : G → C,
ϕ(α)(σ) = α(σ) is a continuous function defined on G (with its Krull
topology (see [4])) with values in C (with its usual topology) (see [10]).
Therefore the range of ϕ(α) is a compact set of C, denoted by C(α) and
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called the pseudo-orbit of α. In [10] and [12] we studied these compact
sets in connection with the arithmetic of Q.
Now we need the notion of an ε-neighborhood of a compact C of

C. Let ε > 0 and C be a compact subset of C. For any x ∈ C we
write B(x, ε) for the open ball with centre x and radius ε. V(C; ε) =⋃

x∈C B(x, ε) is said to be the ε−neighborhood of C. We say that a
sequence of compact sets {Cn}n is convergent to the compact C if for
any ε > 0 there exists a natural number Nε such that Cn ⊂ V(C; ε) for
any n ≥ Nε.

It is not difficult to see that if αn
‖.‖→ α then C(αn) is convergent to

C(α).
Let dn = degαn (over Q) and fn(X) be the monic minimal poly-

nomial of αn. Following [3] we denote by Tr(β) =
β1+β2+···+βdegβ

degβ
, the

trace of an element β ∈ Q, where β = β1, β2, ..., βdegβ are all the con-
jugates of β (over Q). If f : G → C is a continuous function we denote

by
∫
G

f(σ)dσ the Haar measure of f

(
we assume that

∫
G

dσ=1

)
. With

these notations we obtain that Tr(β) =
∫
G

ϕ(β)(σ)dσ =
∫
G

σ(β)dσ.

If {αn}n is a Cauchy sequence in Q, i.e. αn
‖.‖→ α ∈ Q̃, then ϕ(αn) is

uniformly convergent to ϕ(α). Hence the sequence of rational numbers
{Tr(αn)}n is convergent to the real number

∫
G

ϕ(α)(σ)dσ.We denote this

last number by Tr(α). We analogously define Tr(αk) = lim
n→∞

Tr(αk
n) for

any k = 0, 1, ....
Let x /∈ C(α) =

{
α(σ), σ ∈ G

}
and ε > 0 such that the ε-neighborhood

V(C(α); ε) of C(α) does not contain x.
Let Nε ∈ N with C(αn) ⊂ V(C(α); ε) for any n ≥ Nε. Let us fix such

an n ≥ Nε and consider the formula:

(8)
f
/
n(x)

fn(x)
=

∑

σ∈En

1

x− σ(αn)

where fn is the monic minimal polynomial of αn, dn = deg fn and En

is a set of elements in G such that {σ(αn)}σ∈En
is the set of all distinct

conjugates of αn in Q, over Q. We can change {αn}n such that Q(αn) ⊂
Q(αn+1), En ⊂ En+1 for any n = 1, 2, ... while α

‖.‖
= lim

n→∞
αn ∈ Q̃ remains

unchanged (see [9] or [10]).
Let us consider x ∈ C with |x| > ‖α‖ . Then |x| > |σ(αn)| for all

σ ∈ En (n like above). Now we can write
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∑

σ∈En

1

x− σ(αn)
=

1

x

∑

σ∈En

1

1− σ(αn)
x

=
1

x

∑

σ∈En

∞∑

k=0

σ(αk
n)

xk
, or

(9)
∑

σ∈En

1

x− σ(αn)
=

dn
x

∞∑

k=0

Tr(αk
n)x

−k

Let us denote
∑∞

k=0 Tr(α
k
n)x

−k by T (αn; x) and call it the trace series
associated with αn. From (1) and (8) we obtain:

(10)
x · f /

n(x)

dn · fn(x)
= T (αn; x) =

x

x− zn

where zn ∈ C is uniquely defined by αn and x (it is in fact L(αn)).
Since Tr(αk

n) → Tr(αk), the sequence of analytical functions
{T (αn; x)}n is uniformly convergent to an analytical function say

T (α; x) on C\B[0, ‖α‖]. In fact

(11) T (α; x) =
∑

∞
k=0Tr(α

k)x−k

We call the function x → T (α; x) the trace series associated with

α ∈ Q̃.
Moreover, zn = x − x

T (αn;x)
is convergent to z = x − x

T (α;x)
and (10)

becomes

(12) T (α; x) =
x

x− z

Now we are able to give an extension of the Laguerre’s theorem
(Theorem 1.1 ).

Theorem 2.1. Let α
‖.‖
= lim

n→∞
αn, αn ∈ Q be an element in Q̃ and

T (α; x) be its trace series. Let x ∈ C such that |x| > ‖α‖ and z ∈ C

which verifies (12). Let (C) be an arbitrary circumference which con-
tains x and z. Then C(α) is not contained in any of the two connected
components of C\(C), i.e. (C) separates C(α).
Proof. We assume that C(α) ⊂ (C1), one of the two connected com-
ponents of C\(C). Let V(C(α); ε) be such that V(C(α); ε) ⊂ (C1) and
x /∈ V(C(α); ε). Let n be large enough such that C(αn) ⊂ V(C(α); ε).
Let (Dn) be a circumference which contains x and zn = x − x

T (αn;x)
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such that (Dn) ∩ V(C(α); ε) = ∅. It is easy to see that C(αn) is con-
tained in one of the two connected components of C\(Dn). Therefore
we obtained a contradiction of the Laguerre’s classical statement. �

In [6], we find other two classical results in polynomial geometry:
Theorem XXIX (Walsh, [13]) and Theorem XXX (Gauss-Lucas).
We give in the following two theorems which are the analogous results

of Walsh’ and Gauss-Lucas’ theorems.
A circular domain in C is one of the two connected components of

C\(C), where (C) is a circumference in C ∪ {∞}.

Theorem 2.2. Let α
‖.‖
= lim

n→∞
αn, αn ∈ Q be an element in Q̃ and

T (α; x) be its trace series. Let (D) be a circular domain in C which
contains the ball B(0, ‖α‖). Then, for any x /∈ (D), the complex num-
ber z = x− x

T (α;x)
belongs to (D).

Proof. We assume that z /∈ (D). Then there exists n large enough such

that zn /∈ (D), where zn = x− x
T (αn;x)

. From (10) we obtain that f
/
n(x)

fn(x)
=

dn
x−zn

. Applying now Walsh’ Theorem (Theorem XXIX, [6]) to fn(X),
the monic minimal polynomial of αn, we obtain a contradiction. �

Theorem 2.3. Let α
‖.‖
= lim

n→∞
αn, αn ∈ Q be an element in Q̃ and

T (α; x) be its trace series. Then T (α; x) has no zero in C\B(0, ‖α‖).
Proof. We directly apply (12) and Theorem 2.2. �

Remark 2.4. Let x /∈ C(α) and x /∈ V(C(α); ε). The sequence
{

x · f /
n(x)

dn · fn(x)

}

n≥Nε

,

where C(αn) ⊂ V(C(α); ε), is convergent. Moreover, the sequence of

analytic functions
{

Z·f
/
n(Z)

dn·fn(Z)

}
is uniformly convergent to an analytic

function T̃ (α; x) on every compact connected set contained in

H = C ∪ {∞}\ (C(α) ∪ (Cα)) ,

where (Cα) is the boundary of the ballB(0, ‖α‖). But T̃ (α; x) is uniquely
determined only on every connected component of H. Moreover, all the

zeros of T̃ (α; x) are in the convex hull of C(α) (see [6]).
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