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NON-EXISTENCE OF A PARALLEL 2-FORM ON A REGULAR LORENTZIAN
0-SASAKIAN MANIFOLD WITH COEFFICIENT o ENDOWED WITH RICCI
SOLITON
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ABSTRACT. In 1926, Levy [11] had proved that a second order parallel non-singular tensor on
a space of constant curvature is a constant multiple of the metric tensor. Sharma [14] has proved
that a second order parallel tensor in a Kaehler space of constant holomorphic sectional curvature
is a linear combination with constant coefficient of the Kaehlerian metric and the fundamental
2-form. In this paper, we have shown that a second order symmetric parallel tensor on a regular
Lorentzian a-Sasakian manifold (briefly La-Sasakian) with coefficient & (non zero scalar func-
tion) is a constant multiple of the associated metric tensor and we have also proved that there
does not exist a non zero parallel 2-form on a regular Lorentzian a-Sasakian manifold with a
coefficient o.
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1. INTRODUCTION

On 1923, Eisenhart [9] showed that a Riemannian manifold admitting a second order symmetric parallel tensor
other than a constant multiple of metric is reducible. In 1926 Levy [11] obtained the necessary and sufficient
conditions for the existence of such tensors. Sharma [14] has generalized Levy’s result by showing that a second
order parallel (not necesarily symmetric and non-singular) tensor on an n-dimensional (n > 2) space of constant
curvature is a constant multiple of the metric tensor. Recently the author [5] has proved that on a Para r-Sasakian
manifold with a coefficient &, a second order symmetric parallel tensor is a constant multple of the associated pos-
itive definite Riemannian metric tensor. In this paper, we have defined a regular Lorentzian ¢¢-Sasakian manifold
with a coefficient & (non-zero scalar function) and have proved the following theorems:

Theorem 1.1. On a regular Lorentzian a.-Sasakian manifold with a coefficient ®, a second order symmetric
parallel tensor is a constant multple of the associated metric tensor.

Theorem 1.2. On a regular Lorentzian o-Sasakian manifold with coefficient «, there is no non zero parallel
2-forms.

Motivated by the works of Hamilton [10] towards the solution of the Poincare conjecture about the character-
ization of 3-sphere, many geometers have engaged themselves in providing the solutions of solitons of the Ricci
flow.
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The notion of a soliton structure on the Riemannian manifold (M,g) is the choice of a smooth vector field V
on M and a real constant A satisfying the structural requirement.

(1.1) £yg+25+21g =0,

where S is the Ricci tensor of the metric g and £y g is the Lie Derivative in the direction of V and A is referred
to as the solition constant. The Ricci soliton is called expanding, steady or shinking if A > 0,A =0or A <0
respectively. In this paper, we prove that the tensor field £y g +2S on a Lorentzian a-Sasakian manifold with
constant o is parallel then (g,V,A) is a Ricci soliton.

2. PRELIMINARIES:

Let C* manifold M of dimension 2n + 1 is called a contact manifold if it carries a global 1-form A such taht
ANA(dA)" # 0. Let a contact manifold be endowed with (1,1) tensor field ¢, a contravariant vector field T, a
covarinant vector field A and a Lorentzian metric g on M, which makes T, a time like unit vector field such that
the following conditions are satisfied [9]

2.1 A(T)=-1

22) 0(T) =0

(2.3) A(¢X)=0

(2.4) ¢°X =X +AX)T

(2.5) AX)=g(X,T)

(2.6) 8(9X,9Y) = g(X,Y) +A(X)A(Y)

2.7 9(X,Y) = g(X,9Y) = g(Y,¢X) = ¢(Y,X)

(2.8) o(X, T)=0

Definition 2.1. [f on a Lorentzian alpha o.-Sasakian manifold, the following relations
(2.9) 0X = —é(VXT)

(2.10) VxA(Y)=—oag(¢X,Y)=—a¢p(X,Y)

(2.11) o(X)=Vya=gX,a)

@.12) (Vx0)(¥,Z) = al{g(X,¥) +A()A(Y) +g(X,Z) + AX)A(Z) JA(Y)]

hold, where V denotes the Riemannian connection of the metric tensor g then M satisfying conditions (2.1) - (2.12)
is called a Lorentzian a-Sasakian manifold with a coefficient «.
3. PROOFS OF THEOREMS 1.1 AND 1.2:
In proving theorems 1.1 and 1.2, we need the following theorems.

Theorem 3.1. On a Lorentzian a-Sasakian manifold with coefficient o, the following holds
(3. A(R(X,Y)Z) = a?[g(Y, Z)A(X) — g(X,Z)A(Y))]
—[a(X)o(Y,2) —a(Y)9(X,Z)]
Proof. On differentiating (2.10) covariantly and using (2.11) and (2.12) the proof follows immediately. t
Theorem 3.2. For a Lorentzian o-Sasakian manifold with coefficient o, we have
(3.2) R(T,X)Y =0o2[g(X,Y)T —AY)X]+a(Y)pX —ap(X,Y),
where g(X, @) = a(X).

Proof. The proof follows in an obvious manner after making use of (2.11) and (3.1). O
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Theorem 3.3. For a Lorentzian o-Sasakian manifold with coefficient , the following holds
(3.3) R(T,X)T =B¢X+a’[X +A(X)T],
where o(T) = B.

Proof. In view of equation (3.2), the proof follows immediately. O

4. RIccCI SOLITONS AND SECOND ORDER PARALLEL SYMMETRIC TENSORS

Proof of Theorem 1.1: Let 4 denote a (0,2) tensor field on a Lorentzian o-Sasakian manifold M with coeffi-
cient o such that

4.1 h(R(W,X)Y,Z)+h(Y,R(W,X)Z) =0,

for arbitrary vector fields X,Y,Z,W on M. Substituting W =Y =Z =T in (4.1), we get
4.2) gR(T,X)T,T)+g(T,R(T,X)T)=0.

In view of Theorem 3.3, the above equation becomes

(4.3) 2Bh(¢X,T)+20*h(X,T)+20%g(X,T)h(T,T) = 0.

On simplifying (4.3), we get

4.4) g(X,T)h(T,T)+h(X,T)+ %h(qu, T)=0

Replacing X by ¢Xin (4.4), we get
2

4.5) h(9Y,T) = —% [A(Y)A(T, T) + (Y, T)].
Using (4.4) and (4.5), we get

(4.6) (T, T)A(Y)+h(Y,T) =0 if o*—B>#0.
Differentiating (4.6) covariantly with respect to Y, we get

4.7 WT,T)g(X,0Y)+2¢(X, T)h(¢X,T)+h(X,9Y)=0.
In view of (2.9), the equation (4.7) assumes the following form

(4.8) WT,T)g(X,9Y) =—h(X,Y).

In view of the fact that 4(T, T) is constant along any vector on M, we have proved the theorem unless a* — B2 # 0.

Suppose that the (0,2) type symmetric tensor field £y g + 2S5 is parallel for any vector field V on a Lorentzian
o- Sasakian manifold with coefficient ¢c. Then by theorem 1.1 it follows that £y g + 2§ is a constant multiple of the
metric tensor g since £y g +2S = —2Ag for all X,Y on M, where A is a constant. Hence (1.1) holds. This shows
that (g,V,A) yields a Ricci Soliton. Hence we have the following theorem.

Theorem 4.1. If the tensor field £y g+ 2S on a Lorentzian o.-Sasakian manifold with a coefficient @, is parallel
Jor any vector field V, then (g,V,A) is a Ricci Soliton.

Proof. Let (g,V,A) be a Ricci Soliton on Lorentzian t-Sasakian manifold with a coefficient . Then we have

4.9) (£r8)(Y,Z)+2S(Y,Z)+2Ag(Y,Z) =0,
where £7 is the Lie Derivative along the vector field T on M. From (2.9), it follows that
(4.10) (£r8)(Y.Z) = g(VyT,Z)+g(Y,VzT)

= —og(9Y,2)+5(Y,0Z)]

= 20a¢(,2)
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Using (4.10) in (4.9) we get

where a and A are non zero scalars. This shows that the manifold under consideration is nearly quasi-Einstein
manifold [8]. Thus, we have the follwing theorem: [l

Theorem 4.2. If (g,T,A) is Ricci Soliton on a Lorentzian a- Sasakian manifold M with a coefficient a., then M is
nearly quasi-Einstein manifold.

Proof of Theorem 1.2: Let & be a parallel 2-form on a Lorentzian a- Sasakian manifold M with a coefficient
«. Then putting W =Y =T in (4.1) and using theorem 3.3 and equations (2.1)-(2.12), we get
(4.12) Bh(Z,0X) + a*h(X,Z) — &*h(T,Z)A(X) + o>h(T, X )A(Z)
+h(T,¢X)o(Z) +h(@,T)p(X,Z) =0
Let ¢* to be a (2,0) tensor field metrically equivalent to ¢ then contracting (4.12) with ¢* and using antisymmetric

property of & and the symmetry property of ¢*, we obtain, in view of equations (2.3)-(2.6) and after simplifying,
we get

(4.13) h(a,T)=0.
Substituting (4.13) in (4.12) we get

(4.14) Bh(9X,Z) + & [h(X,Z) — h(T,Z)A(X) +h(T,X)A(Z)]
+h(T,pX)a(Z) = 0.
On simplifying (4.14) we get

(4.15) Bh(¢Z,X) — a*[h(Z,X) +h(T,X)A(Z) — h(T,Z)A(X)] + h(T,9Z)a(X) =0.
On simplifying (4.14) and (4.15) we get

(4.16) BIW(Z,0X)+h(X,9Z)|+ a(X)h($Z,T) + o(Z)h($pX,T) = 0.

On replacing X by ¢Y in (4.16), we get

(4.17) B[h(Z,9%Y) +h(9Y,0Z)] + a(9Y)h(9Z,T) + at(Z)h(¢*Y,T) = 0.

On making use of (2.4) in (4.17), we get

(4.18) Bh(Z,Y)+h(Z,T)A(Y)+h(9Y,0Z)] + a(Z)h(Y,T)+ a(¢Y)h(¢Z,T) = 0.
On simplifying (4.18), we get

(4.19) BWY,Z)+h(Y,T)A(Z)+h(¢Z,9Y)] + a(Y)h(Z,T)

+a(¢pZ)h(oY,T)=0.
In view of (4.18) and (4.19) on simplifying we obtain
4208 [W(T,2)A(Y)+h(T,Y)AY)] — a(Z)W(T,Y) — WT,9Z)a(¢Y) — a(Y)h(Z,T) — a(¢Z)h(T,9Y) = 0.
Putting Y = @ in (4.20) and using (4.13), we get
4.21) BIWT,Z)A(@) —h(T,9Z)o () — a(a@)h(Z,T) =0
Let us put @ = & and o(¢@) = f3 in (4.21), we get
.22) h(Z,T)[BA(®) - a(@)] = h(T,9Z)
Replacing Z by ¢Z in (4.22), we get

(4.23) h(¢Z,T)[B? — @) = Br(T,Z).
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On simplifying (4.23) and replacing Z by ¢Z, we obtain

(4.24) h¢*Z,T) = aﬁﬁzh(qbZ,T).
On making use of (2.4) in (4.24), we get

— A
4.25) “ _ﬁB WZ,T) = G_Lﬁzh(z, 7).
From (4.25), it follows immediately that
(4.26) h(Z,T) =0 unless (@ — B>)>—(B)*> #0.
Using (4.26) in (4.14), we get
(4.27) Bh(Z,0X) + a*h(Z,X) = 0.
Differentiating (4.26) covariantly along ¥ and using the fact that Vi = 0, we get
(4.28) hZ,9Y)=0.

In view of (4.28) and (4.27), we see that h(Y,Z) = 0, which completes the proof.

Acknowledgement. The author wishes to express his thankfulness to Professor Ramesh Sharma for his valuable
discussions during the preparation of this paper.

REFERENCES

[1] D.E. Blair, Contact Manifolds in Riemanian Geometry, Lecture Notes in Mathematics 509, Springer-Verlag,
Berlin-Heidelberg, New York 1976.
[2] D. E. Blair, Riemannian Geometry of contact and Symplectic Manifolds, Progress in Mathematics 203,
Birkhauser, Boston 2002.
[3] D.E. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1(3-4) (1967),
347-354.
[4] L. Das and J. Sengupta, On conformally flat LP-Sasakian manifolds with a coefficient o, Bull. Cal. Math.
Soc. 98(4) (2006), 377-382.
[5] L. Das, Second order parallel tensors on LP-Sasakian manifolds with a coefficient o, Acta Mathematica
Academiae Paedagogicae Nyiregyhaziensis 33(1) (2017), 85-89.
[6] L. Das, Second Order Parallel Tensor on o - Sasakian manifold, Acta Mathematica, Academiae Pedagogicae
Nyiregyhaziensis 23(1) (2007), 65-69.
[7] L. Das, On CR-structures and F-structure satisfying FX + (—1)X*'F = 0, Rocky Mountain J. Math. 36
(2006), 885-892.
[8] U.C. De and A. K. Gaji, On nearly quasi-Einstein manifolds, Novi Sad J. Math. 38 (2008), 115-121.
[9] L.P.Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer.
Math. Soc. 25 (1923), 297-306.
[10] R. S. Hamilton, The Ricci flow on surface, Mathematics and General Relativity 71 (1988), 237-262.
[11] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Maths. 27
(1926), 91-98.
[12] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989),
151-156.
[13] L. Sato and K. Matsumoto, On P-Sasakian manifolds satisfying certain conditions, Tensor, N. S. 33 (1979),
173-178.
[14] R. Sharma, Second order parallel tensors on contact manifolds, Algebras, Groups and Geometries 7 (1990),
145-152.

24



Romanian Journal of Mathematics and Computer Science Issue 1, Vol. 13 (2023)

[15] T. Toshio, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. Journal 21 (1969), 271-290.
[16] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian manifolds, Kyungpook Math. J. 45 (2005), 95-103.

DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, NEW PHILIADEPHIA, OHIO, 44663, USA
Email address: 1das@kent . edu

25





