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A GEOMETRIC APPROACH OF PROBABILITY DISTRIBUTIONS
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ABSTRACT. Over the past several decades, Information Geometry has had a significant
impact, providing a powerful lens to understand and manipulate information that led to
advancements in theory, algorithms, and practical applications in various fields, ranging
from statistics and machine learning to optimization, quantum information theory, and
physics. In this paper we provide a brief theoretical background of statistical models
and we conduct an extensive differential geometric study on the set of exponential and
Bernoulli distributions. Our results reveal that the statistical models given by the expo-
nential distribution and the one given by the Bernoulli distribution are 1-type curves in
R2,
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1. INTRODUCTION

Geometric modeling is part of one of the most recent branches of mathematics, Information Geometry,
where tools from Statistics and Differential Geometry are used to study information loss, statistical
inference, and estimation. Information Geometry has applicability in various domains such as physics,
signal processing, computer science, machine learning, neuroscience, and optimization in high-dimensional
spaces.

In the pioneering work on Information Geometry of Amari and Nagaoka [1], we are introduced to
the notion of a manifold of probability density functions. A representative example is the set of normal
distributions with mean ;1 € R and variance o2 € (0, 00):

1 _(@-w?
e 207 z € R,

p(z;p, o) =
2no
that can be treated as a two-dimensional surface. By endowing it with a Riemannian metric (usually the
Fisher information matrix due to the work of Rao [8] and Jeffreys [6]), this becomes a space of constant
negative curvature (see [1], [3]).

In the present paper we introduce a differential geometric study of the exponential distribution space
and the Bernoulli distribution space consisting of explicit computations of the Fisher metric, Christoffel
symbols of the first and the second kind, the geodesics, and the Laplace-Beltrami operator. Using a
specific immersion for each of the two models, we also prove that the set of exponential distributions and
the set of Bernoulli distributions are 1-type curves in R2.

The paper is structured as follows. In Section 2 the theoretical background of Probability Theory and
Statistics (Subsection 2.1), Differential Geometry (Subsection 2.2), and Statistical Manifolds (Subsection
2.3) is presented. The differential geometric study of the set on exponential distributions is introduced in
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Subsection 3.1 and in Subsection 3.2 we present the geometric study on the set of Bernoulli distributions.
Section 4 concludes the paper.

2. PRELIMINARIES

In this section, we provide a brief overview of the background knowledge necessary to comprehend the
topic, as well as the notations used throughout the paper.

2.1. Probability Theory and Statistics. The two interconnected fields provide a systematic frame-
work for understanding, analyzing, and interpreting data.

Let (Q,F, P) be a probability space, where
e () is the set of all possible outcomes;
e o-field F is a collection of subsets of 2 that is closed under complements and countable inter-
sections;
e P is a probability function, i.e. a measure on F for which P(Q2) = 1.

A random variable X on (Q, F, P) is a function X :  — R that satisfies
(2.1) X' A)={weQ: X(w)e A} e F, VAcB,
where B is the Borel algebra on the set of real numbers. There are two classes of random variables:

1. discrete random variables X : Q@ — x = {x1,x9,...} for which the density function p : x — R
satisfies

(2.2) p(z) = and Zp(xk) =1
k

PX =), z=wx,i={1,2,...},
0, otherwise

2. continuous random variables X : Q@ — y € R™ for which the density function p : x — R satisfies

(2.3) P(XeD)= /Dp(:c) dz and /p(x) dz = 1.

From the numerical characteristics of random variables, we recall the expectation value
Z xip(a;), if X is a discrete random variable,
i

(2.4) E(X) =

/ xp(x) dz, if X is a continuous random variable
X

For a more detailed introduction to Probability Theory and Statistics, we refer to [2].

2.2. Differential Geometry. By investigating curves, surfaces, manifolds, and studying concepts like
tangent vectors, curvature, and metrics, Differential Geometry reveals the intrinsic properties of geomet-
ric objects.

Let (M, A) be a differentiable manifold, where M is a topological space and A = {(U;, h;) : i € I} is
the atlas, i.e. a collection of charts which are bijective mappings between open subsets of M and open
subsets of R™. An immersion is a mapping = : M — R™ that has rank n = dim M.

Remember that a Riemannian metric g on a differentiable manifold is a symmetric, positive definite
bilinear form on the tangent space. The pair (M, g) is called a Riemannian manifold. The Riemannian
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metric allows for the definition of various geometric quantities such as the Christoffel symbols of the first

kind
1 (0gjx | Ogik  0Ogij
2.5 Diip=— J! U
(2:5) Ty (8:1:1 0w ook
and the Christoffel symbols of the second kind
1 dgji | Ogu  0Ogij
2.6 Ik = - (et - )
(2:6) Y2 ;g ox’ + dxrd  Ox!
With the Riemannian metric, one can also define geodesics, which are the paths that locally minimize
distance
d?z* - da®  da? —
2.7 — k. — . — =90 k=1,n.
2.7) az " Z Yoodt dt ’ o

The Laplace-Beltrami operator is defined by
1 "9 . of
2.8 Af = ——— E _ Y. \/detg - ——
(28) / Vdetg 5 Ox; (g I 6:cj> ’

where g% is the inverse of the Fisher metric g;;. A function satisfying Af = 0 is called harmonic.
Recall that a submanifold is a subset of a manifold that itself possesses the structure of a manifold. It

is well-known (see [4]) that an isometric immersion z : M — R™, z = (a!,...,2™), 2" € C®°(M),i=1,m
satisfies
qi
(2.9) = ah + Zx@, i=1,m,
t=p;

with zf) € R and z} eigenfunctions of the Laplace-Beltrami operator.
Chen [4] defines submanifolds of finite type by denoting

(2.10) p=min{p;:i=1,m} e N* and ¢=min{g :i=1,m} e N"U{oco}
as follows.

Definition 2.1. [4] A compact submanifold M in R™ is said to be of finite type if q¢ from (2.10) is finite.
Otherwise, M 1is of infinite type.
If the set {t € {p,p+1,...,q} : zt # 0} has ezactly k elements, then M is said to be of k-type.

Finally, we present the following characterization for the submanifolds of finite type.

Theorem 2.2. [4] Let 2 : M — R™ be an isometric immersion of a compact, n-dimensional Riemannian
manifold M. Then M is of finite type if and only if there is a non-trivial polynomial P such as

(2.11) P(AH =A*H + e AF¥'"H 4 - 4+ ¢, 1 AH+ ¢ .H=0, ¢€eR, i=1,k,

where H is the mean curvature vector defined by
(2.12) H—th(e» e:)
. - n 4 1y =)

for any orthonormal frame ey, ..., e,.

For more details concerning the concepts presented in this subsection we refer to [5], [7], and [4].
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2.3. Statistical Manifolds. The notions presented in the above subsections intertwine, resulting the
theory behind statistical (or parametric) models. Explicitly, a family of probability distributions which
depends on a finite number of parameters can be considered a parameterized surface.

Denote the set of probability distributions on x that depends on n parameters £ = (§1, e ,5”) by
(2.13) S = {pe = p(z;§)}-
S is a subset of P(x) = {f x> R:f> O,/ fdx = 1}. If the mapping & — p¢ is an immersion, then
X

the set S is a statistical model of dimension n.
In our computations, we will make use of the log-likelihood function given by

(2.14) (&) = L(pe)(x) = In pe(x).
Recall that the Fisher information matriz is given by

(2.15) 9i;(6) = E [8%—;@-8‘;—;5)], Vi,je{1,...,n},

where ¢ = (¢1,...,€") € R. Tt is easy to prove (see e.g. [3, Proposition 1.6.2]) that for any statistical

model, the Fisher information matrix is a Riemannian metric. As a consequence, the pair (S, g) can be
organized as a manifold.

For a more detailed presentation of statistical models, we refer to [1] or [3].

3. MAIN RESULTS

In the bellow paragraphs, we present a differential geometric study for the exponential distribution
and the Bernoulli distribution. For the rest of this paper, let (2, F, P) be a probability space.

3.1. Exponential Distribution. We denote the family of exponential distribution by
(3.1) S = {pe(z) =& " : £ > 0,2 > 0}.

3.1.1. The Fisher Metric. We start our study with the computation of the Fisher information matrix,
that will be used in the sequel as a Riemannian metric for the corresponding manifold.

Proposition 3.1. The Fisher information matriz of S is given by

1
(3:2) &)=z
Proof. Tt is known (see e.g. [3]) that the Fisher information matrix can be written as:
0%4x(¢)
. ii(&) =—-E — | .
(33 5516 = B | G|

For S, the log-likelihood function is
(€)= (ée™*") = In€ — &x,

hence

0a(§) 1 0*4,(€) 1

e e T e T
Finally, formulas (3.3) and (2.3) provide the Fisher information matrix

1 1 1 o0 1
m(© =B |-g| = [ g g [ntoar- .
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3.1.2. The Christoffel Symbols. We now use the Fisher information matrix to compute the Christoffel
Symbols for the manifold (S, g).

Proposition 3.2. The Christoffel symbols of the first and the second kind of (S, g) are given by:

) 1 1
(34) ].—‘1111 = —5—3 and F]il = —E.
Proof. Applying (2.5) and (2.6), we obtain:
~1(0g11  Ogun 9dgn) 1 2 1
P =3 + - =53~ o
2\ 9¢ 23 23 2 ¢ 3
respectively
1 _ L (9gn +5911 ~ Ogn :_1'52_3:_1
o2 23 23 23 2 & &
(|
3.1.3. The Geodesics. Using the Christoffel symbols in (2.7), we can compute the geodesics.
Proposition 3.3. The geodesics of (S,g) are given by
(3.5) E(t) = e'tee,
where ¢1,co are constants.
Proof. Applying (2.7), we have
d2¢ d¢ d¢ d2¢ 1 /deN?
— I‘l__:() — . = =0
@ty w T T @ e <dt>
We obtained the homogeneous differential equation
€)?
=2 =0
€
We divide the above equation by £ (£ # 0)
£ (€)? §-6-¢-¢ <§’>/
- - =0+ ————=0<= (=) =0,
3 & € £
and by integration, we have
¢ dg dg / dg /
> — = = = = =cdi = —_- = dt
¢ C1 dt 1§ ¢ C1 ¢ C1
< In(é) =cit+cy = £(t) = e ¢y, ¢y constants,
concluding the proof. O

3.1.4. The Laplace-Beltrami Operator. Using (2.8), we will compute A f with respect to g. In the end of
this subsection, we will find those functions f that are harmonic.

Proposition 3.4. The Laplace-Beltrami operator operates on differentiable functions f:S — R wvia
af 0% f

3.6 Af=—-¢| = — .

(36) r=—¢( G +e5

1
Proof. Tt is easy to see that det g = & and g'! = £2. Then

1 9 [, 1 df\ L0 [0\ of  02f
Af—ﬁa—g(f'z'a—g)—%—a(%—g)—é(a—ﬁ 7))
52
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Next we consider the case Af = 0. We have the homogeneous differential equation:
e =o0.
We denote by u(£) = f/(€). Then the above relation becomes
d d
utéu' =0 <= 5———u = —u:——g.
dg u £
By integration, we have

Inu=—-Iné+neg = 1nu—ln(c£—1> = u=22

£

/df /—d§ <~ f(§)=c1In&+ca, c1,co constants.
3.1.5. Submanifold of finite type. In this subsection, we will use the framework provided by Chen in [4]
to study the family of exponential distributions as a curve in R2.
Theorem 3.5. The set of exponential distributions is a 1-type curve in R2.

Proof. We consider the immersion z : S — R? defined by:
(3.7) x(§) = (cos(In§), sin(In &)) .

Indeed, we have

g—z = (— sin(In¢) - %,cos(lnﬁ) . é)
and ox O 1 1
z Oz .
g1 = <8_§’8_§> :smz(lnf) 52 + cos?(In &) - 5 = ?7

where (-, -) is the inner product.

We have
92 —cos(In f)%f +sin(Ing) — sin(ln&)%f —cos(ln )
S & ’ &
—cos(In&) +sin(lng) —sin(ln&) — cos(In §)
:< & | & )'

Applying (3.6), we obtain:

0%x
= 5( I 588)

_ ¢ [(— sing(ln £) , cos(gln 5)) ve (— cos(In gé;r sin(In €) - sin(In 5)8_ cos(In 5))}

=—£ <_COS£(ID€), —sing(ln{“)) = Az = (cos(In¢),sin(ln¢)).
It is known (see [4]) that H satisfies
(3.8) Ar = —nH,

where n is the dimension of the submanifold and H is the mean curvature vector. Then
H=-Azr = H=(-—cos(Inf),—sin(lng)).
The first and second order partial derivatives are

OH _ <sin(ln§) —cos(1n£)>
o¢ & £ ’
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9?H  (cos(Ing) —sin(ln¢) sin(In€) + cos(In¢)
02 - ( £2 ’ £2 ) :

Hence

AH = ¢ Ksin(lgn &) - cosg(ln g)) e <cos(ln 5)5—2 sinlng) sin(Ing) 2—2cos(ln 5))]
— AH = — (cos(In€),sin(In€)) .

We showed that the mean curvature vector satisfies the following relation
AH — H =0,
so0, by Theorem 2.2 we conclude that S is a 1-type curve in R2. U

Corollary 3.6. An eigenvalue of the Laplace-Beltrami operator is 1.

3.2. Bernoulli Distribution. In this section we study the manifold of Bernoulli distributions for a
single experiment with 2 possible outcomes. The family set of Bernoulli distributions is given by

(3.9) S={p&k) =1 -9"": 0<&<kef{0,1}}.
3.2.1. The Fisher Metric.

Proposition 3.7. The Fisher information matriz has one element given by

1
(3.10) g1 (§) = g
Proof. The log-likelihood for the Bernoulli probability density function is given by
(3.11) 0:(€) = np(& k) = (" (1 =)' F) = kIn& + (1 — k) In(1 — £).
The first and second derivatives of the log-likelihood with respect to the parameter £ are given by
or k—
(3.12) }i\f) ~ @ —i)'

)k 1k
o o e o

For computing the Fisher metric coefficients we use the formula from [3, Proposition 1.6.3]

9ii(§) = —E [ng%(é)} :

In our case:

k 1-k
From the definition (2.4) of the expectation we have that
E[k] =¢

E[l-k=1-¢

So we obtain:

32



Romanian Journal of Mathematics and Computer Science Issue 1, Vol. 13 (2023)

3.2.2. Christoffel Symbols. Using the Fisher information matrix, we can compute the Christoffel symbols
for the manifold (S, g).

Proposition 3.8. The Christoffel symbols of first and second kind are given by

26 -1
and
26 -1

Proof. By applying formulas (2.5) and (2.6) we obtain

r _1(5911+5911_5911>_l<_ 1-2¢ )_ 26— 1
MoeNee Tee oe) 2\ e-gr) (-

rt = l 11 (8911 9911 _ 8911)
11 ’

29 e T o oe
where g1 is the inverse of the Fisher matrix, in our case g'* = £(1 — €).

1 71 B 26 -1 B 26 —1
=30 985 “%q o

0

3.2.3. Geodesics. By replacing the formulas obtained in (3.16) for the Christoffel symbols in (2.7), we
can compute the geodesics equations.

Proposition 3.9. The geodesics for the Bernoulli distribution model are given by

1
(3.17) &(t) = 5(1 +sin(cit +¢2)), c1,00 €ER.
Proof. From (2.7) we have
a2 dé de a2 2 -1 d¢ de
i S e ) i I S . R
@ vy VT @ ta—ga @

We make the substitution % =u = % = g—g% — ¢ = u‘;—g. By replacing this in the equation
above, we get
du 26—-1

3.18 U— + ———=u” =0.
(3.18) dg - 26(1-¢)
We distinguish 2 cases:

(D u=0 = £ =0 £t)=c,ceR;

(2) u # 0. We divide (3.18) by u, which leads to

du 26 —1 du 1—2¢
e ST W 275 g
€ 19" T wxa-o%

By integrating both sides, we get
Inu=In(ct(1 —€))2, ceR
We obtain

u=(E1-) = Lo (1-)}F = —%__.dt, aceR

dt 1—9
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By integrating both sides, we get
arcsin(2§ — 1) = et + ¢, <
1 .
() = 5(1 +sin (1t + ¢2)), c1,c0 €R.

This ends the proof. (|

3.2.4. Laplace-Beltrami operator and harmonic functions.

Proposition 3.10. The formula for the Laplace-Beltrami operator acting on smooth functions f : S — R
26— 10f

(3.19) Af = Ta_g_( v

*f
9e2

Proof. Using formula (3.8) for the Bernoulli distribution model, this becomes
0 1 of
Af=— - - '
0
AF=—VET- (/ET—)- 2L+ VaT-9-52) =

B —% of
Af =~ s)<2 = a€+¢ - d€2>

26 —-10f f
Af = - —

|

Proposition 3.11. Harmonic functions have the following expression

(3.20) f(€) = ¢y arcsin (26 — 1) + ¢o, c1,02 € R

Proof. Harmonic functions are those that satisfy Af =0

26 —-1df d2f
(1-¢)=—5 =
2 d§ d¢
We make the substitution dg =u < f'= and we obtain, by rearranging the terms and also taking
into account that 0 < ¢ <1
& du
5 U £Q g)d§_0<:>
du 26 -1
= d¢.
u o 26(1-¢)
By integrating both sides, we get
C1 df C1
hu=Ih—= < u= ——
V(L =¢) VE 1— £1-¢)
1
df =c————=d¢ <= f(§) = ¢q arcsin (2 — 1) + co, c1,c € R
£1-9)

O
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3.2.5. Submanifold of finite type. We use again the framework provided by Chen in [4, Chapter 6] to
study the type of the family of Bernoulli distributions.

Theorem 3.12. The family of Bernoulli distributions is 1-type curve in R2.
Proof. Consider the immersion z : S — R?,

(3.21) z(€) = (267, -2(1—€)%), 0<E<L
We have

ox 1 _1
QZ(S 2,(1-¢72).

(ory_ 1, L 1
M7\ oe) T T i-e T ci-e

the same as the Fisher matrix coefficient. The second order derivative is

0%z 1 51 _3
- (getu-ot).

By using (3.19) we obtain

N ol USRS BIRN) G R G

After doing the computations we obtain
1 1
Ao (5VE-5VITE).
We know (see e.g. [4]) that the mean curvature vector H satisfies

(3.22) Azx = —nH,

where n is the dimension of the submanifold; in our case n = 1. This implies Ax = —H — H = —Aux,
which means

(3.23) H= (-%\/Z %\/1_—§> .

We compute the first and second order derivatives of H

(3.24) ‘9—H=< ! ! )

a¢ 4/ 4T ¢
0*H 1 1
(3.25) o <_3—3) ,
o2~ \&l' 801 o)}
By using the formula (3.19) for the Laplace-Beltrami operator, (3.24), and (3.25) we obtain
2% —19H 92H
AH = Rl 76 R il

(3.26) AH = <—%\/E, %ﬂ)

From (3.23) and (3.26) we see that the following is true

(3.27) —4AH + H =0.
By the characterization Theorem 2.2 for submanifolds of finite type, we conclude that S is a 1-type curve
in R?. O

Corollary 3.13. An eigenvalue of the Laplace-Beltrami operator is ;11.
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4. CONCLUSIONS

Inspired by the geometric study of the set of normal distributions presented by the authors in [3], we
have conducted a similar study for the family of exponential distributions and for the family of Bernoulli
distributions. In addition to the mentioned work, we have found appropriate immersions in order to apply
Theorem 2.1 from [4] and conclude that the exponential distributions set and the Bernoulli distributions
set are both 1-type curves in R2.
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