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Abstract. Here we study quantitatively the rate of convergence of sequences of linear

operators acting on Banach space valued continuous functions to the unit operator.

These operators are bounded by real positive companion linear operators. The Banach

spaces considered here are general and no positivity assumption is made on the initial

linear operators whose we study their approximation properties. We derive pointwise and

uniform estimates which imply the approximation of these operators to the unit. Our

inequalities are of Shisha-Mond type and they imply an elegant Korovkin type theorem.

Mathematics Subject Classification (2010): 41A17, 41A25, 41A36.

Key words: Banach space valued functions, positive linear operator, Shisha-Mond

inequality, Korovkin theory, modulus of continuity.

Article history:

Received 24 February 2017

Accepted 18 July 2017

1. Motivation

Let (X, ‖·‖) be a Banach space, n ∈ N. Consider g ∈ C ([0, 1]) and the classic Bernstein polynomials

(1)
(
B̃ng

)
(t) =

n∑
k=0

g

(
k

n

)(
n

k

)
tk (1− t)n−k , ∀ t ∈ [0, 1] .

Let also f ∈ C ([0, 1] , X) and define the vector valued in X Bernstein linear operators

(2) (Bnf) (t) =

n∑
k=0

f

(
k

n

)(
n

k

)
tk (1− t)n−k , ∀ t ∈ [0, 1] .

That is (Bnf) (t) ∈ X.
Clealry here ‖f‖ ∈ C ([0, 1]).

We notice that

(3) ‖(Bnf) (t)‖ ≤
n∑
k=0

∥∥∥∥f (kn
)∥∥∥∥( n

k

)
tk (1− t)n−k =

(
B̃n (‖f‖)

)
(t) ,

∀ t ∈ [0, 1] .

The property

(4) ‖(Bnf) (t)‖ ≤
(
B̃n (‖f‖)

)
(t) , ∀t ∈ [0, 1] ,

is shared by almost all summation/integration similar operators and motivates our work here.

If f (x) = c ∈ X the constant function, then

(5) (Bnc) = c.
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If g ∈ C ([0, 1]) and c ∈ X, then cg ∈ C ([0, 1] , X) and

(6) (Bn (cg)) = cB̃n (g) .

Again (5), (6) are fulfilled by many summation/integartion operators.

In fact here (6) implies (5), when g ≡ 1.

The above can be generalized from [0, 1] to any interval [a, b] ⊂ R. All this discussion motivates us to

consider the following situation.

Let Ln : C ([a, b] , X) ↪→ C ([a, b] , X), (X, ‖·‖) a Banach space, Ln is a linear operator, ∀ n ∈ N,

x0 ∈ [a, b]. Let also L̃n : C ([a, b]) ↪→ C ([a, b]), a sequence of positive linear operators, ∀ n ∈ N.

We assume that

(7) ‖(Ln (f)) (x0)‖ ≤
(
L̃n (‖f‖)

)
(x0) ,

∀ n ∈ N, x0 ∈ X, f ∈ C ([a, b] , X) .

When g ∈ C ([a, b]), c ∈ X, we assume that

(8) (Ln (cg)) = cL̃n (g) .

The special case of

(9) L̃n (1) = 1,

implies

(10) Ln (c) = c, ∀ c ∈ X.

We call L̃n the companion operator of Ln.

Based on the above fundamental properties we study the approximation properties of the sequence of

linear operators {Ln}n∈N, i.e. their convergence to the unit operator. No kind of positivity property of

{Ln}n∈N is assumed. See also [1], [2].

2. Main Results

We present the following pointwise convergence

Theorem 1. Let Ln : C ([a, b] , X)→ C ([a, b] , X), where (X, ‖·‖) is a Banach space and Ln is a linear

operator, ∀ n ∈ N, x0 ∈ [a, b]. Let the positive linear operators L̃n : C ([a, b]) ↪→ C ([a, b]), such that

(11) ‖(Ln (f)) (x0)‖ ≤
(
L̃n (‖f‖)

)
(x0) , ∀n ∈ N,

where f ∈ C ([a, b] , X) .

Furthermore assume that

(12) L̃n (1) = 1, Ln (c) = c, ∀ c ∈ X.

Then

(13) ‖(Ln (f)) (x0)− f (x0)‖ ≤ 2ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
,

where

(14) ω1 (f, δ) := sup
x,y∈[a,b]:
|x−y|≤δ

‖f (x)− f (y)‖ , 0 < δ ≤ b− a,

is the first modulus of continuity.
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Proof. We notice that

‖(Ln (f)) (x0)− f (x0)‖ = ‖(Ln (f)) (x0)− (Ln (f (x0))) (x0)‖ =

(15) ‖(Ln (f − f (x0))) (x0)‖ ≤
(
L̃n (‖f − f (x0)‖)

)
(x0)

(let h > 0, and by Lemma 7.1.1, p. 208 of [1])

≤
(
L̃n

(
ω1 (f, h)

(
1 +
|· − x0|
h

))
(x0)

)
=

(16) ω1 (f, h)

[
1 +

1

h

(
L̃n (|· − x0|)

)
(x0)

]
= 2ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
,

by choosing

(17) h :=
(
L̃n (|· − x0|)

)
(x0) ,

if
(
L̃n (|· − x0|)

)
(x0) > 0.

Next we consider the case of
(
L̃n (|· − x0|)

)
(x0) = 0.

By Riesz representation theorem there exists a probability measure µx0
such that

(18)
(
L̃n (g)

)
(x0) =

∫
[a,b]

g (t) dµx0 (t) , ∀ g ∈ C ([a, b]) .

That is

(19)

∫
[a,b]

|t− x0| dµx0
(t) = 0,

which implies |t− x0| = 0, a.e, hence t− x0 = 0, a.e, and t = x0, a.e.

Consequently µx0
({t ∈ [a, b] : t 6= x0}) = 0. That is µx0

= δx0
, the Dirac measure with support only

{x0}. Hence in that case
(
L̃n (g)

)
(x0) = g (x0) .

Consequently it holds ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
= ω1 (f, 0) = 0, and(

L̃n (‖f − f (x0)‖)
)

(x0) = ‖f (x0)− f (x0)‖ = 0,

and by (11), (15) ‖(Ln (f)) (x0)− f (x0)‖ = 0, imply (Ln (f)) (x0) = f (x0). That is proving inequality

(13) is always true. �

Remark 2. (related to the proof of Theorem 1) By Schwartz’s inequality we get

(20)

∫
[a,b]

|t− x0| dµx0 (t) ≤
(∫

(t− x0)
2
dµx0 (t)

) 1
2

,

that is

(21)
(
L̃n (|· − x0|)

)
(x0) ≤

((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

.

Corollary 3. (to Theorem 1) It holds

(22) ‖(Ln (f)) (x0)− f (x0)‖ ≤ 2ω1

(
f,
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)
.

Proof. By (13) and (21). �

We further obtain
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Corollary 4. (to Corollary 3) It holds

(23) ‖(Bnf) (t)− f (t)‖ ≤ 2ω1

(
f,

(
t (1− t)

n

) 1
2

)
≤ 2ω1

(
f,

1

2
√
n

)
,

∀ t ∈ [0, 1], ∀ f ∈ C ([0, 1] , X), (X, ‖·‖) is a Banach space, ∀ n ∈ N, where Bn are the vectorial Bernstein

polynomials.

Proof. Notice that
(
B̃n

(
(· − t)2

))
(t) = t(1−t)

n , ∀ t ∈ [0, 1] . �

Corollary 5. We have that

(24) ‖‖Bnf − f‖‖∞,[0,1] ≤ 2ω1

(
f,

1

2
√
n

)
, ∀ f ∈ C ([0, 1] , X) .

Conclusion 6. (from (24)) Clearly as n→∞, ω1

(
f, 1

2
√
n

)
→ 0 and

‖‖Bnf − f‖‖∞,[0,1] → 0.

The last implies ‖Bnf − f‖ → 0, uniformly in t ∈ [0, 1], as n→∞, equivalently, it holds lim
n→∞

Bnf = f ,

uniformly in t ∈ [0, 1].

We say that Bn → I, uniformly as n→∞, where I is the unit operator i.e. I (f) = f.

A related comment follows

Conclusion 7. By (13) and assuming
(
L̃n (|· − x0|)

)
(x0)→ 0, implies

(Ln (f)) (x0)→ f (x0), as n→∞. By (22) and assuming
(
L̃n

(
(· − x0)

2
))

(x0) → 0, we get again that

(Ln (f)) (x0)→ f (x0), as n→∞.

We present the more general theorem of pointwise convergence.

Theorem 8. Let Ln : C ([a, b] , X)→ C ([a, b] , X), where (X, ‖·‖) is a Banach space and Ln is a linear

operator, ∀ n ∈ N, x0 ∈ [a, b]. Let the positive linear operators L̃n : C ([a, b]) ↪→ C ([a, b]), such that

(25) ‖(Ln (f)) (x0)‖ ≤
(
L̃n (‖f‖)

)
(x0) , ∀n ∈ N,

where f ∈ C ([a, b] , X) .

Furthermore assume that

(26) Ln (cg) = cL̃n (g) , ∀ g ∈ C ([a, b]) , ∀ c ∈ X.

Then

(27) ‖(Ln (f)) (x0)− f (x0)‖ ≤ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣+[(
L̃n (1)

)
(x0) + 1

]
ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
.

(Notice if
(
L̃n (1)

)
(x0) = 1, then (27) collapses to (13). So Theorem 8 generalizes Theorem 1.)

By (27), as
(
L̃n (1)

)
(x0) → 1 and

(
L̃n (|· − x0|)

)
(x0) → 0, then (Ln (f)) (x0) → f (x0), as n → ∞,

and as here
(
L̃n (1)

)
(x0) is bounded.

Proof. We observe that

‖(Ln (f)) (x0)− f (x0)‖ =

(28) ‖(Ln (f)) (x0)− (Ln (f (x0))) (x0) + (Ln (f (x0))) (x0)− f (x0)‖ ≤
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‖(Ln (f)) (x0)− (Ln (f (x0))) (x0)‖+ ‖(Ln (f (x0))) (x0)− f (x0)‖ =

‖(Ln (f − f (x0))) (x0)‖+
∥∥∥f (x0)

(
L̃n (1)

)
(x0)− f (x0)

∥∥∥ =

(29) ‖(Ln (f − f (x0))) (x0)‖+ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣ ≤(
L̃n (‖f − f (x0)‖)

)
(x0) + ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ ≤

(let h > 0, and by Lemma 7.1.1, p. 208 of [1])

(30)

(
L̃n

(
ω1 (f, h)

(
1 +
|· − x0|
h

))
(x0)

)
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ =

ω1 (f, h)

[(
L̃n (1)

)
(x0) +

1

h

(
L̃n (|· − x0|)

)
(x0)

]
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ =

(31) ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

) [(
L̃n (1)

)
(x0) + 1

]
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ ,

by choosing

(32) h :=
(
L̃n (|· − x0|)

)
(x0) ,

if
(
L̃n (|· − x0|)

)
(x0) > 0.

Next we consider the case of

(33)
(
L̃n (|· − x0|)

)
(x0) = 0.

By Riesz representation theorem there exists a positive finite measure µx0
such that

(34)
(
L̃n (g)

)
(x0) =

∫
[a,b]

g (t) dµx0
(t) , ∀ g ∈ C ([a, b]) .

That is

(35)

∫
[a,b]

|t− x0| dµx0 (t) = 0,

which implies |t− x0| = 0, a.e, hence t − x0 = 0, a.e, and t = x0, a.e. on [a, b]. Consequently

µx0 ({t ∈ [a, b] : t 6= x0}) = 0. That is µx0 = δx0M (where 0 < M := µx0 ([a, b]) =
(
L̃n (1)

)
(x0)).

Hence, in that case
(
L̃n (g)

)
(x0) = g (x0)M.

Consequently it holds ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
= 0, and the right hand side of (27) equals

‖f (x0)‖ |M − 1| .
Also, it is

(
L̃n (‖f − f (x0)‖)

)
(x0) = 0, implying (see (29))

‖(Ln (f − f (x0))) (x0)‖ = 0. Hence, (Ln (f − f (x0))) (x0) = 0, and

(36) (Ln (f)) (x0) = f (x0)
(
L̃n (1)

)
(x0) = Mf (x0) .

Consequently the left hand side of (27) becomes

(37) ‖(Ln (f)) (x0)− f (x0)‖ = ‖Mf (x0)− f (x0)‖ = ‖f (x0)‖ |M − 1| .

So that (27) becomes an equality, both sides equal ‖f (x0)‖ |M − 1|
in the extreme case of

(
L̃n (|· − x0|)

)
(x0) = 0. Thus inequality (27) is proved completely in all

cases. �
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Remark 9. (on Theorem 8) By Schwartz’s inequality we get

(38)
(
L̃n (|· − x0|)

)
(x0) ≤

((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2
((
L̃n (1)

)
(x0)

) 1
2

.

Another pointwise convergence result follows

Corollary 10. (to Theorem 8) It holds

‖(Ln (f)) (x0)− f (x0)‖ ≤ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣+
(39)

[(
L̃n (1)

)
(x0) + 1

]
ω1

(
f,
(
L̃n (1)

)
(x0)

) 1
2

((
L̃n

(
(· − x0)

2
)

(x0)
) 1

2

)
.

Proof. By (27) and (38). �

Remark 11. (to Corollary 10) Denote

(40) µn :=
∥∥∥(L̃n ((· − x)

2
))

(x)
∥∥∥ 1

2

∞,[a,b]
.

By [4], we get that

(41) µn ≤
√∥∥∥L̃n (t2;x)− x2

∥∥∥
∞,[a,b]

+ 2c1

∥∥∥L̃n (t;x)− x
∥∥∥
∞,[a,b]

+ c21

∥∥∥L̃n (1;x)− 1
∥∥∥
∞,[a,b]

,

where c1 := max (|a| , |b|) .

We give the following theorem related to uniform convergence, which gives a Shisha-Mond ([4]) type

inequality.

Theorem 12. Let Ln : C ([a, b] , X)→ C ([a, b] , X), where (X, ‖·‖) is a Banach space and Ln is a linear

operator, ∀ n ∈ N. Let the positive linear operators L̃n : C ([a, b]) ↪→ C ([a, b]), such that

(42) ‖(Ln (f)) (x)‖ ≤
(
L̃n (‖f‖)

)
(x) , ∀ n ∈ N, ∀ x ∈ [a, b] ,

where f ∈ C ([a, b] , X) .

Furthermore assume that

(43) Ln (cg) = cL̃n (g) , ∀ g ∈ C ([a, b]) , ∀ c ∈ X.

Then

‖‖Ln (f)− f‖‖∞,[a,b] ≤ ‖‖f‖‖∞,[a,b]
∥∥∥L̃n (1)− 1

∥∥∥
∞,[a,b]

+

(44)
∥∥∥L̃n (1) + 1

∥∥∥
∞,[a,b]

ω1

(
f,
∥∥∥L̃n (1)

∥∥∥ 1
2

∞,[a,b]
·√∥∥∥L̃n (t2;x)− x2

∥∥∥
∞,[a,b]

+ 2c1

∥∥∥L̃n (t;x)− x
∥∥∥
∞,[a,b]

+ c21

∥∥∥L̃n (1;x)− 1
∥∥∥
∞,[a,b]

)
,

where c1 := max (|a| , |b|) .

Proof. Using Corollary 10 and Remark 11; see (39), (40), (41). �

It follows a Korokvin type theorem ([3]) for Banach space valued functions.

Theorem 13. All assumptions as in Theorem 12. Additionally assume that L̃n (1)
u→ 1, L̃n (id)

u→ id,

L̃n
(
id2
) u→ id2, uniformly, where id =identity map, as n→∞.

Then Ln (f)
u→ f , uniformly in t ∈ [a, b], i.e. Ln → I, uniformly, as n → ∞, where I is the unit

operator.
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Proof. We use (44). Since L̃n (1)
u→ 1, uniformly, we get that

∥∥∥L̃n (1)
∥∥∥
∞,[a,b]

is bounded. Thus∥∥∥L̃n (1) + 1
∥∥∥
∞,[a,b]

is also bounded. Clearly under our assumptions ω1 trends to zero. The rest of

the right hand side of (44) goes to zero too, proving the claim. �

Next we present another general theorem of pointwise convergence but proved differently.

Theorem 14. Let Ln : C ([a, b] , X)→ C ([a, b] , X), where (X, ‖·‖) is a Banach space and Ln is a linear

operator, ∀ n ∈ N, x0 ∈ [a, b]. Let the positive linear operators L̃n : C ([a, b]) ↪→ C ([a, b]), such that

(45) ‖(Ln (f)) (x0)‖ ≤
(
L̃n (‖f‖)

)
(x0) , ∀n ∈ N,

where f ∈ C ([a, b] , X) .

Furthermore assume that

(46) Ln (cg) = cL̃n (g) , ∀ g ∈ C ([a, b]) , ∀ c ∈ X.

Then

(47) ‖(Ln (f)) (x0)− f (x0)‖ ≤ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣+[(
L̃n (1)

)
(x0) + 1

]
ω1

(
f,
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)
.

As
(
L̃n (1)

)
(x0)→ 1 and

(
L̃n

(
(· − x0)

2
))

(x0)→ 0, we get (Ln (f)) (x0)→ f (x0), as n→∞. Clearly

here
(
L̃n (1)

)
(x0) is bounded.

Proof. Let x0 ∈ [a, b] and δ > 0. Let t ∈ [a, b]. If |t− x0| > δ, then

‖f (t)− f (x0)‖ ≤ ω1 (f, |t− x0|) = ω1

(
f, |t− x0| δ−1δ

)
≤

(48)

(
1 +
|t− x0|

δ

)
ω1 (f, δ) ≤

(
1 +

(t− x0)
2

δ2

)
ω1 (f, δ) .

The estimate

(49) ‖f (t)− f (x0)‖ ≤

(
1 +

(t− x0)
2

δ2

)
ω1 (f, δ)

also holds trivially when |t− x0| ≤ δ.
So (49) is true always, ∀ t ∈ [a, b], for any x0 ∈ [a, b] .

We can rewrite

(50) ‖f (·)− f (x0)‖ ≤

(
1 +

(· − x0)
2

δ2

)
ω1 (f, δ) .

Hence it holds (
L̃n (‖f − f (x0)‖)

)
(x0) ≤

(51)

[(
L̃n (1)

)
(x0) +

1

δ2

(
L̃n

(
(· − x0)

2
))

(x0)

]
ω1 (f, δ) .

As in the proof of Theorem 8 we have

‖(Ln (f)) (x0)− f (x0)‖ ≤ ... ≤
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(52) ‖(Ln (f − f (x0))) (x0)‖+ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣ ≤(
L̃n (‖f − f (x0)‖)

)
(x0) + ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ (51)≤[(

L̃n (1)
)

(x0) +
1

δ2

(
L̃n

(
(· − x0)

2
))

(x0)

]
ω1 (f, δ)

(53) + ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣ =[(
L̃n (1)

)
(x0) + 1

]
ω1

(
f,
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ ,

by chossing

(54) δ :=
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

,

if
(
L̃n

(
(· − x0)

2
))

(x0) > 0.

Next we consider the case

(55)
(
L̃n

(
(· − x0)

2
))

(x0) = 0.

By Riesz representation theorem there exists a positive finite measure µx0
such that

(56)
(
L̃n (g)

)
(x0) =

∫
[a,b]

g (t) dµx0 (t) , ∀ g ∈ C ([a, b]) .

That is

(57)

∫
[a,b]

(t− x0)
2
dµx0

(t) = 0,

which implies (t− x0)
2

= 0, a.e, hence t− x0 = 0, a.e, and t = x0, a.e. on [a, b].

Consequently µx0
({t ∈ [a, b] : t 6= x0}) = 0. That is µx0

= δx0
M (where 0 < M := µx0

([a, b]) =(
L̃n (1)

)
(x0)). Hence, we get here that

(58)
(
L̃n (g)

)
(x0) = g (x0)M.

Since ω1

(
f,
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)
= 0, the right hand side of (47) equals ‖f (x0)‖ |M − 1| .

Also, it holds
(
L̃n (‖f − f (x0)‖)

)
(x0) = 0, implying (see (52))

‖(Ln (f − f (x0))) (x0)‖ = 0. Therefore, (Ln (f − f (x0))) (x0) = 0, and

(59) (Ln (f)) (x0) = f (x0)
(
L̃n (1)

)
(x0) = Mf (x0) .

Consequently the left hand side of (47) becomes

(60) ‖(Ln (f)) (x0)− f (x0)‖ = ‖f (x0)‖ |M − 1| .

Thus (47) becomes an equality, both sides are equal ‖f (x0)‖ |M − 1|, in the extreme case of(
L̃n

(
(· − x0)

2
))

(x0) = 0.

Inequality (47) is proved in all cases. �

A combined pointwise result follows
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Corollary 15. All as in Theorem 14. It holds

‖(Ln (f)) (x0)− f (x0)‖ ≤ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣+[(
L̃n (1)

)
(x0) + 1

]
min

{
ω1

(
f,
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)
,

(61) ω1

(
f,
((
L̃n (1)

)
(x0)

) 1
2
((
L̃n

(
(· − x0)

2
))

(x0)
) 1

2

)}
.

Proof. By (47) and (39). �

So (39) is better that (47) only if
(
L̃n (1)

)
(x0) < 1.

A sharpened Shisha-Mond type inequality follows

Corollary 16. All as in Theorem 12. Then

(62) ‖‖Ln (f)− f‖‖∞,[a,b] ≤ ‖‖f‖‖∞,[a,b]
∥∥∥L̃n (1)− 1

∥∥∥
∞,[a,b]

+∥∥∥L̃n (1) + 1
∥∥∥
∞,[a,b]

min {ω1 (f,√∥∥∥L̃n (t2;x)− x2
∥∥∥
∞,[a,b]

+ 2c1

∥∥∥L̃n (t;x)− x
∥∥∥
∞,[a,b]

+ c21

∥∥∥L̃n (1;x)− 1
∥∥∥
∞,[a,b]

)
,

ω1

(
f,
∥∥∥L̃n (1)

∥∥∥ 1
2

∞,[a,b]√∥∥∥L̃n (t2;x)− x2
∥∥∥
∞,[a,b]

+ 2c1

∥∥∥L̃n (t;x)− x
∥∥∥
∞,[a,b]

+ c21

∥∥∥L̃n (1;x)− 1
∥∥∥
∞,[a,b]

)}
,

where c1 := max (|a| , |b|) .

Proof. Using Theorem 14 and Theorem 12, see also (41). �

Clearly, one can also use (62) to prove the Korovkin type Theorem 13.

Under convexity we have the following sharp general pointwise convergence theorem.

Theorem 17. All as in Theorem 8. Additionally, assume that x0 ∈ (a, b),

(63) 0 ≤
((
L̃n (|· − x0|)

)
(x0)

)
≤ min (x0 − a, b− x0) ,

and ‖f (t)− f (x0)‖ is convex in t ∈ [a, b] .

Then

‖(Ln (f)) (x0)− f (x0)‖ ≤ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣+
(64) ω1

(
f,
(
L̃n (|· − x0|)

)
(x0)

)
.

Proof. Let x0 ∈ (a, b), 0 < h ≤ min (x0 − a, b− x0). Here g (t) := ‖f (t)− f (x0)‖ is assumed to be

convex in t ∈ [a, b], and obviously g (x0) = 0. Then by Lemma 8.1.1, p. 243 of [1], we obtain

(65) g (t) ≤ ω1 (g, h)

h
|t− x0| , ∀ t ∈ [a, b] .

We notice the following

‖f (t1)− f (x0)‖ = ‖f (t1)− f (t2) + f (t2)− f (x0)‖ ≤

(66) ‖f (t1)− f (t2)‖+ ‖f (t2)− f (x0)‖ ,
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hence

(67) ‖f (t1)− f (x0)‖ − ‖f (t2)− f (x0)‖ ≤ ‖f (t1)− f (t2)‖ .

Similarly, it holds

(68) ‖f (t2)− f (x0)‖ − ‖f (t1)− f (x0)‖ ≤ ‖f (t1)− f (t2)‖ .

Therefore for any t1, t2 ∈ [a, b] : |t1 − t2| ≤ h we get:

(69) |‖f (t1)− f (x0)‖ − ‖f (t2)− f (x0)‖| ≤ ‖f (t1)− f (t2)‖ ≤ ω1 (f, h) .

That is

(70) ω1 (g, h) ≤ ω1 (f, h) .

The last implies

(71) ‖f (t)− f (x0)‖ ≤ ω1 (f, h)

h
|t− x0| , ∀ t ∈ [a, b] .

As in the proof of Theorem 8 we have

‖(Ln (f)) (x0)− f (x0)‖ ≤ ... ≤

(72) ‖(Ln (f − f (x0))) (x0)‖+ ‖f (x0)‖
∣∣∣(L̃n (1)

)
(x0)− 1

∣∣∣ ≤(
L̃n (‖f − f (x0)‖)

)
(x0) + ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ (71)≤

(73)
ω1 (f, h)

h

((
L̃n (|· − x0|)

)
(x0)

)
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ =

ω1

(
f,
((
L̃n (|· − x0|)

)
(x0)

))
+ ‖f (x0)‖

∣∣∣(L̃n (1)
)

(x0)− 1
∣∣∣ ,

by choosing

(74) h :=
((
L̃n (|· − x0|)

)
(x0)

)
> 0,

if the last is positive. The case of
((
L̃n (|· − x0|)

)
(x0)

)
= 0 is treated the same way as in the proof of

Theorem 8. The theorem is proved. �

Theorem 18. All as in Theorem 17. Inequality (64) is sharp, infact it is attained by f (t) =
−→
i |t− x0|,−→

i is a unit vector of (X, ‖·‖), t ∈ [a, b] .

Proof. Indeed, f here fulfills all the assumptions of the theorem.

We further notice that f (x0) = 0, and ‖f (t)− f (x0)‖ = |t− x0| is convex in t ∈ [a, b].

The left hand side of (64) is

‖(Ln (f)) (x0)− f (x0)‖ =
∥∥∥(Ln (−→i |· − x0|)) (x0)

∥∥∥
(75)

(26)
=
∥∥∥−→i (L̃n (|· − x0|)

)
(x0)

∥∥∥ =
((
L̃n (|· − x0|)

)
(x0)

)
.

The right hand side of (64) is

ω1

(
f,
((
L̃n (|· − x0|)

)
(x0)

))
=

ω1

(−→
i |· − x0| ,

((
L̃n (|· − x0|)

)
(x0)

))
=
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sup
t1,t2∈[a,b]:

|t1−t2|≤((L̃n(|·−x0|))(x0))

∥∥∥−→i |t1 − x0| − −→i |t2 − x0|∥∥∥ =

(76) sup
t1,t2∈[a,b]:

|t1−t2|≤((L̃n(|·−x0|))(x0))

||t1 − x0| − |t2 − x0|| ≤

sup
t1,t2∈[a,b]:

|t1−t2|≤((L̃n(|·−x0|))(x0))

|t1 − t2| =
((
L̃n (|· − x0|)

)
(x0)

)
.

Hence we have found that

(77) ω1

(
f,
((
L̃n (|· − x0|)

)
(x0)

))
≤
((
L̃n (|· − x0|)

)
(x0)

)
.

Clearly (64) is attained. The theorem is proved. �
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