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1. Introduction and useful informations

1.1. Background. Suppose that Sn−1 = {x ∈ Rn : |x| = 1} is the unit sphere on Rn (n ≥ 2) equipped
with the normalized Lebesgue measure dσ (x′). We say that a function Ω (x, z) defined on Rn × Rn
belongs to the space L∞(Rn)× Ls(Sn−1) for s > 1, if Ω (x, z) satisfies the following conditions:

For any x, z ∈ Rn and λ > 0,

(1.1) Ω(x, λz) = Ω(x, z);

and for any z ∈ Rn \ {0} and z′ = z/ |z|

(1.2) ‖Ω‖L∞(Rn)×Ls(Sn−1) := sup
x∈Rn

 ∫
Sn−1

|Ω(x, z′)|s dσ (z′)

1/s

<∞.

Let us consider the following commutators with variable kernel of rough fractional type integral oper-
ators with variable kernel defined by

[b, IΩ,α]f(x) ≡ b(x)IΩ,αf(x)− IΩ,α(bf)(x)

=

∫
Rn

[b(x)− b(y)]
Ω(x, x− y)

|x− y|n−α
f(y)dy,

and

[b,MΩ,α]f(x) ≡ b (x)MΩ,αf (x)−MΩ,α (bf) (x)

= sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b (x)− b (y)| |Ω(x, x− y)| |f(y)|dy,
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where f is a suitable function and Ω ∈ L∞(Rn) × Ls(Sn−1), s > 1, is homogeneous of degree zero with
respect to the second variable y on Rn.

Recently, rough commutators with variable kernel of fractional type have been receiving more widely
attention. Many results about the rough commutators with variable kernel [b, IΩ,α] and [b,MΩ,α] on
various function spaces have been studied, respectively, see [1, 3] for details. However, the boundedness
of these operators on vanishing generalized weighted Morrey spaces has almost never been studied. In
this work, it is planned to fill the gap in the existing literature by our original results. That is, the
purpose of this paper is to consider the mapping properties for the rough fractional type commutator
operators with variable kernel [b, IΩ,α] and [b,MΩ,α] on vanishing generalized weighted Morrey spaces.

Now, we need the weight class A (p, q) introduced by Muckenhoupt and Wheeden in [5] to study
weighted boundedness of fractional integrals.

We say that w (x) ∈ A (p, q) for 1 < p < q <∞ if and only if

(1.3) sup
B(x,r)

|B(x, r)|−1

∫
B(x,r)

w(x)qdx


1
q
|B(x, r)|−1

∫
B(x,r)

w(x)−p
′
dx


1
p′

<∞,

where the supremum is taken over all the balls B(x, r). Note that, by Hölder’s inequality, for all balls
B(x, r) we have

(1.4) |B(x, r)|
1
p−

1
q−1‖w‖Lq(B(x,r))‖w−1‖Lp′ (B(x,r)) ≥ 1.

By (1.3), we have

(1.5)

 ∫
B(x,r)

w(x)qdx


1
q
 ∫
B(x,r)

w(x)−p
′
dx


1
p′

. |B(x, r)|
1
q+ 1

p′ .

Moreover, if w (x)
s′ ∈ A

(
p
s′ ,

q
s′

)
, then by (1.4) and (1.5), we obtain

(1.6) ‖ws
′
‖L q

s′
(B(x,r))‖w−s

′
‖L

( ps′ )
′ (B(x,r)) ≈ |B(x, r)|

1+ 1
q
s′
− 1

p
s′ .

Recall that reverse Hölder’s inequality is defined by

sup
B(x,r)

 ∫
B(x,r)

w(x)qdx


1
q
 ∫
B(x,r)

w(x)dx


−1

<∞

such that 1 < q <∞.
It is noteworthy to mention that the vanishing generalized weighted Morrey spaces have been defined

by Gürbüz in [2].

Definition 1.1. (Vanishing generalized weighted Morrey spaces) Let 1 ≤ p < ∞, ϕ(x, r) :
Rn× (0,∞) → (0,∞) and w is nonnegative measurable function on Rn. Vanishing generalized weighted
Morrey space VMp,ϕ (w) ≡ VMp,ϕ(Rn, w) is defined as the space of functions f ∈ VMp,ϕ (w) ≡
VMp,ϕ(Rn, w) such that

(1.7) lim
r→0

sup
x∈Rn

1

ϕ(x, r)
‖f‖Lp(B(x,r),w) = 0.

Naturally, ϕ(x, t) satisfies the following conditions:

(1.8) lim
t→0

sup
x∈Rn

(w(B(x, t)))
1
p

ϕ(x, t)
= 0,
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and

(1.9) inf
t>1

sup
x∈Rn

(w(B(x, t)))
1
p

ϕ(x, t)
> 0.

From now on, we denote by ϕ ∈ B (w) if ϕ(x, r) : Rn× (0,∞)→ (0,∞) and satisfies (1.8) and (1.9).
For functions supported on x-centred Euclidean ball B(x, r) ⊂ Rn, the space of functions of bounded

mean oscillation BMO (Rn) is the set of all b ∈ Lloc1 (Rn) such that

sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(x)− bB(x,r)|dx <∞,

where

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy

is the mean of b over the ball B(x, r) and the supremum is taken over all balls B(x, r). Now, we define

BMO (Rn) =

b ∈ Lloc1 (Rn) : sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(x)− bB(x,r)|dx <∞


and

‖b‖BMO = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(x)− bB(x,r)|dx.

Let b ∈ BMO(Rn). Then, for any 1 < p <∞, by the John-Nirenberg inequality, we can obtain

(1.10) ‖b‖BMO ≈ sup
x∈Rn,r>0

 1

|B(x, r)|

∫
B(x,r)

|b(x)− bB(x,r)|pdx


1
p

and for 0 < 2r < t there is a constant C > 0 such that

(1.11)
∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖BMO ln
t

r
.

Finally, A . B means that A ≤ CB with some positive constant C independent of appropriate
quantities and if A . B and B . A, we write A ≈ B, and also p′ and s′ always denote the conjugate
index of any p > 1 and s > 1, that is, 1

p′ := 1− 1
p and 1

s′ := 1− 1
s .

2. Main Results

Our result can be stated as follows.

Theorem 2.1. Suppose that 0 < α < n, 1 ≤ s′ < p < n
α , 1

q = 1
p −

α
n , 1 < q <∞, b ∈ BMO(Rn), Ω (x, z)

satisfies (1.1) and (1.2) for any x ∈ Rn \ {0}. For p > 1, w (x)
s′ ∈ A

(
p
s′ ,

q
s′

)
and s′ < p, the inequality

‖[b, IΩ,α]f‖Lq(B(x0,r),wq)
. ‖b‖BMO (wq (B (x0, r)))

1
q

×
∞∫

2r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

dt

t
(2.1)
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holds for any ball B (x0, r) and for all f ∈ Llocp,w (Rn). If ϕ1 ∈ B (wp), ϕ2 ∈ B (wq) and the pair (ϕ1, ϕ2)
satisfies the following conditions

(2.2) Cδ0 :=

∞∫
δ

(
1 + ln

t

r

)
sup
x∈Rn

ϕ1 (x, t)

(wq (B (x, t)))
1
q

1

t
dt <∞

for every δ > 0, and

(2.3)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

(wq (B (x, t)))
1
q

1

t
dt ≤ C ϕ2(x, r)

(wq (B (x, t)))
1
q

,

then for p > 1, w (x)
s′ ∈ A

(
p
s′ ,

q
s′

)
and s′ < p,

‖[b, IΩ,α]f‖VMq,ϕ2 (wq) . ‖b‖BMO ‖f‖VMp,ϕ1
(wp) ,(2.4)

‖[b,MΩ,α]f‖VMq,ϕ2
(wq) . ‖b‖BMO ‖f‖VMp,ϕ1

(wp) .(2.5)

Proof. Let b ∈ BMO(Rn). For any x0 ∈ Rn, we write as f = f1 + f2, where f1 (y) = f (y)χB(x0,2r) (y),
f2 (y) = f (y)χ(B(x0,2r))

C (y), r > 0. Then

‖[b, IΩ,α]f‖Lq(wq,B(x0,r))
≤ ‖[b, IΩ,α]f1‖Lq(wq,B(x0,r))

+ ‖[b, IΩ,α]f2‖Lq(wq,B(x0,r))
.

Let us estimate ‖[b, IΩ,α]f1‖Lq(wq,B(x0,r))
and ‖[b, IΩ,α]f2‖Lq(wq,B(x0,r))

, respectively.

Since f1 ∈ Lp (wp,Rn), by the boundedness of [b, IΩ,α] from Lp (wp,Rn) to Lq (wq,Rn) (see Theorem
3.6.1 in [4]), (1.6) and since 1 ≤ s′ < p < q, we get

‖[b, IΩ,α]f1‖Lq(wq,B(x0,r))
≤ ‖[b, IΩ,α]f1‖Lq(wq,Rn)

. ‖b‖BMO ‖f1‖Lp(wp,Rn)

= ‖b‖BMO ‖f‖Lp(wp,B(x0,2r))

. ‖b‖BMOr
n−αs′ ‖f‖Lp(wp,B(x0,2r))

∞∫
2r

dt

tn−αs′+1

≈ ‖b‖BMO‖ws
′
‖L q

s′
(B(x0,r))‖w

−s′‖L
( ps′ )

′ (B(x0,r))

×
∞∫

2r

‖f‖Lp(wp,B(x0,t))

dt

tn−αs′+1

. ‖b‖BMO (wq (B(x0, r)))
1
q

×
∞∫

2r

‖f‖Lp(wp,B(x0,t))
‖w−s

′
‖L

( ps′ )
′ (B(x0,t))

dt

tn−αs′+1

. ‖b‖BMO (wq (B(x0, r)))
1
q

×
∞∫

2r

‖f‖Lp(wp,B(x0,t))

[
‖ws

′
‖L

( qs′ )
(B(x0,t))

]−1
1

t
dt

. ‖b‖BMO (wq (B(x0, r)))
1
q

×
∞∫

2r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

1

t
dt.(2.6)
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For ‖[b, IΩ,α]f2‖Lq(wq,B(x0,r))
, noting that |x0 − x| ≤ r, 2r ≤ |x0 − y|, we have

|x0 − y| ≤ 2 |x− y| ≤ 3 |x0 − y| ,

thus

|[b, IΩ,α]f2 (x)| .
∞∫

2r

|b(y)− b (y)| |Ω(x, x− y)|
|x0 − y|n−α

|f(y)| dy

.

∞∫
2r

∣∣b(y)− bB(x0,r)

∣∣ |Ω(x, x− y)|
|x0 − y|n−α

|f(y)| dy

+

∞∫
2r

∣∣b(x)− bB(x0,r)

∣∣ |Ω(x, x− y)|
|x0 − y|n−α

|f(y)| dy

=: F1 + F2.

To estimate F1, let 1 < s, q <∞, such that 1
s = 1

s1
+ 1

s2
, 1
q = 1

p −
α
n . Then, by using Hölder’s inequality,

(1.10), (1.11) and (2.7) in [2], we obtain

F1 .

∞∫
2r

∣∣b(y)− bB(x0,r)

∣∣ |Ω(x, x− y)| |f(y)|
∞∫

|x0−y|

dt

tn−α+1
dy

≈
∞∫

2r

∫
2r<|x0−y|<t

∣∣b(y)− bB(x0,r)

∣∣ |Ω(x, x− y)| |f(y)| dy dt

tn−α+1

.

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |Ω(x, x− y)| |f (y)| dy dt

tn−α+1

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|Ω(x, x− y)| |f (y)| dy dt

tn−α+1
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.

∞∫
2r

∥∥(b (·)− bB(x0,t)

)
Ω(x, x− ·)

∥∥
Ls(B(x0,t))

‖f‖Ls′ (B(x0,t))

dt

tn−α+1

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖Ω(x, x− ·)‖Ls(B(x0,t))
‖f‖Ls′ (B(x0,t))

dt

tn−α+1

.

∞∫
2r

∥∥b (·)− bB(x0,t)

∥∥
Ls1 (B(x0,t))

‖Ω(x, x− ·)‖Ls2 (B(x0,t))
‖f‖Ls′ (B(x0,t))

dt

tn−α+1

+ ‖b‖BMO

∞∫
2r

ln
t

r
‖Ω(x, x− ·)‖Ls(B(x0,t))

‖f‖Ls′ (B(x0,t))

dt

tn−α+1

. ‖b‖BMO

∞∫
2r

‖f‖Ls′ (B(x0,t))
|B (x0, t)|

1
s1 |B (x0, 2t)|

1
s2

dt

tn−α+1

+ ‖b‖BMO

∞∫
2r

ln
t

r
‖f‖Ls′ (B(x0,t))

|B (x0, 2t)|
1
s

dt

tn−α+1

. ‖b‖BMO

∞∫
2r

(
1 + ln

t

r

)
‖f‖Ls′ (B(x0,t))

|B (x0, 2t)|
1
s

dt

tn−α+1

. ‖b‖BMO

∞∫
2r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

dt

t
,

then taking the norm, we have

‖F1‖Lq(B(x0,r),wq)
. ‖b‖BMO (wq (B (x0, r)))

1
q

×
∞∫

2r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

dt

t
.

Now turn to estimate F2. By using Hölder’s inequality and from (2.7) in [2], it is easy to see that

F2 .

∞∫
2r

∣∣b(x)− bB(x0,r)

∣∣ |Ω(x, x− y)| |f(y)|
∞∫

|x0−y|

dt
tn−α+1 dy

.

∞∫
2r

∣∣b(x)− bB(x0,r)

∣∣ ∫
B(x0,t)

|Ω(x, x− y)| |f(y)| dy dt
tn−α+1

.
∣∣b(x)− bB(x0,r)

∣∣ ∞∫
2r

‖Ω(x, x− ·)‖Ls(B(x0,t))
‖f‖Ls′ (B(x0,t))

dt
tn−α+1

.
∣∣b(x)− bB(x0,r)

∣∣ ∞∫
2r

‖f‖Lp(B(x0,t),w
p)

(wq(B(x0,r)))
1
q

dt
t .

Then, applying reverse Hölder’s inequality and by (1.10), we get the following

‖F2‖Lq(B(x0,r),wq)
.

 ∫
B(x0,r)

∣∣b(x)− bB(x0,r)

∣∣q wq (x) dx


1
q

∞∫
2r

‖f‖Lp(B(x0,t),w
p)

(wq(B(x0,r)))
1
q

dt
t
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.

 ∫
B(x0,r)

wqs (x) dx


1
qs
 ∫
B(x0,r)

∣∣b(x)− bB(x0,r)

∣∣ qss−1 dx


s−1
qs

×
∞∫
2r

‖f‖Lp(B(x0,t),w
p)

(wq(B(x0,r)))
1
q

dt
t

≈


 ∫
B(x0,r)

wqs (x) dx


1
s


1
q

|B(x0, r)|
s−1
qs


∫

B(x0,r)

|b(x)−bB(x0,r)|
qs
s−1 dx

|B(x0,r)|


s−1
qs

×
∞∫
2r

‖f‖Lp(B(x0,t),w
p)

(wq(B(x0,r)))
1
q

dt
t

≈ ‖b‖BMO (wq (B (x0, r)))
1
q

∞∫
2r

‖f‖Lp(B(x0,t),w
p)

(wq(B(x0,r)))
1
q

dt
t .

Thus, combining all the estimates for ‖F1‖Lq(B(x0,r),wq)
and ‖F2‖Lq(B(x0,r),wq)

, we get

‖[b, IΩ,α]f2‖Lq(wq,B(x0,r))
. ‖b‖BMO (wq (B(x0, r)))

1
q

×
∞∫

2r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

1

t
dt.(2.7)

At last, from (2.6) and (2.7), the proof of (2.1) is completed.
Moreover, by the definition of vanishing generalized weighted Morrey spaces, (2.1) and (2.3), we have

‖[b, IΩ,α]f‖VMq,ϕ2 (wq) = sup
x∈Rn,r>0

1

ϕ2(x, r)
‖[b, IΩ,α]f‖Lq(wq,B(x0,r))

. ‖b‖BMO sup
x∈Rn,r>0

1

ϕ2(x, r)
(wq (B (x0, r)))

1
q

×
∞∫
r

(
1 + ln

t

r

) ‖f‖Lp(B(x0,t),wp)

(wq (B (x0, r)))
1
q

dt

t

. ‖b‖BMO sup
x∈Rn,r>0

1

ϕ2(x, r)
(wq (B (x0, r)))

1
q

×
∞∫
r

[
ϕ1 (x, t)

−1 ‖f‖Lp(B(x0,t),wp)

](
1 + ln

t

r

)
ϕ1 (x, t)

(wq (B (x, t)))
1
q

1

t
dt

. ‖b‖BMO ‖f‖VMp,ϕ1
(wp) sup

x∈Rn,r>0

1

ϕ2(x, r)
(wq (B (x0, r)))

1
q

×
∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

(wq (B (x, t)))
1
q

1

t
dt

. ‖b‖BMO ‖f‖VMp,ϕ1 (wp) .

At last, it is sufficient to prove that

lim
r→0

sup
x∈Rn

1

ϕ1(x, r)
‖f‖Lp(wp,B(x0,r)) = 0
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implies

lim
r→0

sup
x∈Rn

1

ϕ2(x, r)
‖[b, IΩ,α]f‖Lq(wq,B(x0,r)) = 0.

To show that

sup
x∈Rn

1

ϕ2(x, r)
‖[b, IΩ,α]f‖Lq(wq,B(x0,r)) < ε

for any small r > 0, we split the right hand side of (2.1) as follow

(2.8)
1

ϕ2(x, r)
‖[b, IΩ,α]f‖Lq(wq,B(x0,r)) ≤ C0 [Fψ (x, r) + Gψ (x, r)] ,

where 0 < r < ψ, and

Fψ (x, r) := ‖b‖BMO
(wq (B (x0, r)))

1
q

ϕ2(x, r)

×
ψ∫
r

(
1 + ln

t

r

)
ϕ1(x, t)

(wq (B (x0, r)))
1
q

sup
0<r<t

[
‖f‖Lp(B(x0,t),wp)

ϕ1(x, t)

]
1

t
dt

and

Gψ (x, r) := ‖b‖BMO
(wq (B (x0, r)))

1
q

ϕ2(x, r)

×
∞∫
ψ

(
1 + ln

t

r

)
ϕ1(x, t)

(wq (B (x0, r)))
1
q

sup
0<r<t

[
‖f‖Lp(B(x0,t),wp)

ϕ1(x, t)

]
1

t
dt.

Since f ∈ VMp,ϕ1
(wp,Rn), for all 0 < r < ψ, we can choose any fixed ψ > 0 such that

sup
x∈Rn

sup
0<r<ψ

‖f‖Lp(wp,B(x,r))

ϕ1(x, r)
<

ε

2CC0‖b‖BMO
,

where the constants C and C0 come from (2.3) and (2.8), respectively. Then, for 0 < r < ψ, by (2.3), we
have

sup
x∈Rn

C0Fψ (x, r) <
ε

2C

(wq (B (x0, r)))
1
q

ϕ2(x, r)

×
ψ∫
r

(
1 + ln

t

r

)
ϕ1(x, t)

(wq (B (x0, r)))
1
q

1

t
dt <

ε

2
.

The estimation of Gψ (x, r) may be obtained by choosing r sufficiently small. Indeed, it follows from (2.2)
that

sup
x∈Rn

C0Gψ (x, r) ≤ Cδ0‖b‖BMO
(wq (B (x0, r)))

1
q

ϕ2(x, r)
‖f‖VMp,ϕ1

(wp,Rn) ,

where Cδ0 is the constant from (2.2).
Then, since ϕ2 ∈ B (wq), it suffices to choose r small enough such that

sup
x∈Rn

(wq (B (x0, r)))
1
q

ϕ2(x, r)
<

ε

2C0Cψ‖b‖BMO ‖f‖VMp,ϕ1
(wp,Rn)

.

Hence,

sup
x∈Rn

CGψ (x, r) <
ε

2
.
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Thus,
‖[b, IΩ,α]f‖Lq(wq,B(x0,r))

ϕ2(x, r)
< ε,

which means that

lim
r→0

sup
x∈Rn

1

ϕ2(x, r)
‖[b, IΩ,α]f‖Lq(wq,B(x0,r)) = 0,

which completes the proof of (2.4). On the other hand, since [b,MΩ,α]f(x) ≤ [b, I|Ω|,α] (|f |) (x), x ∈ Rn
(see Remark 3.6.2 in [4]) we can also use the same method for [b,MΩ,α], so we omit the details. As a
result, we complete the proof of Theorem 2.1. �
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Abstract. The goal of this note is to improve the boundedness result of commutators
generated by the fractional integral operator Iα of order α, 0 < α < n and BMO func-
tions by the use of the complex interpolation. In particular, we prove the boundedness
of commutators generated by BMO functions and fractional integral operators from the
Calderón–Lozanovskĭi product between Morrey spaces to Morrey spaces. Moreover, we
also discuss the compactness of these commutators. The results concern the boundedness
property of commutators acting on the complex interpolation spaces of Morrey spaces.
However, the actual proof uses the Calderón–Lozanovskĭi product and the complex in-
terpolation is hidden behind the Calderón–Lozanovskĭi product.
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1. Introduction

The goal of this note is to refine a result on the Morrey-boundedness of commutators generated by BMO
functions and the fractional integral operator Iα of order α ∈ (0, n) in terms of the complex interpolation.
To this end, we will start with the definition of the Morrey space Mp

q(Rn) for 1 ≤ q ≤ p <∞. We write

Q(x, r) ≡
{
y = (y1, y2, . . . , yn) ∈ Rn : max

j=1,2,...,n
|xj − yj | ≤ r

}
when x = (x1, x2, . . . , xn) ∈ Rn and r > 0.

Denote by Q the set of all cubes of the form Q(x, r) for some x ∈ Rn and r > 0. Let 1 ≤ q ≤ p < ∞.
Then the Morrey space Mp

q(Rn) is the set of all measurable functions f on Rn for which

‖f‖Mp
q
≡ sup

(x,r)∈Rn×(0,∞)

|Q(x, r)|
1
p−

1
q

(∫
Q(x,r)

|f(y)|qdy

) 1
q

<∞.

As we mentioned we handle commutators generated by BMO functions and the fractional integral operator
Iα, α ∈ (0, n). To this end, we next recall the definition of the related function spaces and operators. We
start with Iα, α ∈ (0, n). Let Iα be the fractional integral operator of order α given by

(1.1) Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn),

which is defined for a suitable measurable function f . Next we recall the definition of BMO(Rn). If E has
positive measure and f is integrable over E, Then denote by mE(f) the average of f over E. |E| denotes
the volume of E. Define ‖f‖∗ ≡ sup

Q∈Q
mQ(|f −mQ(f)|) for f ∈ L1

loc(Rn). One says that f ∈ L1
loc(Rn)
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has bounded mean oscillation (abbreviated to f ∈ BMO(Rn)), if ‖f‖∗ < ∞. In this paper, we handle

the commutator [a, Iα] defined by [a, Iα]f(x) ≡
∫
Rn

a(x)− a(y)

|x− y|n−α
f(y)dy for α ∈ (0, n) and a ∈ BMO(Rn).

Here, f is a suitable function that will be chosen so that the right-hand side makes sense.
We are interested in the improvement of the following theorem due to Di Fazio and Ragusa [9] on the

boundedness of the commutator [a, Iα], initially considered by Chanillo [6].

Proposition 1.1. Let a ∈ BMO(Rn) and 0 < α < n. Assume that the parameters p, q, s, t ∈ (1,∞)
satisfy q ≤ p, t ≤ s, 1

s = 1
p −

α
n and q

p = t
s . Then [a, Iα] is a bounded linear operator from Mp

q(Rn) to

Ms
t (Rn), that is, for any f ∈Mp

q(Rn), the integral definining [a, Iα]f(x) converges absolutely for almost
all x ∈ Rn and the mapping f ∈Mp

q(Rn) 7→ [a, Iα]f ∈Ms
t (Rn) is a bounded linear operator.

The proof of Proposition 1.1 heavily hinges on the boundedness of Iα, initially proved by Adams
[1]. See the inclusive textbook [42] for more about the action of fractional integral operators on Morrey
spaces.

Proposition 1.2. The conclusion of Proposition 1.1 remains valid if we replace [a, Iα] by Iα.

One of the techniques to prove Proposition 1.2 is to use Hedberg’s inequality [21]. A standard argument
shows that Hedberg’s inequality can be refined by the use of the Morrey norm ‖ · ‖Mp

1
, see [38]. As is

established in [32, 36], we can measure how strongly we can use the Morrey norm ‖ · ‖Mp
1

by the use of

the complex interpolation or the Calderón–Lozanovskĭi product, which we recall now.
Let 0 < θ < 1, and let X (Rn) and Y(Rn) be Banach lattices. Then the Calderón-Lozanovskĭi product

(X (Rn))1−θ(Y(Rn))θ, which is due to Calderón [5, §13.5] and Lozanovskĭi [28, 29], is the set of all
measurable functions f for which |f | ≤ |f0|1−θ|f1|θ for some f0 ∈ X (Rn) and f1 ∈ Y(Rn). The norm of
f ∈ (X (Rn))1−θ(Y(Rn))θ is given by

‖f‖(X )1−θ(Y)θ = inf{(‖f0‖X )1−θ(‖f1‖Y)θ},

where f0 and f1 move over all functions in X (Rn) and Y(Rn) satisfying |f | ≤ |f0|1−θ|f1|θ. See [34] for

more about the Calderón–Lozanovskĭi product.
We recall a result of [36].

Proposition 1.3. Assume that the parameters p, q, s, t ∈ (1,∞) satisfy q ≤ p, t ≤ s, 1
s = 1

p −
α
n and

q
p = t

s . Write θ ≡ α
n ∈ (0, 1). Then the fractional integral operator Iα maps (Mp

q(Rn))1−θ(Mp
1(Rn))θ

boundedly to Ms
t (Rn).

The goal of this note is to obtain an analog of Proposition 1.3 for the commutator [a, Iα]. Due to
the singularity of BMO functions, we need to replace Mp

1(Rn) by a slightly smaller space Mp
L log L(Rn).

Motivated by [37], we write

‖f‖L log L;Q(x,r) = inf

{
λ > 0 :

1

|Q(x, r)|

∫
Q(x,r)

|f(y)|
λ

log

(
3 +
|f(y)|
λ

)
dy ≤ 1

}
for a measurable function f . The quantity ‖f‖L log L;Q(x,r) is called the Orlicz average of f . The Orlicz–
Morrey space Mp

L log L(Rn), p > 1, is the set of all measurable functions f for which ‖f‖Mp
L log L

≡
sup

x∈Rn,r>0
|Q(x, r)|

1
p ‖f‖L log L;Q(x,r) is finite.

We seek to prove the following theorem:

Theorem 1.4. Let a ∈ BMO(Rn) and 0 < α < n. Assume that the parameters p, q, s, t ∈ (1,∞) satisfy
q ≤ p, t ≤ s, 1

s = 1
p−

α
n and q

p = t
s . Write θ ≡ αp

n ∈ (0, 1). Then [a, Iα] maps (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ

boundedly to Ms
t (Rn). Furthermore, the estimate

(1.2) ‖[a, Iα]‖(Mp
q)1−θ(Mp

L log L)θ→Ms
t
. ‖a‖∗

holds.
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It seems that our results can be extended to the generalized settings [10, 12, 13, 14, 15, 27]. However,
to simplify, we content ourselves with the Euclidean space.

Remark 1.5. Since X (Rn)∩Y(Rn) ⊆ X (Rn)1−θY(Rn)θ for any Banach lattices X (Rn) and Y(Rn) and
Mp

q(Rn) ⊆ Mp
L log L(Rn) for any p > 1, we see that Mp

q(Rn) ⊆ (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ. Thus,
Theorem 1.4 can be viewed as an improvement of Proposition 1.1.

We do not discuss seriously whether [a, Iα]f(x) can be defined almost everywhere. In fact, we can also
consider operators having singularity slightly stronger than commutators defined above. We define the
linear operator C̃[a, Iα] by

C̃[a, Iα]f(x) ≡
∫
Rn

|a(x)− a(y)|
|x− y|n−α

f(y)dy

for a measurable function f as long as the integral makes sense for almost all x ∈ Rn. This definition
goes back to the paper [4]. Usually, due to the positivity of the integral kernel, we may assume that f
is non-negative almost everywhere. However, under some extra integrability condition, we will mainly
consider the case where f is not always non-negative.

Then we can prove the boundedness of C̃[a, Iα].

Theorem 1.6. The same conclusion remains valid in Theorem 1.4 if we replace [a, Iα] by C̃[a, Iα].

Theorem 1.4 will follow immediately once we prove Theorem 1.6: We concentrate on Theorem 1.6.
We can also discuss the compactness of commutators in Theorem 1.4.

Theorem 1.7. In addition to the assumption of Theorem 1.4, if a ∈ VMO(Rn), then [a, Iα] is a compact
operator from (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ to Ms

t (Rn).

Remark 1.8. The space VMO(Rn) is defined to be the set of all functions a ∈ BMO(Rn) for which
lim
r→0+

sup
x∈Rn

mQ(x,r)(|a−mQ(x,r)(a)|) = 0.

The converse of Theorem 1.7 is also available.

Corollary 1.9. In addition to the assumption of Theorem 1.4 if [a, Iα] is a compact operator from
(Mp

q(Rn))1−θ(Mp
L log L(Rn))θ to Ms

t (Rn) then a ∈ VMO(Rn).

In fact, this is a direct corollary of a result obtained in [8] asserting that a ∈ VMO(Rn) if [a, Iα] is a
compact operator from Mp

q(Rn) to Ms
t (Rn).

We can paraphrase our theorems in terms of the complex interpolation functors. We focus on the
complex interpolation of Mp

q(Rn) and Mp
L log L(Rn). Remark that there are two different complex inter-

polation functors, both of which we recall. We write S ≡ {z ∈ C : 0 < Re(z) < 1} and let S̄ be its
closure. For j = 0, 1, we set j + iR ≡ {z ∈ C : Re(z) = j}. Also, for a Banach space X, the space
Lip(R;X) stands for the Banach space (modulo constants) of all continuous functions f : R → X for

which ‖f‖Lip(R;X) = sup
s,t∈R,s6=t

‖f(s)− f(t)‖X
|s− t|

is finite.

Definition 1.10. Let 1 < q ≤ p <∞.

(1) The space F(Mp
q(Rn),Mp

L log L(Rn)) is defined as the set of all functions F : S̄ → Mp
q(Rn) +

Mp
L log L(Rn) =Mp

L log L(Rn) such that

(a) F is continuous on S̄ and sup
z∈S̄
‖F (z)‖Mp

q+Mp
L log L

<∞,

(b) F is holomorphic on S,
(c) the functions t ∈ R 7→ F (it) ∈Mp

q(Rn) and t ∈ R 7→ F (1 + it) ∈Mp
L log L(Rn) are bounded

and continuous on R.
The space F(Mp

q(Rn),Mp
L log L(Rn)) is equipped with the norm

‖F‖F(Mp
q ,Mp

L log L) ≡ max

(
sup
t∈R
‖F (it)‖Mp

q
, sup
t∈R
‖F (1 + it)‖Mp

L logL

)
.
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(2) Let θ ∈ (0, 1). The first/lower complex interpolation space [Mp
q(Rn),Mp

L log L(Rn)]θ with respect

to the couple (Mp
q(Rn),Mp

L log L(Rn)) is defined to be the Banach lattice of all functions f ∈
Mp

q(Rn) +Mp
L log L(Rn) = Mp

L log L(Rn) such that f is realized as f = F (θ) for some element

F ∈ F(Mp
q(Rn),Mp

L log L(Rn)). The norm on [Mp
q(Rn),Mp

L log L(Rn)]θ is defined by

‖f‖[Mp
q ,Mp

L log L]θ

≡ inf{‖F‖F(Mp
q ,Mp

L log L) : f = F (θ) for some F ∈ F(Mp
q(Rn),Mp

L log L(Rn))}.

Definition 1.11. Let 1 < q ≤ p <∞. Also let θ ∈ (0, 1).

(1) The space G(Mp
q(Rn),Mp

L log L(Rn)) stands for the set of all functions G : S̄ → Mp
L log L(Rn)

such that
(a) G is continuous on S̄ and sup

z∈S̄

∥∥∥ G(z)
1+|z|

∥∥∥
Mp

q+Mp
L log L

<∞,

(b) G is holomorphic on S,
(c) the functions t ∈ R 7→ G(it)−G(0) ∈Mp

q(Rn) and t ∈ R 7→ G(1+it)−G(1) ∈Mp
L log L(Rn)

are Lipschitz continuous on R for each j = 0, 1.
The space G(Mp

q(Rn),Mp
L log L(Rn)) is equipped with the norm

‖G‖G(Mp
q ,Mp

L log L) ≡ max
{
‖G(i·)‖Lip(R,Mp

q), ‖G(1 + i·)‖Lip(R,Mp
L log L)

}
.(1.3)

(2) The second/upper complex interpolation space [Mp
q(Rn),Mp

L log L(Rn)]θ with respect to the couple

(Mp
q(Rn),Mp

L log L(Rn)) is defined to be the linear space of all functions f ∈ Mp
L log L(Rn) such

that f = G′(θ) for some G ∈ G(Mp
q(Rn),Mp

L log L(Rn)). For f ∈ [Mp
q(Rn),Mp

L log L(Rn)]θ, its

norm on [Mp
q(Rn),Mp

L log L(Rn)]θ is defined by

‖f‖[Mp
q ,Mp

L log L]θ

≡ inf{‖G‖G(Mp
q ,Mp

L log L) : f = G′(θ) for some G ∈ G(Mp
q(Rn),Mp

L log L(Rn))}.

See [3] for these definitions. According to the general theory in [3],

[Mp
q(Rn),Mp

L log L(Rn)]θ ⊃ [Mp
q(Rn),Mp

L log L(Rn)]θ

for 1 < q ≤ p < ∞. More precisely, it is important that [Mp
q(Rn),Mp

L log L(Rn)]θ is the closure of

Mp
q(Rn)∩Mp

L log L(Rn) in [Mp
q(Rn),Mp

L log L(Rn)]θ with coincidence of norms [2]. In general this inclusion

is strict; see [22, 23] as well as [16, 19, 20, 30, 43]. It is remarkable that based on [22, 23], much more is
investigated on smoothness Morrey spaces in [17, 18, 41, 43]

In [31] we obtained the following expression:

(1.4) [Mp
q(Rn),Mp

L log L(Rn)]θ = (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ.

Thus, we can rephrase our theorems in terms of the complex interpolation functors.

Theorem 1.12. Let a ∈ BMO(Rn) and 0 < α < n. Assume that the parameters p, q, s, t ∈ (1,∞) satisfy
q ≤ p, t ≤ s, 1

s = 1
p −

α
n and q

p = t
s . Write θ ≡ αp

n ∈ (0, 1). Under the assumption of Theorem 1.4 [a, Iα]

maps [Mp
q(Rn),Mp

L log L(Rn)]θ boundedly to Ms
t (Rn). Furthermore, the estimate

(1.5) ‖[a, Iα]‖[Mp
q(Rn),Mp

L log L(Rn)]θ→Ms
t
. ‖a‖∗

holds.

Theorem 1.13. In addition to the assumption of Theorem 1.4, if a ∈ VMO(Rn), then [a, Iα] is a compact
operator from [Mp

q(Rn),Mp
L log L(Rn)]θ to Ms

t (Rn).

The converse is also available.
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Corollary 1.14. In addition to the assumption of Theorem 1.4 if [a, Iα] is a compact operator from
[Mp

q(Rn),Mp
L log L(Rn)]θ toMs

t (Rn) then a ∈ VMO(Rn). In particular, under the assumption of Theorem

1.4 if [a, Iα] is a compact operator from [Mp
q(Rn),Mp

L log L(Rn)]θ to Ms
t (Rn) then a ∈ VMO(Rn).

We remark that the compactness of [a, Iα] from [Mp
q(Rn),Mp

L log L(Rn)]θ to Ms
t (Rn) guarantees the

one from [Mp
q(Rn),Mp

L log L(Rn)]θ to Ms
t (Rn) thanks to the embedding from [Mp

q(Rn),Mp
L log L(Rn)]θ

into [Mp
q(Rn),Mp

L log L(Rn)]θ.

In the light of the result in the famous paper [23], there is a gap between Corollaries 1.9 and 1.14. In
fact, [Mp

q(Rn),Mp
L log L(Rn)]θ and [Mp

q(Rn),Mp
L log L(Rn)]θ are different. Since Chen, Ding and Wang

used compactly supported functions for the proof of [8, Theorem 1.2], we can close this gap.
The remaining part of this paper is organized as follows: Section 2 collects preliminary facts, while

Section 3 and Section 4 prove Theorems 1.6 and 1.7, respectively.

2. Preliminaries

2.1. A vector-valued maximal inequality. We invoke the following extension of the Fefferman–Stein
vector-valued inequality for the Hardy–Littlewood maximal operator M .

Lemma 2.1. [38, 39] Let 1 < t ≤ s <∞ and 1 < r <∞. Then for any sequence {fj}∞j=1 ⊂Ms
t (Rn),∥∥∥∥∥∥∥

 ∞∑
j=1

(Mfj)
r

 1
r

∥∥∥∥∥∥∥
Ms

t

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
Ms

t

2.2. Fractional Orlicz maximal operators. As an auxiliary step, we will investigate the boundedness
property of the fractional Orlicz maximal operator given by

Mα,L log Lf(x) ≡ sup
Q∈Q

χQ(x)`(Q)α‖f‖L log L;Q

for f ∈ L0(Rn), where L0(Rn) stands for the linear space of all measurable functions on Rn. If α = 0, then
abbreviate Mα,L log L to ML log L. We also remark that this operator is slightly bigger than the fractional
maximal operator given by

Mαf(x) ≡ sup
Q∈Q

χQ(x)`(Q)α−n‖f‖L1(Q).

In fact, we have Mαf ≤Mα,L log Lf for any f ∈ L0(Rn).

Lemma 2.2. Let 0 < α < n. Assume that the parameters p, q, s, t ∈ (1,∞) satisfy q ≤ p, t ≤ s,
1

s
=

1

p
− α

n
and

q

p
=

t

s
. Write θ ≡ αp

n
∈ (0, 1). Then Mα,L log L maps (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ

boundedly to Ms
t (Rn).

Proof. The proof resembles that of the main theorem in [36]. Here we supply the proof for the com-
pleteness. Let f ∈ (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ. We may assume f 6= 0; otherwise the conclusion

Mα,L log Lf = 0 ∈ (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ. Recall that

‖f‖(Mp
q)1−θ(Mp

L log L)θ = inf{‖f0‖1−θMp
q
‖f1‖θMp

L log L
: f0 ∈Mp

q(Rn), f1 ∈Mp
L log L(Rn)}.

It follows directly from the definition at least that

{‖f0‖1−θMp
q
‖f1‖θMp

L log L
: f0 ∈Mp

q(Rn), f1 ∈Mp
L log L(Rn)} = (‖f‖(Mp

q)1−θ(Mp
L log L)θ ,∞)

or that

{‖f0‖1−θMp
q
‖f1‖θMp

L log L
: f0 ∈Mp

q(Rn), f1 ∈Mp
L log L(Rn)} = [‖f‖(Mp

q)1−θ(Mp
L log L)θ ,∞),
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which yields

2‖f‖(Mp
q)1−θ(Mp

L log L)θ ∈ Int({‖f0‖1−θMp
q
‖f1‖θMp

L log L
: f0 ∈Mp

q(Rn), f1 ∈Mp
L log L(Rn)})

= (‖f‖(Mp
q)1−θ(Mp

L log L)θ ,∞).

Consequently there exist f0 ∈Mp
q(Rn) and f1 ∈Mp

L log L(Rn) such that |f | ≤ |f0|1−θ|f1|θ and that

‖f0‖1−θMp
q
‖f1‖θMp

L log L
≤ 2‖f‖(Mp

q)1−θ(Mp
L log L)θ .(2.1)

Let x ∈ Rn and suppose that Q ∈ Q contains x. Thanks to the generalized H’́older inequality for Orlicz
spaces, or thanks to the inequality a1−θbθ ≤ a+ b for a, b ≥ 0,

‖f‖L log L;Q . (‖f0‖L log L;Q)1−θ(‖f1‖L log L;Q)θ.

Therefore,

`(Q)α‖f‖L log L;Q .ML log Lf0(x)1−θ|Q|
α
n−

θ
p ‖f1‖θMp

L log L
= (ML log Lf0(x))

p
s ‖f1‖θMp

L log L
.

Consequently,

Mα,L log Lf(x) . (ML log Lf0(x))
p
s ‖f1‖θMp

L log L
.

Taking the Morrey norm ‖ · ‖Ms
t
, we get

‖Mα,L log Lf‖Ms
t
. ‖ML log Lf0‖

p
s

Mp
q
‖f1‖θMp

L log L
.(2.2)

Since ML log Lf(x) .ε M [|f |1+ε](x)
1

1+ε for any ε > 0, we have

‖ML log Lf0‖Mp
q
. ‖f0‖Mp

q
.

Combining this inequality, (2.1), (2.2) and the identity
p

s
= 1− θ, we have the desired result. �

2.3. Mean oscillation. For the proof of the theorem, we will use the mean oscillation [26].
Recall that the decreasing rearrangement of f ∈ L0(Rn) is given as follows:

f∗(t) ≡ inf{λ > 0 : |{|f | > λ}| < t} (t > 0).

Let Q ∈ Q, and f ∈ L0(Q) be a real-valued function.
We use the following notation: for a right-open cube Q0, which is not always a dyadic cube, D(Q0)

is the set of all dyadic cubes with respect to a cube Q0. The mean oscillation of f ∈ L0(Q) of level
λ ∈ (0, 1) is given by ωλ(f ;Q) ≡ inf

c∈C
((f − c)χQ)∗(λ|Q|), where ∗ denotes the decreasing rearrangement

for functions. We will use

(2.3) ωλ(af + b;Q) = |a|ωλ(f ;Q)

for a, b ∈ C and f ∈ L0(Rn).
Before we go further, a useful remark is in order. Let g be a measurable function defined on a cube

Q. Then since g∗ is decreasing,

(2.4) g∗(λ|Q|) ≤ 1

λ|Q|

∫ λ|Q|

0

g∗(t)dt ≤ 1

λ|Q|

∫ |Q|
0

g∗(t)dt =
1

λ|Q|

∫
Q

|g(x)|dx.

Lemma 2.3. Let Q = Q(z, r) be a fixed cube. Let 0 < λ < 1, a ∈ BMO(Rn), 0 < α < n and f ∈ L∞c (Rn).
Then

(2.5) ωλ(C̃[a, Iα]f ;Q) . ‖a‖∗ inf
w∈Q

Iα[|f |](w) + ‖a‖∗ inf
w∈Q

Mα,L log Lf(w).

Here L∞c (Rn) stands for the space of all compactly supported essentially bounded functions.

We employ the following notation for the proof: For α > 0, r > 0 and x ∈ Rn, we write αQ(x, r) ≡
Q(x, αr), so that αQ(x, r) is the α-times expansion of Q(x, r). Denote by WLp(Rn) the weak Lp space.
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Proof of Lemma 2.3. We decompose

C̃[a, Iα]f = C̃[a, Iα][χ3Qf ] + C̃[a, Iα][χRn\3Qf ].(2.6)

Fix x ∈ Q. We handle the first term in the right-hand side of (2.6). We calculate

|C̃[a, Iα][χ3Qf ](x)| ≤ |a(x)−mQ(a)|Iα[χ3Q|f |](x) + Iα[|a−mQ(a)| · χ3Q|f |](x).

Since Iα[χ3Q|f |] is an A1-weight according to [7, Lemma 5.2(2)], more precisely, M [Iα[χ3Q|f |]] .α
Iα[χ3Q|f |], it satisfies the reverse Hölder inequality:

mQ(Iα[χ3Q|f |]1+ε)
1

1+ε . mQ(Iα[χ3Q|f |])

for ε > 0. Thus, by [7, Lemma 5.2(1)], we have

mQ(|a−mQ(a)|Iα[χ3Q|f |]) . ‖a‖∗`(3Q)αm3Q(|f |).

Meanwhile, we estimate Iα[|a − mQ(a)| · χ3Q|f |](x) by using the John–Nirenberg inequality, Hölder’s
inequality for weak/strong Lebesgue spaces over a probability space (see [11, Exercise 1.1.11]) and the
duality L log L–Exp(L) over a probability space. We recall

‖f‖Exp(L);Q(x,r) = inf

{
λ > 0 :

1

|Q(x, r)|

∫
Q(x,r)

(
exp

(
3 +
|f(y)|
λ

)
− 1

)
dy ≤ 1

}
for a measurable function f . As well as the above inequalities, by the use of the Hardy–Littlewood–
Sobolev inequality, which asserts that Iα maps L1(Rn) to WL

n
n−α (Rn), we have

mQ(Iα[|a−mQ(a)| · χ3Q|f |]) .
‖Iα[|a−mQ(a)| · χ3Q|f |]‖WL

n
n−α

‖χQ‖L n
n−α

.
‖(a−mQ(a)) · χ3Q|f |‖L1

‖χQ‖L n
n−α

. ‖a‖∗`(Q)αmL log L,3Q(|f |).

Combining these estimates with (2.4), we obtain

(2.7) ωλ/2(|C̃[a, Iα][χ3Qf ]|;Q) . mQ(|C̃[a, Iα][χ3Qf ]|) . ‖a‖∗`(Q)αmL log L,3Q(|f |).

For the second term of (2.6), we estimate∣∣∣∣∣C̃[a, Iα][χRn\3Qf ](x)−
∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n−α

|f(y)|dy

∣∣∣∣∣
≤

∣∣∣∣∣C̃[a, Iα][χRn\3Qf ](x)−
∫
Rn\3Q

|mQ(a)− a(y)|
|x− y|n−α

|f(y)|dy

∣∣∣∣∣
+

∣∣∣∣∣
∫
Rn\3Q

|mQ(a)− a(y)|
|x− y|n−α

|f(y)|dy −
∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n−α

|f(y)|dy

∣∣∣∣∣
. |a(x)−mQ(a)|

∫
Rn\3Q

|f(y)|
|z − y|n−α

dy + r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy.

Note that the quantities∫
Rn\3Q

|f(y)|
|z − y|n−α

dy, r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy
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are constants. Thus, from (2.3), we deduce

ωλ/2

(
|a−mQ(a)|

∫
Rn\3Q

|f(y)|
|z − y|n−α

dy + r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy;Q

)

= ωλ/2 (|a−mQ(a)|;Q)

∫
Rn\3Q

|f(y)|
|z − y|n−α

dy + r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy.

Note also that ∫
Rn\3Q

|f(y)|
|z − y|n−α

dy .
∫
Rn\3Q

|f(y)|
|w − y|n−α

dy ≤ Iα[|f |](w)

for each w ∈ Q = Q(z, r). Therefore, we can estimate the second term of (2.6) as follows:

ωλ/2

(∣∣∣∣∣C̃[a, Iα][χRn\3Qf ](x)−
∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n−α

|f(y)|dy

∣∣∣∣∣ ;Q
)

. ωλ/2(|a−mQ(a)|;Q)

∫
Rn\3Q

|f(y)|
|z − y|n−α

dy + r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy

. ‖a‖∗ inf
w∈Q

Iα[|f |](w) + r

∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy.

By the inclusion

Rn \ 3Q ⊂
∞⋃
j=1

(2jQ \ 2j−1Q)

and Hölder’s inequality for Orlicz spaces (the duality L log L–Exp(L) over a probability space), we obtain∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n+1−α |f(y)|dy .

∞∑
j=1

1

(2jr)n+1−α

∫
2jQ

|f(y)| · |a(y)−mQ(a)|dy

.
∞∑
j=1

1

(2jr)1−α ‖f‖L log L;2jQ‖a−mQ(a)‖Exp(L);2jQ

. inf
w∈Q

Mα,L log Lf(w)
∞∑
j=1

j

2jr
‖a‖∗

. r−1‖a‖∗ inf
w∈Q

Mα,L log Lf(w).

In total,

ωλ/2

(∣∣∣∣∣C̃[a, Iα][χRn\3Qf ](x)−
∫
Rn\3Q

|mQ(a)− a(y)|
|z − y|n−α

|f(y)|dy

∣∣∣∣∣ ;Q
)

. ‖a‖∗ inf
w∈Q

Iα[|f |](w) + ‖a‖∗ inf
w∈Q

Mα,L log Lf(w).(2.8)

By combining (2.7) and (2.8), we obtain (2.5). �

For the proof of Theorem 1.6 we employ the Lerner–Hytönen decomposition from [24, Theorem 1.1]
and [25, Theorem 4.5]; see also the textbook [33].

Lemma 2.4. Let f : Q0 → R be a measurable function defined on a right-open cube Q0. Then there
exists a family {Qjk}j∈N0, k∈Kj ⊂ D(Q0) such that {Q0

k}k∈K0
= {Q0}, that

χ⋃
k∈Kj+1

Qj+1
k
≤ χ⋃

k∈Kj
Qjk
≤ χQ0 ,

Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

17



that ∣∣∣∣∣∣
⋃

k′∈Kj+1

Qj+1
k′

∣∣∣∣∣∣ ≤ 1

2
|Qjk|,

and that

χQ0 |f −Med(f ;Q0)| ≤
∞∑
j=0

∑
k∈Kj

ω2−n−2(f ;Qjk)χQjk
.

Here, the inequality is understood as the one for almost every point and Med(f ;Q0) stands for a real
number satisfying

|{x ∈ Q0 : f(x) > Med(f ;Q0)}|, |{x ∈ Q0 : f(x) < Med(f ;Q0)}| ≤ 1

2
|Q0|.

2.4. Compactness criterion. Our proof of the compactness of operators hinges on the following simple
observation, which is a direct consequence of Kolmogorov’s theorem. See [35].

Lemma 2.5. Let k ∈ L∞c (Rn × Rn). Then the integral operator T , given by

Tf(x) ≡
∫
Rn
k(x, y)f(y)dy,

is a compact operator from Lp(Rn) to Lq(Rn) for all 1 ≤ p, q <∞.
In particular, T is a compact operator from Mp

q(Rn) to Ms
t (Rn) whenever 1 ≤ q ≤ p < ∞ and

1 ≤ t ≤ s <∞.

2.5. An estimate of Welland type. We write

(Iα)Rf(x) ≡
∫
Rn

1

|x− y|n−α
χ(R,∞)(|x− y|)f(y)dy

and

(Mα)Rf(x) ≡ sup
r>R

rα−n
∫
Q(x,r)

|f(y)|dy

for f ∈ L0(Rn).

Lemma 2.6. Let 0 < α < n and δ ∈ (0,min(α, n− α)). Then

(Iα)Rf(x) .
√

(Mα+δ)R/nf(x)(Mα−δ)R/nf(x)

for all non-negative measurable functions f and for all R > 0.

Proof. Welland [40] proved that

Iαf(x) .
√
Mα+δf(x)Mα−δf(x)

for all non-negative measurable functions f . Remark also that Q(x,R/n) ⊂ B(x,R). Since

Mα+δ[χRn\B(x,R)f ](x) ≤ cn sup
r>0

(2r)α+δ−n
∫
Q(x,r)\B(x,R)

|f(y)|dy

≤ cn sup
r>R/n

(2r)α+δ−n
∫
Q(x,r)\B(x,R)

|f(y)|dy

= cn(Mα+δ)R/nf(x)
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for some constant cn depending only on n, if we replace f by χRn\B(x,R)f , then we obtain

(Iα)Rf(x) = Iα[χRn\B(x,R)f ](x)

.
√
Mα+δ[χRn\B(x,R)f ](x)Mα−δ[χRn\B(x,R)f ](x)

.
√

(Mα+δ)R/nf(x)(Mα−δ)R/nf(x),

as required. �

3. Proof of Theorem 1.6

By the monotone convergence theorem and the fact that the integral kernel C̃[a, Iα] is non-negative,
we may assume that f ∈ L∞c (Rn). By decomposing f into the positive part and the negative part, we

may assume that f is non-negative. In this case, C̃[a, Iα]f ∈ Lp0(Rn) for some p0 ∈ (1,∞) and hence

Med(C̃[a, Iα]f ; [−J, J)n)→ 0 as J →∞. Therefore,

‖C̃[a, Iα]f‖Ms
t
≤ lim inf

J→∞
‖χ[−J,J)n(C̃[a, Iα]f −Med(C̃[a, Iα]f ; [−J, J)n))‖Ms

t
.

Fix J ∈ N here and below. Thanks to the Lerner–Hytönen decomposition, (Lemma 2.4) we obtain

|χ[−J,J)n(x)(C̃[a, Iα]f(x)−Med(C̃[a, Iα]f ; [−J, J)n))| ≤
∞∑
j=0

∑
k∈Kj

ω2−n−2(C̃[a, Iα]f ;Qjk)χQjk
(x)

for some collection {Qjk}j∈N0,k∈Kj of cubes as in Lemma 2.4. If we use Lemma 2.3, then we obtain

|χ[−J,J)n(x)(C̃[a, Iα]f(x)−Med(C̃[a, Iα]f ; [−J, J)n))|

. ‖a‖∗
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)χQjk
(x) + ‖a‖∗

∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)χQjk
(x)

Write

Ejk ≡ Q
j
k \

⋃
k′∈Kj+1

Qj+1
k′ (j ∈ N0, k ∈ Kj).

Since 2|Ejk| ≥ |Q
j
k|, we have

MχEjk
(x) ≥

|Ejk|
|Qjk|

χQjk
(x) ≥ 1

2
χQjk

(x) (x ∈ Rn)

and hence

|χ[−J,J)n(x)(C̃[a, Iα]f(x)−Med(C̃[a, Iα]f ; [−J, J)n))|

. ‖a‖∗
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)(MχEjk
(x))2 + ‖a‖∗

∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)(MχEjk
(x))2

Meanwhile, by Lemma 2.1, we obtain∥∥∥∥∥∥
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)(MχEjk
)2

∥∥∥∥∥∥
Ms

t

=


∥∥∥∥∥∥∥
 ∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)(MχEjk
)2

 1
2

∥∥∥∥∥∥∥
M2s

2t


2

.


∥∥∥∥∥∥∥
 ∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)χEjk

 1
2

∥∥∥∥∥∥∥
M2s

2t


2

.
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Likewise once again by Lemma 2.1, we have∥∥∥∥∥∥
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)(MχEjk
)2

∥∥∥∥∥∥
Ms

t

=


∥∥∥∥∥∥∥
 ∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)(MχEjk
)2

 1
2

∥∥∥∥∥∥∥
M2s

2t


2

.


∥∥∥∥∥∥∥
 ∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)χEjk

 1
2

∥∥∥∥∥∥∥
M2s

2t


2

.

As a result,

‖χ[−J,J)n(C̃[a, Iα]f −Med(C̃[a, Iα]f ; [−J, J)n))‖Ms
t

. ‖a‖∗

∥∥∥∥∥∥
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)(MχEjk
)2 +

∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)(MχEjk
)2

∥∥∥∥∥∥
Ms

t

. ‖a‖∗

∥∥∥∥∥∥
∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Iαf(z)χEjk
+

∞∑
j=0

∑
k∈Kj

inf
z∈Qjk

Mα,L log Lf(z)χEjk

∥∥∥∥∥∥
Ms

t

.

Since {Ejk}j∈N0,k∈Kj is disjoint, it follows that

‖χ[−J,J)n(C̃[a, Iα]f −Med(C̃[a, Iα]f ; [−J, J)n))‖Ms
t

. ‖a‖∗ ‖Iαf +Mα,L log Lf‖Ms
t
.(3.1)

It remains to use Proposition 1.3 and Lemma 2.2. In fact, according to Proposition 1.3 and the inclusion
Mp

L log L(Rn) ⊆Mp
1(Rn), we have

‖Iαf‖Ms
t
. ‖f‖(Mp

q)1−θ(Mp
L log L)θ(3.2)

Meanwhile, by virtue of Lemma 2.2, we have

‖Mα,L log Lf‖Ms
t
. ‖f‖(Mp

q)1−θ(Mp
L log L)θ .(3.3)

Thus, the desired result follows from (3.1)–(3.3).

4. Proof of Theorem 1.7

We will reduce matters to a couple of steps. Let

[a, Iα]εf(x) ≡
∫
Rn

a(x)− a(y)

|x− y|n−α
χ(ε,∞)(|x− y|)f(y)dy

for ε > 0. Remark that any linear operator T from (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ to Ms
t (Rn) is compact

if T is realized as the norm limit of the sequence of compact operators from (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ

to Ms
t (Rn).

Before we come to the proof of Theorem 1.7, based on the above principle, we explain the plan of the
proof as follows:

(1) We may assume a ∈ C∞c (Rn); see Section 4.1.
(2) We have only to deal with [a, Iα]ε for ε > 0; see Section 4.2.
(3) As a key step, we will show that [a, Iα]R → 0, R→∞ in the operator norm; see Section 4.3.
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(4) Using Lemma 2.5, we prove the compactness of [a, Iα]ε − [a, Iα]R for R > ε > 0; see Section 4.4.
Once this is done, we first conclude that [a, Iα]ε is compact from (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ

toMs
t (Rn) and then also conclude that [a, Iα] is compact from (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ to

Ms
t (Rn).

4.1. Reduction to the case of a ∈ C∞c (Rn). In view of (1.2), we may assume that a ∈ C∞c (Rn).
In fact, since a ∈ VMO(Rn), there exists a sequence {aj}∞j=1 ⊂ C∞c (Rn) such that ‖a − aj‖∗ ≤
2−j . Thus, ‖[a, Iα] − [aj , Iα]‖(Mp

q)1−θ(Mp
L log L)θ→Ms

t
. 2−j thanks to (1.2). Thus, once we show that

[aj , Iα] is compact from (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ to Ms
t (Rn), it follows that [a, Iα] is compact from

(Mp
q(Rn))1−θ(Mp

L log L(Rn))θ to Ms
t (Rn).

4.2. Reduction to the compactness of [a, Iα]ε. Observe that

|[a, Iα]εf(x)− [a, Iα]f(x)| . εIα[|f |](x)

by the mean value theorem. Since Iα maps (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ boundedly to Ms
t (Rn) thanks

to Proposition 1.3, we have only to show the compactness of the operator [a, Iα]ε.

4.3. Reduction to the compactness of [a, Iα]ε − [a, Iα]R. The key observation for the proof is the
following estimate:

Proposition 4.1. Let a ∈ C∞c (Rn). Then the operator norm of [a, Iα]R from (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ

to Ms
t (Rn) converges to 0 as R→∞.

Proof. Let f ∈ (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ. Note that

[a, Iα]Rf(x) = a(x)(Iα)Rf(x)− (Iα)R(af)(x) (x ∈ Rn).

We will take care of each term. Choose δ > 0 sufficiently small so that α+ δ < n
p . Define u± and v± by

1
u± = 1

p −
α±δ
n = 1

s ∓
δ
n and v±

u± = q
p . Then we have

|a(x)(Iα)Rf(x)| ≤ R−δ|a(x)|Iα+δ[|f |](x).

Since a ∈ L∞c (Rn), it follows from Hölder’s inequality for Morrey spaces and Proposition 1.3 that

‖a · Iα+δ[|f |]‖Ms
t
. ‖Iα+δ[|f |]‖Mu+

v+
. ‖f‖

(Mp
q)1−

(α+δ)p
n (Mp

1)
(α+δ)p
n
. ‖f‖(Mp

q)1−θ(Mp
L log L)θ .

Meanwhile, by Lemma 2.6 and Hölder’s inequality for Morrey spaces,

‖(Iα)R[a · f ]‖Ms
t
.
√
‖(Mα+δ)R/n[a · f ]‖Mu+

v+
‖(Mα−δ)R/n[a · f ]‖Mu−

v−
(4.1)

.
√
‖Mα+δ[a · f ]‖Mu+

v+
‖(Mα−δ)R/n[a · f ]‖Mu−

v−
.

We can handle with ease ‖Mα+δ[a · f ]‖Mu+

v+
by the use of the Adams theorem. In fact, we have

(4.2) ‖Mα+δ[a · f ]‖Mu+

v+
. ‖a · f‖Mp

q
. ‖f‖Mp

q
.

We will move on to the estimate of ‖(Mα−δ)R/n[a · f ]‖Mu−
v−

. Let f0 ∈ Mp
q(Rn) and f1 ∈ Mp

L log L(Rn)

satisfy |f | ≤ |f0|1−θ|f1|θ. Then we have

`(Q)α−δmQ(|a · f |) ≤ `(Q)α−δmQ(|a · f0|)1−θmQ(|f1|)θ

= `(Q)−δ(mQ(|a · f0|))1−θ(`(Q)
n
pmQ(|f1|))θ

. R−δM [a · f0](x)1−θ(‖f1‖Mp
1
)θ

for any cube Q with x ∈ Q and n`(Q) ≥ R. Therefore,

(Mα−δ)R/n[a · f ](x) . R−δM [a · f0](x)1−θ(‖f1‖Mp
1
)θ.
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By taking the norm ‖ · ‖Mu−
v−

on both sides, we obtain

‖(Mα−δ)R/n[a · f ]‖Mu−
v−
≤ R−δ(‖M [a · f0]‖

M(1−θ)u−

(1−θ)v−
)1−θ(‖f1‖Mp

1
)θ

. R−δ(‖a · f0‖M(1−θ)u−

(1−θ)v−
)1−θ(‖f1‖Mp

1
)θ.

Arithmetic shows that p > (1 − θ)u− and that q > (1 − θ)v−. Thus, we are in the position of choosing
U and V so that

1

p
+

1

U
=

1

(1− θ)u−
,

1

q
+

1

V
=

1

(1− θ)v−
.

By applying Hölder’s inequality for Morrey spaces and the fact that a ∈MU
V (Rn), we obtain

‖(Mα−δ)R/n[a · f ]‖Mu−
v−
. R−δ(‖a‖MU

V
)1−θ(‖f0‖Mp

q
)1−θ(‖f1‖Mp

1
)θ . R−δ(‖f0‖Mp

q
)1−θ(‖f1‖Mp

1
)θ.

As a result, since f0 and f1 are arbitrary, we obtain

(4.3) ‖(Mα−δ)R/n[a · f ]‖Mu−
v−
. R−δ‖f‖(Mp

q)1−θ(Mp
L log L)θ .

Combining (4.1), (4.2) and (4.3), we conclude

‖(Iα)R[a · f ]‖Ms
t
. R−δ‖f‖(Mp

q)1−θ(Mp
L log L)θ

for all f ∈ (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ, proving the lemma. �

4.4. Conclusion of the proof of Theorem 1.7. Note that the integral kernel k of [a, Iα]ε − [a, Iα]R
is given by

k(x, y) =
a(x)− a(y)

|x− y|n−α
χ(ε,R)(|x− y|)

and belongs to L∞c (Rn ×Rn) thanks to the fact that a ∈ C∞c (Rn). Thus, in view of Proposition 4.1 and
Lemma 2.5, the operator [a, Iα]ε − [a, Iα]R is compact from (Mp

q(Rn))1−θ(Mp
L log L(Rn))θ to Ms

t (Rn).

Hence, [a, Iα] is compact from (Mp
q(Rn))1−θ(Mp

L log L(Rn))θ to Ms
t (Rn).
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ATOMIC AND MOLECULAR DECOMPOSITIONS OF WEIGHTED
TRIEBEL-LIZORKIN-TYPE SPACES

AHMED LOULIT

Abstract. Weighted General Triebel-Lizorkin spaces are introduced and studied with
the use of discrete wavelet transforms. This study extends the methods of dyadic ϕ-
transforms of Frazier and Jawerth [12] and [39]. We consider the classes of almost diago-
nal operators on some appropriate Sequence Spaces and we obtain atomic and molecular
decompositions of Weighted Triebel-Lizorkin-type Spaces.
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agonal operator, Atomic decomposition, Molecular decomposition
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0. Introduction

Function Spaces play a crucial role in the genesis of functional analysis and widely used in the devel-
opment of the modern analysis of partial differential equations. For instance, Morrey [26] study the local
regularity of solutions of some partial differential equations in an appropriate space, called Morrey space.
This local regularity of solutions is more precise than on the familiar Lebesgue spaces.
During the last decades various classical operators of harmonic analysis, such as maximal, singular, and
potential operators were widely investigated both in classical and generalized Morrey spaces, we refer the
reader to [17, 18, 20, 19, 21, 22, 24, 25, 29] and the references therein.

The classical Besov and Triebel-Lizorkin spaces are class of function spaces containing many well-
known classical function spaces and are more suitable in the treatment of a large type of partial differential
equations, see for instance [7, 11]. A comprehensive treatment of these function spaces and their history
can be found in Triebel’s monographs [37, 38] and in the fundamental paper of M. Frazier and B. Jawerth
[12].

In recent years, there has been increasing interest in a new family of function spaces, called New class
of Besov and Triebel-Lizorkin spaces. These spaces unify and generalize many classical spaces including
Besov spaces, Morrey spaces, Triebel-lizorkin spaces, see for instance [39, 30].

0.1. Some background tools. In this section, w denotes a weight function Rn i.e, w is an almost every
(a.e) positive locally integrable function in Rn. A function f ∈ Lp(w), 0 < p <∞ if and only if

||f ||p,w =

(∫
Rn
|f(x)|pw(x)dx

) 1
p

<∞.

2010 Mathematics Subject Classification. 42B25, 42B35, 42C40.
Key words and phrases. Triebel-Lizorkin spaces, Discrete characterization, ϕ-transform, Almost di-

agonal operator, Atomic decomposition, Molecular decomposition.
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A weight function w is said to be in the Muckenhoupt classes Ap, 1 ≤ p < ∞ if there exists a constant
Cp > 0 such that for every cube Q,

1

|Q|

∫
Q

wdy

(
1

|Q|

∫
Q

w1−p′dy

)p−1
≤ Cp

when 1 < p <∞, 1
p + 1

p′ = 1, well for p = 1,

1

|Q|

∫
Q

w(y)dy ≤ C1w(x),

for a.e. x ∈ Q, or equivalently Mw(x) ≤ C1w(x) for a.e. x ∈ Rn, where M is the Hardy-Littlewood
maximal operator defined, for a locally integrable function f , by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy.

The supremum is taken over all cubes containing x.
The classe Ap was introduced by Muckenhoupt, B. [27] in order to characterize the boundedness of the

Hardy-Littlewodd maximal operator M on the weighted Lebesgue spaces, see also [8, 15, 33, 34]. The
pioneering work of Muckenhoupt, B. [27] showed that

M : Lp(w)→ Lp(w)

if and only if w ∈ Ap when 1 < p <∞, and

M : L1(w)→ L1,∞(w),

if and only if w ∈ A1.
Lq,∞(w) denotes the space of all measurable functions f such that

sup
λ>0

(w {x ∈ Rn : f(x) > λ})
1
q <∞.

Moreover, if 1 < p <∞, 1 < q ≤ ∞ and w ∈ Ap, then there exists a positive constant C such that for all
sequences {fk}k∈Z of locally integrable functions on Rn,

(0.1)

∫
Rn

(∑
k∈Z

[Mfk(x)]q

)p/q
w(x)dx ≤ C

∫
Rn

(∑
k∈Z
|fk(x)|q

)p/q
w(x)dx.

The inequality 0.1 is the well known Fefferman-Stein vector-valued inequality, see for instance [10, 15, 16,
33].

The following important properties of Muckenhoupt weights will be widely used in this work.

Lemma 0.1. Let w ∈ Ap. Then, there exist δ > 0, C > 0 s.t, every time we have a measurable subset A
of a cube Q, the following ”δ-reverse doubling” inequality holds

(0.2)
w(A)

w(Q)
≤ C

(
|A|
|Q|

)δ
and also the following ”p- doubling” inequality holds

(0.3)
w(Q)

w(A)
≤ C

(
|Q|
|A|

)p
.

Remark 0.1. If w ∈ Ap, then w
−1
p−1 ∈ A p

p−1
and satisfies the same ”δ-reverse doubling” inequality.
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The reverse condition is known as A∞ - condition and the class of the weights w satisfying A∞-
condition is denoted by A∞. It is well known that A∞ = ∪p≥1Ap, which motivates the notation A∞, see
for instance [15, Corollary 2.13, pp.403-404].

Throughout this work, w will be a fixed weight in A∞ and we denote by r0 the number r0 = inf{s >
0 : w ∈ As}. If we choose 0 < r < p/r0, 0 < p <∞, then, in particular w ∈ A p

r
and w−

r
p−r ∈ A p

p−r
. We

also denote by δ the same reverse doubling constant of w and w−
r
p−r . (See Lemma 0.1 and Remark 0.1).

Let S(Rn) to be the space of all Schwartz functions on Rn with the classical topology generated by the
family of semi-norms

||ν||k,N = supx∈Rnsup|β|≤N (1 + |x|)k |∂βν(x)| k,N ∈ N0, ν ∈ S(Rn).

The topological dual space, S ′(Rn) of S(Rn) is the set of all continuous linear functional S(Rn) −→ C
endowed with the weak ?-topology. We denote by S∞(Rn), the topological subspace of functions in S(Rn)
having all vanishing moments :

S∞(Rn) =
{
ν ∈ S(Rn) :

∫
Rn
xβν(x)dx = 0, ∀β ∈ Nn

}
.

S ′∞(Rn) denotes the topological dual space of S∞(Rn) , namely, the set of all continuous linear functional
on S ′∞(Rn). The space S ′∞(Rn) is also endowed with the weak ?-topology. It is well known that S ′∞(Rn) =
S ′(Rn)/P(Rn) as topological spaces, where P(Rn) denotes the set of all polynomials on Rn, see for
example, [43, Proposition 8.1].

Similarly, for any R ∈ N, the space SR(Rn) is defined to be the set of all Schwartz functions having
vanishing moments of order R and S ′R(Rn) is its topological dual space. We write S−1(Rn) = S(Rn).

The Fourier transform, Fν = ν̂, of Schwartz function ν is defined by

ν̂(ξ) = (2π)−n
∫
Rn
e−iξ.xν(x)dx.

The convolution of two function ν, µ ∈ S(Rn) is defined by

ν ? µ(x) =

∫
Rn
ν(x− y)µ(y)dy

and still belongs to S(Rn).
The convolution operator can be extended to S(Rn) × S ′(Rn) via ν ? f(x) = 〈f, µ(x − .)〉. It makes
sense pointwise and is a C∞ function in Rn of at most polynomial growth. For simplifying notation, we
write often νf = ν ? f .

Throughout this paper, C denotes unspecified positive constant, possibly different at each occurrence;
the symbol A � B means that A ≤ CB. If A � B and B � A, then we write A ' B. The symbol bsc
denotes the maximal integer no more than s and s? = s− bsc.

For j ∈ Z and k ∈ Zn, we denote by Qjk the dyadic cube 2−j ([0, 1]n + k), l(Qjk) = 2−j is its side
length, xQjk = 2−jk is its lower ”left-corner” and cQjk is its center. We set Q = {Qjk : j ∈ Z, k ∈ Zn},
and jQ = −log2l(Q) for all Q ∈ Q.

When the dyadic cube Q appears as an index, such as
∑
Q∈Q , it is understood that Q runs over all

dyadic cubes in Rn.
For a function ν and dyadic cube Q = Qjk, set

νQ(x) = |Q|−1/2ν(2jx− k) = |Q|1/2νj(x− xQ),

for all x ∈ Rn, where νj(x) = 2njν(2jx).

Definition 0.1. A Schwartz function ν : Rn −→ C is a Littlewood-Paley function if ν̂ is a real-valued
function and satisfies:

supp ν̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}(0.4)

|ν̂(ξ)| ≥ C > 0 if 3/5 ≤ |ξ| ≤ 5/3.(0.5)

3
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The function µ̂(ξ) = ν̂/η with η(ξ) =
∑
j∈Z ν̂(2−jξ)ν̂(2−jξ), is a Littlewood-Paley dual function related

to ν and it is itself a Littlewood-Paley function, satisfying moreover

(0.6)
∑
j∈Z

µ̂(2−jξ)ν̂(2−jξ) = 1 for all ξ 6= 0.

Lemma 0.2 (Reproducing Calderón Formula).
(1) Let ν ∈ S(Rn) be such that supp ν̂ is compact, bounded away from the origin and satisfying∑

j∈Z ν(2jξ) = 1 for all ξ 6= 0. Then, for any f ∈ S ′∞(Rn),

(0.7) f =
∑
j∈Z

ν̃j ? f.

(2) Let µ, ν ∈ S(Rn) such that supp µ̂, supp ν̂ are compact and bounded away from the origin and
0.6 holds. Then for any f ∈ S ′∞(Rn).

(0.8) f =
∑
j∈Z

2−jn
∑
k∈Z

ν̃j ? f(2−jk)µj(.− 2−jk) =
∑
Q∈Q
〈f, νQ〉µQ

where and in what follows ν̃j(x) = ν(−x).

For any ϕ ∈ S(Rn), define

||ϕ||SM+1
= sup|β|≤Msupx∈Rn |∂βϕ(x)| (1 + |x|)n+M+β

.

Then the following estimate holds (see [39]).

Lemma 0.3. For any M ∈ N, there exists a positive constant C = C(M,n) such that for all ϕ,ψ ∈
S∞(Rn), i, j ∈ Z and x ∈ Rn ,

(0.9) |ϕi ? ψj(x)| ≤ C||ϕ||SM+1
||ψ||SM+1

2−|i−j|M
2−min(i,j)M(

2−min(i,j) + |x|
)n+M .

0.2. Classical Triebel-Lizorkin spaces.

Definition 0.2. Let w ∈ A∞, 0 < p, q ≤ ∞, γ ∈ R and ν ∈ S(Rn) satisfies 0.4 and 0.5. The homogeneous

Triebel-Lizorkin space Ḟ γ,qp,w is the set of all distribution f ∈ S ′∞ such that

||f ||Ḟγ,qp,w
=
∣∣∣∣∣∣
∑
j∈Z

2jγq|νjf |q
 1

q ∣∣∣∣∣∣
p,w

<∞, 0 < p, q <∞

and

||f ||Ḟγ,q∞,w = sup
Q

{ 1

w(Q)

∫
Q

∞∑
j=jQ

2jγq|νjf |qw(x)dx
} 1
q

<∞, 0 < q ≤ ∞

with the interpretation that when q =∞,

||f ||Ḟγ,∞∞,w = sup
Q
sup
j≥jQ

1

w(Q)

∫
Q

2jγ |νjf |w(x)dx <∞.

Moreover, it is well known that the space Ḟ γ,qp,w is independent of the choice of ν (see, for example,
[4, 5, 6, 12]).

It has long been known that many classical smoothness spaces are covered by the Triebel-Lizorkin
spaces. We recall some examples,

4
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(1) Ḟ 0,2
p,w = Hp,w, 0 < p <∞,

where Hp,w denotes the weighted Hardy spaces of f ∈ S ′ for which

||f ||Hp,w = ||sup
t>0
|µt ? f |||p,w <∞,

where µ is a fixed function in S with
∫
Rn µ(x)dx 6= 0. By the fundamental work of Fefferman,

C. and Stein, E. [9] adapted to the weighted case, Hp,w does not depend on the choices of µ in
its definition. In particular

Ḟ 0,2
p,w = Lp,w, 1 < p <∞,

see also [5] for a counter-part result related to the local version of weighted Hardy space hp,w,
the space of f ∈ S ′ for which

||f ||hp,w = || sup
0<t<1

|µt ? f |||p,w <∞,

where µ is as in definition of Hp,w.

(2) Ḟα,2p,w = Lαp,w, 1 < p <∞, where Lαp,w denotes the weighted Bessel potential space defined by

||f ||Lαp,w = ||F−1(1 + |ξ|)α/2Ff ||Lp,w .

In particular, when the exponent is a natural number, say α = N ∈ N, then the weighted Bessel
potential space can be identified with the classical Sobolev space

WN
p,w = {f ∈ Lp,w : ||

∑
|γ|≤N

∂γf ||Lp,w <∞},

where all identities have to be understood in the sense of equivalent quasi-norms.

0.3. Weighted Triebel-Lizorkin-type spaces. Triebel-Lizorkin spaces Ḟ γ,τp,q were introduced and investi-
gated in [30, 39, 41, 43, 42, 44]. These spaces unify and generalize many classical function spaces such as
classical Triebel-Lizorkin spaces, Triebel-Lizorkin Morrey spaces, Q spaces, Hardy spaces . . ..

We now define Weighted Triebel-Lizorkin-type spaces Ḟ γ,τp,q,w, as follows.

Definition 0.3. Let w ∈ A∞, 0 < p, q ≤ ∞, γ ∈ R and ν ∈ S(Rn) and satisfies 0.4 and 0.5. The

homogeneous Triebel-Lizorkin space Ḟ γ,τp,q,w is the set of all distribution f ∈ S ′∞ such that

||f ||Ḟγ,τp,q,w
= ||f ||Ḟγ,τ,νp,q,w

= sup
Q∈Q

1

[w(Q)]τ

∫
Q

 ∞∑
j=jQ

2jγq|νjf |q


p
q

w(x)dx


1
p

<∞.

We note that in his paper [36] Tang has defined Ḟ γ,τp,q,w as the space of f ∈ S ′∞ such that

||f ||Ḟγ,τp,q,w
= sup
Q∈Q

1

|Q|τ

∫
Q

 ∞∑
j=jQ

2jγq|νjf |q


p
q

w(x)dx


1
p

<∞.

These spaces cannot be compared to ours except in the case where the weight w is identically equal to 1.
In this work, we extend some fundamental results obtained in the unweighted spaces such as the ϕ-

transforms characterizations, the boundedness of the ε-almost diagonal operators, molecular and atomic
decomposition in the weighted Triebel-Lizorkin-type spaces. See for instance [12, 30, 31, 32, 35, 39, 41].

This paper is organized as follows. In Section 1 we establish the ϕ-transforms of the space Ḟ γ,τp,q,w. In
Section 2 we prove that ε-almost diagonal operators are bounded on the Triebel-Lizorkin sequence spaces.
And in Section 3 we study the molecular and atomic decomposition of the space Ḟ γ,τp,q,w.
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1. The ϕ-transform characterizations of Triebel-Lizorkin-sequence spaces

In this section, we establish the ϕ-transform characterizations of the spaces Ḟ γ,τp,q,w. To this end, we
introduce their corresponding sequence spaces as follows.

Definition 1.1. The discrete Triebel-Lizorkin sequence space ḟγ,τp,q,w is defined to be the collection of all
complex-valued sequences t = {tQ}Q∈Q such that

||t||ḟγ,τp,q,w
= sup
P∈Q

1

[w(P )]τ

∫
P

∑
Q⊂P

|Q|−
γ
n q|tQχ̃Q|q


p
q

w(x)dx


1
p

<∞.

where χ̃Q = |Q|− 1
2χQ is the L2-normalized characteristic function of the dyadic cube Q.

Remark 1.1. Note that if P,Q ∈ Q with l(Q) ≤ l(P ) then either Q ⊂ P or do not overlap(by which we
mean that their interiors are disjoint).

It follows that

||t||ḟγ,τp,q,w
= sup
P∈Q

1

[w(P )]τ

∫
P

( ∑
jQ≥jP

|Q|−
γ
n q|tQχ̃Q|q

) p
q

w(x)dx

 1
p

.

Definition 1.2. Suppose that ϕ,ψ ∈ S(Rn) are s.t suppϕ̂, suppψ̂ are compact and bounded away from
the origin. The ϕ-transform Sϕ is defined to be the map taking each f ∈ S ′∞(Rn) to the sequence
Sϕf = {(Sϕf)Q}Q∈Q where (Sϕf)Q = 〈f, ϕQ〉 for all dyadic cubes Q; the inverse ψ-transform Tψ is
defined to be the map taking a sequence t = {tQ}Q∈Q to Tψt =

∑
Q∈Q

tQψQ; see, for example, [12, 13, 14].

The next result is a generalization of the fundamental result of Frazier and Jawerth saying that the
following diagram is commutative :

(1.1) Ḟ γ,τp,q,w

Sϕ

��

id // Ḟ γ,τp,q,w

ḟγ,τp,q,w

Tψ

;;

Theorem 1.1. Let 0 < p, q ≤ ∞, w ∈ A∞ and ϕ, ψ satisfying 0.4 and 0.6. Then

Sψ : Ḟ γ,τ,ψp,q,w −→ ḟγ,τp,q,w

and
Tϕ : ḟγ,τp,q,w −→ Ḟ γ,τ,ϕp,q,w

are bounded.Furthermore, Tψ ◦ Sϕ is the identity on Ḟ γ,τ,ψp,q,w = Ḟ γ,τ,ϕp,q,w .

Corollary 1.1. The space Ḟ γ,τp,q,w is independent of the particular choice of the function ν. The quasi-norms
arising from different ν are equivalent.

The proof of Theorem 1.1 is based on some technical lemmas.

Lemma 1.1. [2, Lemma 2.11]. Let δ ∈ R and w ∈ Ar0 . Then, there exist positive constant C such that
for all j ∈ Z and all L > r0|δ|+ 1

(1.2)
∑

Q∈Q,l(Q)=2−j

[w(Q)]δ(1 +
|xQ|n

max(|Q|, 1)

)−L
≤ C2n(2r0|δ|+1)|j|.

To show that Tψ is well defined for all t ∈ ḟγ,τp,q,w, we have the following conclusions.
6
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Lemma 1.2. Let γ ∈ R, 0 ≤ p <∞, 0 < q ≤ ∞ and ψ ∈ S∞ . Then, for all t ∈ ḟγ,τp,q,w, Tψ =
∑
Q∈Q

tQψQ,

converges in S ′∞(Rn). Moreover, the operator

Tψ : ḟγ,τp,q,w −→ S′∞(Rn)

is continuous.

Proof. Note first, that for any t ∈ ḟγ,τp,q,w we have for 0 < p <∞,

(1.3) |tQ| ≤ ||t||ḟγ,τp,q,w
|Q|

γ
n+ 1

2 [w(Q)]τ−
1
p .

On the other, hand for any L > 0 there exist constants N, C > 0 s.t for all Q, P ∈ Q we have the
following well known estimate, see for instance [2].

(1.4) |〈ψQ, φP 〉| ≤ C||ψ||N ||φ||N
(

1 +
|xQ − xP |n

max(|Q|, |P |)

)−L
min

(
|Q|
|P |

,
|P |
|Q|

)L
where the constant C depends only on L and

||φ||N = supx∈Rnsup|β|≤N (1 + |x|)N |∂βφ(x)|.

In particular, if P = [0, 1]n then φP = φ and

|〈ψQ, φ〉| ≤ C||ψ||N ||φ||N
(

1 +
|xQ|n

max(|Q|, 1)

)−L
min

(
|Q|, |Q|−1

)L
.

Combining the above estimates and the estimate 1.2 to obtain∑
Q∈Q
|tQ||〈ψQ, φ〉|

≤ C||φ||N ||t||ḟγ,τp,q,w

∑
Q∈Q
|Q|

γ
n+ 1

2 [w(Q)]τ−
1
p

(
1 +

|xQ|n

max(|Q|, 1)

)−L
min

(
|Q|, |Q|−1

)L
≤ C||φ||N ||t||ḟγ,τp,q,w

×
∑
j∈Z

∑
Q∈Q,l(Q)=2−j

|Q|
γ
n+ 1

2 [w(Q)]τ−
1
p

(
1 +

|xQ|n

max(|Q|, 1)

)−L
min

(
|Q|, |Q|−1

)L
≤ C||φ||N ||t||ḟγ,τp,q,w

∑
j∈Z

2−|j|nL2−j(γ+n/2)2|j|n(2r0|τ−1/p|+1)

≤ C||φ||N ||t||ḟγ,τp,q,w
,

for sufficiently large L. It follows that Tψ =
∑
Q∈Q

tQψQ converges in S ′∞ and

(1.5) |〈Tψ, φ〉| =

∣∣∣∣∣∣
∑
Q∈Q

tQ〈ψQ, φ〉

∣∣∣∣∣∣ ≤ C||φ||N ||t||ḟγ,τp,q,w
.

This shows the continuity of Tψ. �

For a sequence t = {tQ}Q∈Q, 0 < r ≤ ∞ and a fixed λ > 0, set

(t?r,λ)Q =

 ∑
l(R)=l(Q)

|tR|r
(

1 +
|xR − xQ|
l(R)

)−λ1/r

.
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Lemma 1.3. Let γ ∈ R, 0 ≤ p, q, τ <∞ and w ∈ Ar0 . Then, for any r > 0 and λ/n > max(1, r/q, rr0/p)
if τ − 1/p < 0 or λ/n > max(1, r/q, rr0/p, r(r0 − δ)(τ − 1/p)) if τ − 1/p ≥ 0, then

||t?r,λ||ḟγ,τp,q,w
' ||t||ḟγ,τp,q,w

.

Proof. The inequality ||t?r,λ||ḟγ,τp,q,w
≥ ||t||ḟγ,τp,q,w

is immediate from the definition of t?r,λ.

To see the converse, fix a dyadic cube P . Let sQ = tQ if Q ⊂ 3P and sQ = 0 otherwise, and let
uQ = tQ − sQ. Then, for any dyadic cube and r > 0 we have

(1.6) (t?r,λ)rQ = (s?r,λ)rQ + (u?r,λ)rQ.

Suppose r > 0 and λ/n > max(1, r/q, rr0/p), then by Lemma 3.3 in [3] we have

IP =
1

[w(P )]τ

∫
P

( ∑
Q⊂P

|Q|−
γ
n q|(s?r,λ)Qχ̃Q|q

) p
q

w(x)dx

 1
p

≤ C 1

[w(P )]τ
||s?r,λ||ḟγp,q,w ≤ C

1

[w(P )]τ
||s||ḟγp,q,w ≤ C||t||ḟγ,τp,q,w

.

On the other hand, let Q ⊂ P be a dyadic cube with l(Q) = 2−il(P ) for some i ∈ N. Suppose R is any
dyadic cube with l(R) = l(Q) = 2−il(P ), R ⊂ Pk = P + kl(P ) and R 6⊂ 3P for some k ∈ Zn, where
P + kl(P ) = {x+ kl(P ) : x ∈ P}. Then |k| ≥ 2 and (1 + l(R)−1|xQ − xR|) ' 2i|k|. Set

A(i, k, P ) = {R ∈ Q:l(R) = l(Q) = 2−il(P ), R ⊂ P + kl(P ), R ∩ (3P ) = ∅}

and

(ui,k,P )r =
∑

R∈A(i,k,P )

(|R|−γ/n−1/2|uR|)r
(

1 +
|xR − xQ|
l(R)

)−λ
.

Then, we have the following results:
Suppose 0 < a ≤ r <∞. Then, for all x ∈ Q

(1.7) ui,k,P � 2−i(λ/r−n/a)|k|−(λ/r−n/a)
M

 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a
 (x)

1/a

,

and for all x ∈ P

(1.8) ui,k,P � 2−i(λ/r−n/a)|k|−λ/r
M

 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a
 (x+ kl(P ))

1/a

.

The proof of 1.7 is given in [12] while the estimate 1.8 is a consequence of Remark A.3 in[12]. See also
[40, p 461].

Proof of Lemma 1.3: continued. If τ−1/p < 0 then, using 1.7, Lemma 4.2 and arguing as in [2, 12] to get
the result. To prove Lemma 1.3 when τ −1/p ≥ 0, we suppose r > 0 and λ/n > max(1, r/q, rr0/p, r(r0−
δ)(τ − 1/p)). If r < min(q, p/r0), then set a = r. Otherwise, if r ≥ min(q, p/r0), then take a such that
nr/λ < a < min(r, q, p/r0). It is possible to choose such an a, since λ/n > max(1, r/q, rr0/p); implies
nr/λ < a < min(r, q, p/r0). In both cases we have that

0 < a ≤ r <∞, λ > max(nr/a, nr(r0 − δ)(τ − 1/p)), q/a > 1, p/a > r0.

Then, by 1.8 we have for all x ∈ P

ui,k,P � 2−i(λ−nr/a)/r|k|−λ/r
M

 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a
 (x+ kl(P ))

1/a

.
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Rising this inequality to the power of p and integrating over the cube P with respect to w(x+ kl(P ))dx,
we get

ui,k,P

(∫
P

w(x+ kl(P ))dx

)1/p

� 2−i(λ−nr/a)/r|k|−λ/r

×

∫
P

M
 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a
 (x+ kl(P ))

p/a w(x+ kl(P ))dx


1/p

� 2−i(λ−nr/a)/r|k|−λ/r

∫
Rn

M
 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a
 (x)

p/a w(x)dx


1/p

.

Since 0 < a < p/r0 implies w ∈ Ap/a, then the boundedness of the maximal operator M on Lp/a(w) and
the Hölder’s inequality for q/a > 1 leads to

ui,k,P

(∫
Pk

w(x)dx

)1/p

� 2−i(λ−nr/a)/r|k|−λ/r

∫
Rn

 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)a(x)

p/a w(x)dx


1/p

� 2−i(λ−nr/a)/r|k|−λ/r

×

∫
Rn

 ∑
R∈A(i,k,P )

(|R|−γ/n|uRχ̃R|)q(x)

p/q  ∑
R∈A(i,k,P )

χR(x)

p(1/a−1/q) w(x)dx


1/p

� 2−i(λ−nr/a)/r|k|−λ/r
∫

Pk

[ ∑
R⊂Pk

(|R|−γ/n|uRχ̃R|)q(x)

]p/q
w(x)dx

1/p

� 2−i(λ−nr/a)/r|k|−λ/r[w(Pk)]τ ||t||ḟγ,τp,q,w
.

On the other hand, since Pk = P + kl(P ) ⊂ B (xP , cn|k|l(P )) = Bk for some constant cn > 1, we have

w(Pk) �
(
|Pk|
|Bk|

)δ
w(Bk) � |k|n(r0−δ)w(P ).

The above estimates lead to

ui,k,P � 2−i(λ−nr/a)/r|k|−λ/r+n(r0−δ)(τ−1/p)[w(P )]|τ−1/p|||t||ḟγ,τp,q,w
.

So that if −λ/r + n(r0 − δ)(τ − 1/p) < 0 then

|Q|−
γ
n−

1
2 (u?r,λ)Q � 2−i(λ−nr/a)/r[w(P )]τ−1/p||t||ḟγ,τp,q,w

∑
k∈Zn,|k|≥2

|k|−λ/r+n(r0−δ)(τ−1/p)

� 2−i(λ−nr/a)/r[w(P ]τ−1/p||t||ḟγ,τp,q,w
.
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It follows that

1

[w(P )]τ

∫
P

( ∑
Q⊂P

|Q|−
γ
n q|(u?r,λ)Qχ̃Q(x)|q

) p
q

w(x)dx

1/p

� 1

[w(P )]τ

∫
P

(∑
i≥0

∑
l(Q)=2−il(P )

|Q|−
γ
n q|(u?r,λ)Qχ̃Q(x)|q

) p
q

w(x)dx

1/p

� [w(P )]−1/p||t||ḟγ,τp,q,w

∫
P

(∑
i≥0

∑
l(Q)=2−il(P )

|2−i(λ−nr/a)/rχQ(x)|q
) p
q

w(x)dx

1/p

� ||t||ḟγ,τp,q,w
.

Using the identity 1.6 to finish the proof. �

Let ϕ to be a Schwartz and satisfy 0.4 and 0.5 . Since ϕ̃(x) = ϕ(−x) also satisfies 0.4 and 0.5 , we

may take ϕ̃ in place of ϕ in the definition of Ḟ γ,τ,ϕp,q,w . For f ∈ S′∞(Rn) and Q ∈ Q with l(Q) = 2−j , define
the sequence sup(f) = {supQ(f)}Q by setting

supQ(f) = |Q|1/2supy∈Q|ϕ̃j ∗ f(y)|,
and for any m ∈ N , the sequence infm(f) = {infQ,m(f)}Q by setting

inf
Q,m

(f) = |Q|1/2max{ inf
y∈R
|ϕ̃j ∗ f(y)| : l(R) = 2−ml(Q), R ⊂ Q}.

Then, we have the following estimates.

Lemma 1.4. Let γ ∈ R, 0 < p <∞, 0 < q ≤ ∞, w ∈ Ar0 and λ as in Lemma 1.3. Then
||f ||Ḟγ,τp,q,w

' ||sup(f)||ḟγ,τp,q,w
' || infm(f)||ḟγ,τp,q,w

.

Proof. We adapt here the the proof given in [12, 39]. The estimate

||f ||Ḟγ,τp,q,w
≤ ||sup(f)||ḟγ,τp,q,w

follows from the definition.
To prove the converse, define {tR}R by

tR = |R|1/2 inf
y∈R
|ϕ̃i−m ? f(y)| for all R ∈ Q ∈ with l(R) = 2−i.

Then
inf
Q,m

(f)χ̃Q ≤ Cn2mλ
∑
R⊂Q

l(R)=2−ml(Q)

(t?1,λ)Rχ̃R.

Applying Lemma 1.3 to get

|| inf
m

(f)||ḟγ,τp,q,w
� ||t?1,λ||ḟγ,τp,q,w

' ||t||ḟγ,τp,q,w
� ||f ||Ḟγ,τp,q,w

.

Now, let j ∈ Z and apply Lemma A.4 in [12] to the function ϕ̃j ∗ f(2−jx), to obtain for all dyadic cube
Q with l(Q) = 2−j ,

(sup(f)?1,λ)Q ' (inf(f)?1,λ)Q.

Thus
||sup(f)?1,λ||ḟγ,τp,q,w

' || inf(f)?1,λ||ḟγ,τp,q,w
,

which together with Lemma 1.3 yield

||sup(f)||Ḟγ,τp,q,w
' || inf(f)||Ḟγ,τp,q,w

.

�
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Proof of Theorem 1.1. The boundedness of Sϕ follows from Lemma 1.4, since, if Q = Qjk,

|(Sϕf)Q| = |〈f, ϕQ〉| = |Q|1/2|ϕ̃j ? f(2−jk)| ≤ supQ(f).

To prove the boundedness of Tψ, take any t = {tQ}Q. Then, by Lemma 1.2, f = Tψt =
∑
Q∈Q

tQψQ

converges in S′∞. Therefore, the following estimate established in [12] holds: for any r > 0 and λ > n,

|ϕ̃j ? f(x)| ≤ C|Q|−1/2
(
(t?r,λ)Q? + (t?r,λ)Q + (t?r,λ)Q??

)
χQ?(x)

for all x ∈ Q? ⊂ Q ⊂ Q??, where Q?, Q and Q?? are dyadic cubes with l(Q?) = 2−j−1, l(Q) = 2−j and
l(Q??) = 2−j+1. Let r0 = inf{r̃ : w ∈ Ar̃} and using Lemma 1.3 with the same λ, to obtain

||Tψt||Ḟγ,τp,q,w
= ||f ||Ḟγ,τp,q,w

� ||t||ḟγ,τp,q,w
,

which shows the boundedness of Tψ.
Finally, if we assume additionally that ϕ and ψ satisfy 0.4 and 0.5, then, by Lemma 0.2 Tψ ◦Sϕ is the

identity on Ḟ γ,τp,q,w. More precisely, Ḟ γ,τ,ϕ̃p,q,w ↪→ Ḟ γ,τ,ϕp,q,w is a bounded inclusion. Hence, by reversing the roles
of ϕ̃ and ϕ we have

Ḟ γ,τ,ϕ̃p,q,w = Ḟ γ,τ,ϕp,q,w ,

which completes the proof of Theorem 1.1. �

Proposition 1.1. The inclusion map i : Ḟ γ,τp,q,w −→ S′∞ is continuous. Moreover, Ḟ γ,τp,q,w equipped with

||f ||Ḟγ,τp,q,w
is a quasi-Banach space, i.e., Ḟ γ,τp,q,w is a complete quasi-normed space.

Proof. Suppose that ϕ and ψ satisfy 0.4 and 0.5. By Lemma 1.2 the map Tψ : ḟγ,τp,q,w −→ S′∞ is

continuous and by Theorem 1.1 the map Sϕ : Ḟ γ,τp,q,w −→ ḟγ,τp,q,w is also continuous. Hence, by Lemma 0.2

i = Tψ ◦ Sϕ : Ḟ γ,τp,q,w −→ S′∞ is a continuous inclusion. �

Theorem 1.2. Let w ∈ A∞, 0 < p < ∞, 0 < q ≤ ∞, r0 = inf{s ≥ 1 : w ∈ As} and δ > 0 is as in

Lemma 0.1. If f ∈ Ḟ γ,τp,q,w, then, there exists a canonical way to find a representation of f s.t f ∈ S′L,
where L ≡ max (−1, bγ + r0n(τ − 1/p)c) if τ − 1/p ≥ 0 and L ≡ max (−1, bγ + n(r0 − δ)(τ − 1/p)c) if
τ − 1/p < 0.
More precisely, assume for instance that τ − 1/p ≥ 0 and let ϕ = ϕ1, ψ = ψ1 ∈ S(Rn) satisfying 0.4, 0.5
and 0.6. Then, there exists a sequence of polynomials {P 1

N}∞N=1, with degree of each P 1
N no more than

L ≡ bγ + r0n(τ − 1/p)c and g1 ∈ S ′(Rn) s.t

(1.9) g1 = lim
N→∞

 ∑
j=−N≤j≤N

ψ̃j ? ϕj ? f + P 1
N

 in S ′(Rn).

Moreover, if g2 is the corresponding limit in 1.9 for some other ϕ2, ψ2 satisfying the same conditions as
ϕ1, ψ1, then,

(1.10) g1 − g2 ∈ P and deg(g1 − g2) ≤ L.

We can take g1 as a representation of the equivalent class f +P (Rn) and we identify f with its represen-
tative g1. In the sense, f ∈ S′L, with

L ≡ max(−1, bγ + r0n(τ − 1/p)c).

Similar conclusion holds whenever τ − 1/p < 0 by taking

L ≡ max(−1, bγ + (r0 − δ)n(τ − 1/p)c).

The proof of Theorem 1.2 is based on some several technical lemma’s.
11
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Lemma 1.5. Let ν ∈ S(Rn) with supp ν̂ ⊂ {ξ : 1/2 < |ξ| ≤ 2}. Suppose f ∈ Ḟ γ,τp,q,w, then, for any
0 < r < p/r0 and for any multi-indices β

supz∈Qjk |∂β(νjf(z))|r ≤ C2jn2jr|β|2−jγr||f ||r
Ḟγ,τp,q,w

×

(∫
B(2−jk,2−j)

w(x)dx

)rτ (∫
B(2−jk,2−j)

w−
r
p−r dx

)1−r/p

.

Proof. Notice that supp ν̂jf ⊂ {ξ : |ξ| ≤ 2j+1}. It follows from the proof of the Lemma 2.4 in [13, p.782]
that for any r > 0, for any multi-indices β and N > 0 sufficiently large there exists C = Cr,M,β,N > 0 s.t,

(1.11) supz∈Qjk |∂β(νjf(z))|r ≤ C2jn2jr|β|
∑
j∈Z

(1 + |l|)−N
∫
Qj,k+l

|νjf(x)|rdx.

Let r > 0 be s.t w ∈ Ap/r. Hölder’s inequality implies

supz∈Qjk |∂β(νjf(z))|r ≤ C2jn2jr|β|
∑
l∈Zn

(1 + |l|)−N

×
(∫

Qj,k+l

|νjf(x)|pw(x)dx
)r/p(∫

Qj,k+l

w−
r
p−r dx

)1−r/p
≤ C2jn2jr|β|2−jγr||f ||r

Ḟγ,τp,q,w

∑
l∈Zn

(1 + |l|)−N

×
(∫

Qj,k+l

w(x)dx
)rτ(∫

Qj,k+l

w−
r
p−r dx

)1−r/p
.(1.12)

Noting that Qj,k+l ⊂ B(2−jk,
√
n2−j(1 + |l|)). It follows that(∫

Qj,k+l

w(x)dx
)rτ(∫

Qj,k+l

w−
r
p−r dx

)1−r/p
≤ C(1 + |l|)nδ(rτ+1−r/p)

(∫
B(2−jk,2−j)

w(x)dx
)rτ(∫

B(2−jk,2−j)

w−
r
p−r dx

)1−r/p
.

Choose N ≥ nδ(rτ + 1− r/p) + n+ 1 and using 1.12 to finish the proof. �

Remark 1.2. Lemma 1.5 corresponds to unweighted version of Lemma 2.4 in [41].

Corollary 1.2. Under the same assumptions in the lemma 1.5, there exists N > 0 s.t for all j and k

(1.13) supz∈Qjk |νjf(z)|r ≤ C2jn2−jγr2−min(j,0)N ||f ||r
Ḟγ,τp,q,w

inf
x∈Qjk

(1 + |x|)N .

Consequently, there exist C,N > 0 s.t

(1.14) supx∈Rn
|νjf(x)|

(1 + |x|)N
≤ c|j|+1||f ||Ḟγ,τp,q,w

.

Proof. Fix x ∈ Qjk. Then, we have the following elementary inclusions

B(2−jk,
√
n2−j) ⊂ B(0,

√
n2−j(1 + |k|)) ⊂ B(0, cn2−j(1 + 2j |x|))

⊂ B(0, cn2−min(j,0)(1 + |x|)),(1.15)

for some constant cn > 1. Applying Lemma 0.1 and 1.15, we obtain∫
B(2−jk,2−j)

w(y)dy �
∫
B(0,cn2−min(j,0)(1+|x|))

w(y)dy

� 2−min(j,0)np/r(1 + |x|)np/r
∫
B(0,1)

w(y)dy

12
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and similarly ∫
B(2−jk,2−j)

w−
r
p−r dy � 2−min(j,0)np/(p−r)(1 + |x|)np/(p−r)

∫
B(0,1)

w−
r
p−r dy.

Thus, by Lemma 1.5

(1.16) supz∈Qjk |νjf(z)|r ≤ C2jn2−jγr2−min(j,0)n(pτ+1)(1 + |x|)n(pτ+1)||f ||r
Ḟγ,τp,q,w

.

Taking N = n(pτ + 1) to finish the proof. �

Remark 1.3. It is interesting to note that Corollary 1.2 implies in a direct way that the inclusion i :
Ḟ γ,τp,q,w → S∞(Rn) is continuous and this can be very useful in other circumstances.

In fact. Recall first that S∞(Rn) can be defined as a collection of ν ∈ S(Rn) such that semi-norms

(1.17) ||ν||M = sup|β|≤Msupξ∈Rn |∂β ν̂)|(|ξ|M + |ξ|−M ) <∞ for any M ∈ N.

Moreover, semi-norms ||M :M∈N generate a topology of a locally convex space on S∞(Rn) which coincides
with the topology of S∞(Rn) as a subspace of a locally convex space S(Rn). Thus, the proof of the
continuity of inclusion i is equivalent to prove

(1.18) |〈νf, φ〉| ≤ C||f ||Ḟγ,τp,q,w
||φ||M .

As a consequence of Corollary 1.2, there exist c,N > 0 s.t for any j ∈ Z and φ ∈ S∞(Rn), we have

|〈νjf, φ〉| ≤ c|j|+1||f ||Ḟγ,τp,q,w
||(1 + |x|)Nφ||∞

≤ c|j|+1||f ||Ḟγ,τp,q,w
sup|α|≤n+1,|β|≤N ||φ̂||α,β .(1.19)

Let µ ∈ S(Rn) be such that µ̂(ξ) = 1 for all ξ ∈ supp ν̂ and supp µ̂ ⊂ {ξ : 1/2 < |ξ| < 2} and replace the

semi-norms ||φ||M in 1.19 by ||µ̂(2−j .)φ̂||α,β to get

|〈νjf, φ〉| = |〈νjf, µjφ〉| ≤ c|j|+1|||f ||Ḟγ,τp,q,w
sup|α|≤n+1,|β|≤N ||µ̂(2−j .)φ̂||α,β .

On the other hand, we have, for any λ > 0 there exists M > 0 such that

||µ̂(2−j .)φ̂||α,β ≤ C2−|j|λ||φ||M .
For more details of these kinds of estimates, see the proof of [3, Lemma 2.6.]. Combining the last two
estimates we deduce the existence of M > 0 and λ1 > 0 such that

(1.20) |〈νjf, φ〉| ≤ |C|2−|j|λ1 ||f ||Ḟγ,τp,q,w
||φ||M .

Now, the estimate 1.20 implies

(1.21)
∑
j∈Z
|〈νjf, φ〉| ≤ C

∑
j∈Z

2−|j|λ1 ||f ||Ḟγ,τp,q,w
||φ||M ≤ C||f ||Ḟγ,τ,νp,q,w

||φ||M ' ||f ||Ḟγ,τp,q,w
||φ||M .

Let φ ∈ S(Rn) and ψ,ϕ ∈ S∞(Rn) satisfying 0.4, 0.5 and 0.6. Then, using 1.21 with ν = ψ ? ϕ and
Lemma 0.2 to get

(1.22) |〈f, φ〉| = |〈
∑
j∈Z

νjf, φ〉| ≤ C||f ||Ḟγ,τp,q,w
||φ||M .

�

Proof of Theorem 1.2. Let ψ = ψ1, ϕ = ϕ1 ∈ S(Rn) satisfying 0.4, 0.5 and 0.6. We claim that for

f ∈ Ḟ γ,τp,q,w, the series
∑
j≥0

ψ̃j ? ϕj ? f converges in S′(Rn). To see this, we need the following estimate, see

[39], there exists M ∈ N, s.t for all φ ∈ S(Rn), j ∈ N and x ∈ Rn,

|ψj ? φ(x)| � ||φ||SM+1
||ψ||SM+1

2−jM
1

(1 + |x|)n+M
13
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which together with 1.14 imply that there exists some constant M1 > 0 s.t,∑
j≥0

|〈ψ̃j ? ϕj ? f, φ〉| � ||φ||SM+1
||ψ||SM+1

∑
j≥0

2−jM
∫
Rn

|ϕj ? f(x)|
(1 + |x|)n+M

dx

� ||φ||SM+1
||ψ||SM+1

∑
j≥0

2−jM1 ||f ||Ḟγ,τp,q,w

� ||φ||SM+1
||ψ||SM+1

||f ||Ḟγ,τp,q,w
,(1.23)

hence
∑
j≥0

ψ̃j ? ϕj ? f converges in S ′(Rn). Now, let j ∈ Z− and x ∈ Qjk, using again the inclusion 1.15

and the Ar0-condition, to obtain∫
B(2−jk,2−j)

w(y)dy � (1 + |x|)−nδ
∫
B(0,2−j(1+|x|)

w(y)dy

� 2−jnr0(1 + |x|)n(r0−δ)
∫
B(0,1)

w(y)dy ' 2−jnr0(1 + |x|)n(r0−δ)

On the other hand, since j ∈ Z− we have B(0, 1) ⊂ B(0, 2−j(1 + |x|). Then,∫
B(0,1)

w(y)dy � 2jnδ(1 + |x|)−nδ
∫
B(0,2−j(1+|x|))

w(y)dy

� 2jn(δ−r0)(1 + |x|)n(r0−δ)
∫
B(2−jk,2−j)

w(y)dy.

It follows from the last inequalities and Ar0 properties that(∫
B(2−jk,2−j)

w(x)dx
)rτ(∫

B(2−jk,2−j)

w−
r
p−r dx

)1−r/p
� 2−jn

(∫
B(2−jk,2−j)

w(x)dx
)r(τ−1/p)

� 2−jn2−jnr0r(τ−1/p)(1 + |x|)nr0r(τ−1/p)

if τ − 1/p ≥ 0 and (∫
B(2−jk,2−j)

w(x)dx
)rτ(∫

B(2−jk,2−j)

w−
r
p−r dx

)1−r/p
� 2−jn2−jnr(δ−r0)(τ−1/p)(1 + |x|)−nr(r0−δ)(τ−1/p),

if τ − 1/p < 0. Using Corollary 1.2 to conclude that

(1) if τ − 1/p ≥ 0, then

(1.24) sup
x∈Rn
|∂β(ψ̃j ? ϕj ? f(x))|(1 + |x|)−n(r0−δ)(τ−1/p) � 2j(|β|−γ−nr0(τ−1/p))||f ||Ḟγ,τp,q,w

(2) and if τ − 1/p < 0, then

(1.25) sup
x∈Rn
|∂β(ψ̃j ? ϕj ? f(x))|(1 + |x|)n(r0−δ)(τ−1/p) � 2j(|β|−γ−n(r0−δ)(τ−1/p))||f ||Ḟγ,τp,q,w

.

Therefore, by 1.24 and 1.25
∑
j<0

∂β(ψ̃j ? ϕj ? f(x)) converges in S′(Rn) whenever

(1) τ − 1/p ≥ 0 and β > γ + nr0(τ − 1/p) > 0
or

(2) τ − 1/p < 0 and β > γ + n(r0 − δ)(τ − 1/p) > 0.
14
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Consequently, for τ − 1/p ≥ 0, Proposition 2.7 in [3] (see also [12] pp. 153-155) yields a sequence of
polynomials {P 1

N}∞N=1, with degree no more than L = bγ + r0n(τ − 1/p)c and g ∈ S′(Rn) s.t

(1.26) g1 = lim
N→∞

 ∑
j=−N≤j≤N

ψ̃j ? ϕj ? f + P 1
N

 in S ′(Rn).

Similar conclusion holds whenever τ − 1/p < 0 by taking

L = max(−1, bγ + (r0 − δ)n(τ − 1/p)c),

The proof of 1.10 is very similar to the proof of [3, Proposition 3.8]. We deduce that there exists a
sequence {PN}∞N=1 of polynomials, with degree no more than L same as above such that

g = lim
N→∞

 ∑
j=−N≤j≤N

ψ̃j ? ϕj ? f + PN

 in S ′(Rn)

and g is a representation of the equivalent class f + P (Rn). We identify f with its representative g. In
this sense, f ∈ S′L, which completes the proof of Theorem 1.2. �

Remark 1.4. If we assume that w ∈ A1 then, we can take δ = 0 and r0 = 1 so that L = max(−1, bγ +
n(τ − 1/p)c) in both case. This corresponds to the result in [23] when w = 1.

Corollary 1.3. Let w ∈ A∞ and f ∈ Ḟ γ,τp,q,w with 0 < p <∞, 0 < q ≤ ∞. Let ϕ1, τ and L as in Theorem
1.2. Then, there exists a sequence {PN}∞N=1 of polynomials with degPN ≤ L and g1 ∈ S′(Rn) s.t such
that

(1.27) g1 = lim
k→∞

 ∑
2−nk≤l(Q)≤2nk

〈f, ϕQ〉ψQ + Pk

 in S ′(Rn).

Moreover, if g2 is the corresponding limit in 1.27 for some other ϕ2, ψ2 satisfying the same conditions as
ϕ1, ψ1, then,

(1.28) g1 − g2 ∈ P and deg(g1 − g2) ≤ L.

2. Almost Diagonal Operators

In this section, we study the class of almost diagonal operators on ḟγ,τp,q,w which was introduced by Fra-

zier and Jawerth [12]. The interest of these operators on ḟγ,τp,q,w arises from their close connection to many
operators in analysis. For a quasi-Banach space X, let L(X) be the space of bounded linear operators on

X with the operator norm. Define the maps S?ϕ : L(Ḟ γ,τp,q,w) −→ L(ḟγ,τp,q,w) and T ?ψ : L(ḟγ,τp,q,w) −→ L(Ḟ γ,τp,q,w)
by

S?ϕ =Sϕ ◦ B ◦ Tψ, for B ∈ L(Ḟ γ,τp,q,w)

T ?ψ =Tψ ◦ A ◦ Sϕ, for A ∈ L(ḟγ,τp,q,w).

Repeating verbatim the arguments in [12, Section 3] and using Theorem 1.1 to obtain the following
commutative diagram:

(2.1) L(Ḟ γ,τp,q,w)

S?ϕ
��

id // L(Ḟ γ,τp,q,w)

L(ḟγ,τp,q,w)

T?ψ

99
.
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Moreover, if 0 < q < ∞, then any A ∈ L(ḟγ,τp,q,w) is represented by a matrix {aQP }Q,P∈Q where aQP =

(AeP )Q. Here, eP denotes the standard unit vector in ḟγ,τp,q,w defined by (eP )Q = 1 if Q = P and (eP )Q = 0
otherwise.

Definition 2.1. Let γ ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞ and J = n ×max(1, r0/p, 1/q). We say
that an operator A with an associated matrix {aQP }Q,P∈Q where aQP = (AeP )Q is an ε-almost diagonal

operator on ḟγ,τp,q,w, if there exists an ε > 0 such that

sup
P,Q∈Q

|aPQ|/κQP (ε) <∞,

where

κQP (ε) =

(
l(P

l(Q)

)γ (
1 +

|xQ − xP |
max(l(P ), l(Q)

)−J−ε
×min

[(
l(Q)

l(P ))

)(n+ε)/2

,

(
l(P )

l(Q)

)(n+ε)/2+J−n
]
.

We note that an almost diagonal in our case is also an almost diagonal operator on the classical space
ḟγp,q introduced by Frazier and Jawerth [12] and is an almost diagonal operator on the general space

ḟγ,τp,q introduced by Yang and Yuan[39]. Moreover, Frazier and Jawerth proved that all almost diagonal

operators are bounded on ḟγp,q. This result is extended by Yang and Yuan [39] to the space ḟγ,τp,q , see also
[3, 1, 2]. In the weighted spaces, we have the following conclusion.

Theorem 2.1. Let ε > 0, γ ∈ R, 0 < p, q ≤ ∞, w ∈ A∞ and τ ∈ [0, 1/p + ε/(2nr0)[. Then, all ε-almost

diagonal operators on ḟγ,τp,q,w are bounded on ḟγ,τp,q,w.

The proof of Theorem 2.1 is partially based on the following Lemma, which is simple consequence of
Lemma 4.1 in [1] and the estimate D.1 in [12].

Lemma 2.1. Let i, j ∈ Z and Q ∈ Q with l(Q) = 2−j. Then, for any L > n,

∑
l(R)=2−i

(
1 +

|xR − xQ|
max(l(R), l(Q))

)−L
≤ C2n(i−j)+

where the constant C depends only on L and n, here (i− j)+ = max(i− j, 0).

Proof of Theorem 2.1. We consider only the case τ − 1/p ≥ 0 . If τ − 1/p < 0 then, Theorem 4.2 and
similar argument in [12] leads to the result. Without loss of generality, we may assume γ = 0 and

min(p/r0, q) > 1 (see for instance [3, 23, 40]). Let t = {tQ}Q ∈ ḟγ,τp,q,w and A is an ε-almost diagonal

operator on ḟγ,τp,q,w with an associated matrix {aQP }Q,P∈Q.
Since min(p/r0, q) > 1, we have J = n in Definition 2.1. Write A = A0 +A1, with

(A0t)Q =
∑

l(R)≥l(Q)

aQRtR and (A1t)Q =
∑

l(R)<l(Q)

aQRtR.

By definition 2.1, we see that for all Q ∈ Q

|(A0t)Q| �
∑

l(R)>l(Q)

(
l(Q)

l(R)

)(n+ε)/2

|tR|
(

1 +
|xR − xQ|
l(R)

)−n−ε
.

16
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Therefore

||A0t||ḟ0,τ
p,q,w

� sup
P∈Q

1

[w(P )]τ

∫
P

∑
Q⊂P

 ∑
l(R)>l(Q)

(
l(Q)

l(R)

)(n+ε)/2

|tR|χ̃Q
(

1 +
|xR − xQ|
l(R)

)−n−εq
p
q

w(x)dx


1
p

= J1

and

||A1t||ḟ0,τ
p,q,w

� sup
P∈Q

1

[w(P )]τ

∫
P

∑
Q⊂P

 ∑
l(R)≤l(Q)

(
l(R)

l(Q)

)(n+ε)/2

|tR|χ̃Q
(

1 +
|xR − xQ|
l(Q)

)−n−εq
p
q

w(x)dx


1
p

= J2.

Let Q,P,R ∈ Q be such that Q ⊂ P , l(Q) = 2−j , l(P ) = jP , l(R) = 2−i and assume i ≤ j. Then, by

R ⊂ B = B
(
xQ, cn2−i

(
1 +

|xR−xQ|
l(R)

))
= B

(
xQ, cn2−j2j−i

(
1 +

|xR−xQ|
l(R)

))
with cn > 1, we have using

the r0-doubling condition , the δ-reverse doubling condition of w and the assumption τ − 1/p ≥ 0,

w(R)τ−1/p ≤ w(B)τ−1/p � 2((j−i)(τ−1/p)nr0
(

1 +
|xR − xQ|
l(R)

)(τ−1/p)nr0
w(B(xQ, 2

−j)τ−1/p

� 2((j−i)(τ−1/p)nr0
(

1 +
|xR − xQ|
l(R)

)(τ−1/p)nr0
w(Q)τ−1/p

� 2((j−i)(τ−1/p)nr0
(

1 +
|xR − xQ|
l(R)

)(τ−1/p)nr0
2((jP−j)(τ−1/p)nδw(P )τ−1/p.

Since |tR| � |R|1/2w(R)τ−1/p||t||ḟ0,τ
p,q,w

(see 1.3), we have,

(2.2) |tR| � 2−ni/22((j−i)(τ−1/p)nr0
(

1 +
|xR − xQ|
l(R)

)(τ−1/p)nr0
2(jP−j)(τ−1/p)nδw(P )τ−1/p.

Put

I1 =
∑

l(R)>l(Q)

(
l(Q)

l(R)

)(n+ε)/2

|tR|χ̃Q(x)

(
1 +
|xR − xQ|
l(R)

)−n−ε
and using 2.2 to get

I1 � χQ(x)2(jP−j)(τ−1/p)nδw(P )τ−1/p||t||ḟ0,τ
p,q,w

×
j−1∑
i=−∞

∑
l(R)=2−i

2(i−j)(ε/2−nr0(τ−1/p))
(

1 +
|xR − xQ|
l(R)

)−n−ε+(τ−1/p)nr0
.

By L = n+ ε− (τ − 1/p)nr0 > n, Lemma 2.1 implies

I1 � χQ(x)2(jP−j)(τ−1/p)nδw(P )τ−1/p||t||ḟ0,τ
p,q,w

j−1∑
i=−∞

2(i−j)(ε/2−nr0(τ−1/p))

� χQ(x)2(jP−j)(τ−1/p)nδw(P )τ−1/p||t||ḟ0,τ
p,q,w

,

since by assumption, ε/2− nr0(τ − 1/p) > 0. It follows that

||A0t||ḟ0,τ
p,q,w

� J1 � ||t||ḟ0,τ
p,q,w

.
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Some similar estimates to I1 also yield that

||A1t||ḟ0,τ
p,q,w

� J2 � ||t||ḟ0,τ
p,q,w

.

�

3. Atomic and Molecular decomposition

3.1. Smooth molecules. We establish in this section, smooth atomic and molecular decomposition char-
acterizations of Ḟ γ,τp,q,w. As in the introduction we set s? = s− bsc for s ∈ R.

Definition 3.1. Let γ ∈ R, τ ∈ [0,∞[, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, J = n ×max(1, r0/p, 1/q) and
N = max(bJ − n− γc,−1).

(1) A function mQ is called a smooth synthesis molecule for Ḟ γ,τp,q,w supported near dyadic cube Q if
there exist σ ∈ ]max(γ?, (γ + nτ)?), 1] and M ∈ ]J,∞[ such that∫

Q

xαmQ(x) = 0; if |α| ≤ N(3.1)

|mQ(x)| ≤ |Q|−1/2
(

1 +
|x− xQ|
l(Q)

)−max(M,M−γ)

(3.2)

|∂αmQ(x)| ≤ |Q|−1/2−|α|/n
(

1 +
|x− xQ|
l(Q)

)−M
; if |α| ≤ bγ + nτc(3.3)

and

|∂αmQ(x)− ∂αmQ(y)| ≤ |Q|−1/2−|α|/n−σ/n|x− y|σ sup
|z|<|x−y|

(
1 +
|x− z − xQ|

l(Q)

)−M
(3.4)

if |α| = bγ + nτc.

We say that a collection {mQ}Q is a family of smooth synthesis molecules, if each mQ is a
smooth synthesis molecule supported near Q.

(2) A function bQ is called a smooth analysis molecule for Ḟ γ,τp,q,w supported near dyadic cube Q if
there exist an M ∈ ]J,∞[ and ρ ∈](J − γ)?, 1] such that∫

Q

xαbQ(x) = 0; if |α| ≤ bγ + nτc(3.5)

|bQ(x)| ≤ |Q|−1/2
(

1 +
|x− xQ|
l(Q)

)−max(M,M+n+γ+nτ−J)

(3.6)

|∂αbQ(x)| ≤ |Q|−1/2−α/n
(

1 +
|x− xQ|
l(Q)

)−M
; if |α| ≤ N(3.7)

and

|∂αbQ(x)− ∂αbQ(y)| ≤ |Q|−1/2−|α|/n−ρ/n|x− y|ρ sup
|z|<|x−y|

(
1 +
|x− z − xQ|

l(Q)

)−M
;(3.8)

if |α| = N.

We say that a collection {mQ}Q is a family of smooth analysis molecules, if each mQ is a smooth
analysis molecule supported near Q.

Note that when N = −1 then, 3.1, 3.7 and 3.8 are void.
18
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Lemma 3.1. Let γ, p, q, J,M and N as in Definition 3.1, (J−γ)? < % ≤ 1 and σ ∈ ]max(γ?, (γ + nτ)?), 1].

Assume τ ∈
[
0,min( 1

p + M−J
2nr0

, 1p + ρ−(J−γ)?
nr0

)
]

if N ≥ 0 and τ ∈
[
0,min( 1

p + M−J
2nr0

, 1p + γ+n−J
nr0

)
]

if

N < 0. Suppose {bQ}Q and {mQ}Q are families of smooth analysis and synthesis molecules for Ḟ γ,τp,q,w,

respectively. Then, there exists, ε > 2nr0

(
τ − 1

p

)
s.t the matrix aQP , given by aQP = 〈mQ, bP 〉, is almost

diagonal. More precisely, there exist C > 0 and ε > 2nr0

(
τ − 1

p

)
, such that

(3.9) |aQP | ≤ CκQP (ε).

As an immediate consequence, we obtain the following two corollaries, see also [3, Corollaries 5.2 and
5.3].

Corollary 3.1. Let γ, p, q, τ and ε be as in Lemma 3.1. Suppose {mQ}Q is a family of smooth synthesis

molecules for Ḟ γ,τp,q,w and b ∈ S(Rn) with 0 /∈ supp b̂. Then, the matrix {aQP }, given by aQP = 〈mQ, bP 〉,
is ε-almost diagonal.

Corollary 3.2. Let γ, p, q, τ and ε be as in Lemma 3.1. Suppose {bQ}Q is a family of smooth analysis

molecules for Ḟ γ,τp,q,w and m ∈ S(Rn) with 0 /∈ supp â. Then, the matrix {aQP }, given by aQP = 〈bQ, aP 〉,
is is ε-almost diagonal.

We will also need the following result, which provides an approximation of smooth molecules by
elements of the Schwartz class S(Rn). See [3, Section 5].

Lemma 3.2. Suppose that φ is a smooth analysis (or synthesis) molecule supported near Q ∈ Q. Then,
there exists a sequence {φk}k∈N ⊂ S(Rn) and c > 0 such that cφk is a smooth analysis (or synthesis)
molecule supported near Q for every k, and φk −→ φ uniformly on Rn as k −→∞.

To prove Lemma 3.1, we need the following additional results. See [12, Appendix B, Lemma B1].

Lemma 3.3. Let L ∈ N, R > n, 0 < θ ≤ 1, S > n + L + θ, i, j ∈ Z, i ≥ j, and x0 ∈ Rn. Suppose that
g, h;∈ CL(Rn) satisfy

|∂αg(x)| ≤ 2j(α+n/2)
(
1 + 2j |x|

)−R
; if |α| ≤ L,(3.10)

|∂αg(x)− ∂αg(y)| ≤ 2j(n/2+L+θ)|x− y|θ sup
|z|<|x−y|

(
1 + 2j |x− z|

)−R
;(3.11)

if |α| = L,

|h(x)| ≤ 2ni/2
(
1 + 2i|x− x0|

)−max(R,S)
,(3.12)

and(3.13) ∫
Rn
xαh(x)dx = 0; if |α| ≤ L.(3.14)

Then, there exists a constant C > 0, which is independent of g, h, i, j, x and x0, such that

(3.15) g ? h(x) ≤ C2−(i−j)(L+θ+n/2)
(
1 + 2j |x− x0|

)−R
.

A special case of Lemma 3.3, formally corresponding to L = −1, where no vanishing moments on h
are assumed, is the following.

Lemma 3.4. Let R > n, i, j ∈ Z, i ≥ j, and x0 ∈ Rn. Suppose g, h ∈ L1(Rn) satisfy

|g(x)| ≤ 2jn/2
(
1 + 2j |x|

)−R
(3.16)

|h(x)| ≤ 2ni/2
(
1 + 2i|x− x0|

)−R
.(3.17)

Then,

(3.18) g ? h(x) ≤ C2−(i−j)n/2
(
1 + 2j |x− x0|

)−R
19
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for some constant C > 0.

Proof of Lemma 3.1. We adapt here the proof of Lemma B.3 in [12] and the proof of Lemma 5.1 in [3] .
Case 1. Reducing, σ, ρ, or M if necessary, we may assume that

σ − (γ + nτ)? =
M − J

2
= ρ− (J − γ)?

2

Suppose l(Q) ≤ l(P ) and γ + nτ ≥ 0. Let i , j ∈ Z be such that l(Q) = 2−i ≤ l(P ) = 2−j . Then, it

easy to check that g(x) = mP (xP − x) and h(x) = bQ(x) satisfy the hypotheses of Lemma 3.3 with with
R = M, L = bγ + nτc, S = M + n+ γ + nτ − J and x0 = xQ. Therefore, by Lemma 3.3 with θ = ρ, we
have

|〈mP , bQ〉| = |g ? h(xP )| ≤ C2−(i−j)(L+θ+n/2)
(
1 + 2j |xP − xQ|

)−M
.

Set ε/2 = L+ θ − (γ + nτ). Then, nr0(τ − 1
p ) ≤ ε

2 ≤
M−J

2 and

|〈mP , bQ〉| ≤ C2−(i−j)(γ+nτ+ε/2+n/2)
(
1 + 2j |xP − xQ|

)−J−ε
.

Case 2. Suppose l(Q) ≤ l(P ) and γ + nτ < 0. Let i , j ∈ Z be such that l(Q) = 2−i ≤ l(P ) = 2−j . For
the same choice of g and h as in Case 1, we have by Lemma 3.4 with R = M

|〈mP , bQ〉| ≤ C2−(i−j)n/2
(
1 + 2j |xP − xQ|

)−M
≤ C2−(i−j)(γr0+ε/2+n/2)2(i−j)(γr0+ε/2)

(
1 + 2j |xP − xQ|

)−J−ε
≤ C2−(i−j)(γ+ε/2+n/2)

(
1 + 2j |xP − xQ|

)−J−ε
where ε/2 = min(−γr0, M−J2 ) satisfying nr0(τ − 1

p ) ≤ ε
2 ≤

M−J
2 .

Case 3. Suppose l(Q) > l(P ) and N ≥ 0. Let i, j ∈ Z be such that l(Q) = 2−j > l(P ) = 2−i. Then,

it is easy to check that g(x) = bQ(xQ − x) and h(x) = mP (x) satisfy the hypotheses of Lemma 3.3 with
R = M, L = N = bJ − γ − nc, S = M − γ and x0 = xP . Therefore, by Lemma 3.3 with θ = ρ, we have

|〈mP , bQ〉| = |g ? h(xQ)| ≤ C2−(i−j)(N+θ+n/2)
(
1 + 2j |xP − xQ|

)−M
.

Set ε/2 = N + θ − (J − γ − n). Then, nr0(τ − 1
p ) ≤ ε

2 ≤
M−J

2 and

|〈mP , bQ〉| ≤ C2−(i−j)(J−γ+ε/2−n/2)
(
1 + 2j |xP − xQ|

)−J−ε
.

Case 4. Finally, Suppose l(Q) > l(P ), and N = −1. Let i, j ∈ Z be such that
l(Q) = 2−j > l(P ) = 2−i. By Lemma 3.4 with R = M for the same choice of g and h as in Case 3, we
have

|〈mP , bQ〉| ≤ C2−(i−j)n/2
(
1 + 2j |xP − xQ|

)−M
≤ C2−(i−j)(J−γ+ε/2−n/2)

(
1 + 2j |xP − xQ|

)−J−ε
,

where ε/2 = min(−(J − γ − n), M−J2 ) satisfying nr0(τ − 1
p ) ≤ ε

2 ≤
M−J

2 .

Combining Cases 1-4, we conclude that

|〈mP , bQ〉| ≤ CκQP (ε)

which completes the proof of Lemma 3.1. �

3.2. Smooth molecular decompositions. At this stage, we are able to show generalizations of Theorem 1.1
in the situation when the usual wavelet families are replaced by families of smooth analysis and synthesis
molecules. More precisely, we have

Theorem 3.1 (Smooth molecular synthesis). Suppose w ∈ A∞. There exists a constant C > 0, such that

if f =
∑
Q tQψQ where {ψQ}Q∈Q is a family of smooth synthesis molecules for Ḟ γ,τp,q,w, then

||f ||Ḟγ,τp,q,w
≤ C||t||ḟγ,τp,q,w

, for all t ∈ Ḟ γ,τp,q,w.
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Proof. By Lemma 0.2, we can write ψP =
∑
Q∈Q
〈ψP , νQ〉µQ with the convergence in S ′∞(Rn). Let A given

by the matrix {aQP }Q,P∈Q = {〈ψP , νQ〉}Q,P∈Q then, By Theorem 2.1 and Corollary 3.2 A is a bounded

operator on ḟγ,τp,q,w. Since

Tµt =
∑
Q

∑
P

aQP tPµQ =
∑
P

tP
∑
Q

aQP 〈ψP , νQ〉µQ =
∑
P

tPψP

then, by Theorem 1.1,

||f ||Ḟγ,τp,q,w
= ||TµAt||Ḟγ,τp,q,w

≤ C||At||ḟγ,τp,q,w
≤ C||t||ḟγ,τp,q,w

.

�

Theorem 3.2. (Smooth molecular analysis). Suppose w ∈ A∞. There exists a constant C > 0, such that

if {φQ}Q∈Q is a family of smooth analysis molecules for Ḟ γ,τp,q,w then,

||{〈f, φQ〉}Q||ḟγ,τp,q,w
≤ C||f ||Ḟγ,τp,q,w

.

The proof of the theorem 3.2 is easy once the significance of the pairing 〈f, φQ〉 is justified, see [3,
Lemma 5.7]. We omit the details of the proof. To justify the meaningfulness of the pairing 〈f, φQ〉, we
need the following Lemma.

Lemma 3.5. Let γ, p, q, τ and ε be as in Lemma 3.1, f ∈ Ḟ γ,τp,q,w and {φQ}Q∈Q be a smooth analysis

molecule for Ḟ γ,τp,q,w supported near Q. Then, 〈f, φQ〉 is well defined.
More exactly, we have for any µ, ν ∈ S(Rn) satisfying 0.4, 0.5 and 0.6 the serie

(3.19) 〈f, φQ〉 =
∑
j∈Z
〈ν̃j ? µj ? f, φQ〉 =

∑
P

〈f, νP 〉〈µP , φQ〉

converges absolutely and its value is independent of the choices of µ and ν.

Proof. The proof of the Lemma 3.5 is very similar to the proof of [3, Lemma 5.7]. For the clarity, we give
some few details.

We consider only the case τ − 1/p ≥ 0. The proof of Lemma 3.5 when τ − 1/p < 0 is similar.
Assume τ − 1/p ≥ 0, we claim that there exists a matrix {aQP }Q,P∈Q such that

(3.20) |〈f, νP 〉||〈νP , φQ〉| ≤ aQP and
∑
P

aQP <∞.

In fact, by Lemma 3.1, there exists a positive constant C such that

|〈µP , φ〉| ≤ CκQP (ε).

So we can take aQP = C|〈f, νP 〉|κQP (ε). Furthermore, by Theorem 1.1, the sequence {〈µP , φ〉}P ∈ ḟγ,τp,q,w,
and hence by Corollary 3.1 and Theoerem 2.1

∑
P

aQP < ∞. This shows the absolute convergence of the

series 3.20.
To show independence of the choice of µ and ν, let {φl}∞l=1 be the sequence of (constant multiples

of) smooth analysis molecules supported near Q and converging uniformly to φQ guaranteed by Lemma
3.2. By Theorem 1.2 there exists a sequence of polynomials {Pk}∞N=1, with degree no more than L =
bγ + nr0(τ − 1/p)c such that

∑
j≥−N

ν̃j ? µj ? f + PN converges in S ′(Rn). Therefore, for each l, we can

define

〈f, φl〉 =

〈
lim
N→∞

∑
j≥−N

ν̃j ? µj ? f + PN , φl

〉
= lim
N→∞

∑
j≥−N

〈ν̃j ? µj ? f, φl〉

= lim
N→∞

∑
P∈Q,l(P )≥2−N

〈f, νP 〉〈µP , φl〉 =
∑
P

〈f, νP 〉〈µP , φl〉,
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since the above series converges absolutely by 3.20. Using the similar argument given in [3, Lemma 5.7]
to obtain ∑

P

〈f, νP 〉〈µP , φl〉 −→
∑
P

〈f, νP 〉〈µP , φQ〉 as l −→∞.

and this limit is independent of µ and ν. This shows that 〈f, φQ〉 is well defined by 3.19 and completes
the proof of Lemma 3.5. �

Proof of Theorem 3.2. By lemma 3.5 we have

〈f, φQ〉 =
∑
P

〈f, νP 〉〈µP , φQ〉 =
∑
P

〈f, νP 〉aQP

with aQP = 〈µP , φQ〉. By Lemma 2.1 and Corollary 3.1 the operator A given by the matrix {aQP }P,Q is

bounded on ḟγ,τp,q,w. It follows from Theorem 1.1 that,

||〈f, φQ〉||ḟγ,τp,q,w
= ||ASνf ||ḟγ,τp,q,w

� ||f ||Ḟγ,τp,q,w
.

�

3.3. Smooth atomic decompositions.

Definition 3.2. Let γ, τ, p, q, w and J and as in Definition 3.1. A function aQ is called a smooth atom for

Ḟ γ,τp,q,w supported near dyadic cube Q if satisfies

supp aQ ⊂ 3Q,(3.21) ∫
Q

xαaQ(x) = 0; if |α| ≤ Ñ ,(3.22)

|∂αaQ(x)| ≤ |Q|−1/2−|α|/n; if |α| ≤ K̃,(3.23)

where Ñ ≥ max(bJ − n − γc,−1) and K̃ ≥ max(bγ + nτ + 1c, 0). We say that a collection {aQ}Q is a
family of smooth synthesis atoms, if each aQ is a smooth atom supported near Q.

Remark 3.1. Note that every smooth atom for Ḟ γ,τp,q,w is a multiple of a smooth synthesis molecule for

Ḟ γ,τp,q,w supported near Q.

Theorem 3.3 (Smooth atomic decomposition). Let γ, τ, p, q, w and J as in Lemma 3.1. Then, for each

f ∈ Ḟ γ,τp,q,w there exist smooth atoms {aQ}Q and a sequence of coefficients {tQ}Q ∈ ḟγ,τp,q,w , such that

f =
∑
Q

tQaQ and ||a||ḟγ,τp,q,w
≤ C||f ||Ḟγ,τp,q,w

,

where C is a positive constant independent of f and t. Conversely, there exists a positive constant C such
that for all families of smooth atoms {aQ}Q,

||
∑
Q

tQaQ||Ḟγ,τp,q,w
≤ C||t||ḟγ,τp,q,w

.

The proof of Theorem 3.3 uses Theorem 1.1, Theorem 3.1 and Remark 3.1 and is a verbatim copy of
the corresponding result in [12, Theorem 4.1] or in [3, Theorem 5.8]. Hence, we omit the details.

Remark 3.2. Results in the previous sections can be extended, in the natural way, to a more general
Lizorkin-space defined by replacing in the definition 0.3 2j by det(A)j/n, where A is an expansive ma-
trix,i.e, A is real n × n matrix such that minλ∈σ(A)|λ| > 1 where σ(A) is the spectrum of A (the set of
all eigenvalues of A), and the Euclidean metric on Rn can be replaced by a quasi-norm associated with
the matrix A, for details see for instance [3].
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4. Appendix

Let 0 < p, q ≤ ∞ , 0 ≤ τ < ∞ and w ∈ A∞. The space lq
(
Lτp,w

)
is defined to be the set of all

sequences g = {gj}j∈Z of measurable functions on Rn s.t

||g||lq(Lτp,w) = sup
Q∈Q

1

[w(Q)]τ

 ∞∑
j=jQ

(∫
Q

|gj(x)|pw(x)dx

) q
p

 1
q

<∞.

Similarly, the space Lτp,w (lq) with 0 < p < ∞ is defined to be the set of all sequences g = {gj}j∈Z of
measurable functions on Rn s.t

||g||Lτp,w(lq) = sup
Q∈Q

1

[w(Q)]τ

∫
Q

 ∞∑
j=jQ

|gj(x)|q


p
q

w(x)dx


1
p

<∞

where jQ = −log2l(Q) and l(Q) is the side length of the dyadic cube Q. We need the following lemma
which is a generalization of Lemma 2 in [28].

Lemma 4.1. Let r0 ≥ 1, w ∈ Ar0 , 0 < q, p <∞, 0 ≤ τ <∞, δ > nτr0 and g = {gj}j∈Z is a collection
of measurable functions and a sequence of complex numbers a = {aj}j∈Z satisfying

|aj | ≤ C

{
2j , if j ∈ Z−
2−δj , if j ∈ N0.

Then, there exists a positive constant C, independent of g s.t

||G||lq(Lτp,w) ≤ C||g||lq(Lτp,w)

and

||G||Lτp,w(lq) ≤ C||g||Lτp,w(lq)

where Gj(x) =
∑
m∈Z

aj−mgm(x) .

The following corollary that generalizes the result of Rychkov,V. S. [28, Lemma 2] is a direct conse-
quence of Lemma 4.1.

Corollary 4.1. Let r0 ≥ 1, w ∈ Ar0 , 0 < q, p <∞, 0 ≤ τ <∞, δ > nτr0 and g = {gj}j∈Z is sequences

of measurable functions. Define Gj(x) =
∑
m∈Z

2−|m−j|δgm(x). Then, there exists a positive constant C,

independent of g s.t

||G||lq(Lτp,w) ≤ C||g||lq(Lτp,w)

and

||G||Lτp,w(lq) ≤ C||g||Lτp,w(lq).

Lemma 4.2. Let 0 ≤ τ <∞, 1 < p, q <∞ and w ∈ Ap. Define

||Mg||Lτp,w(lq) = sup
Q

1

[w(Q)]τ

∫
Q

 ∞∑
j=jQ

|Mgj(x)|q


p
q

w(x)dx


1
p

.

If τ − 1
p < 0 then, we have the following general weighted Fefferman-Stein inequality

||Mg||Lτp,w(lq) ≤ C||g||Lτp,w(lq).
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Proof

Proof of Lemma 4.1. By similarity, we only prove the first inequality.
First we note that if k ≥ jQ then,

1

[w(Q)]τ

(∫
Q

|gk(x)|qw(x)dx

) 1
q

≤ 1

[w(Q)]τ

 ∞∑
j=jQ

(∫
Q

|gj(x)|pw(x)dx

) q
p

 1
q

≤ ||g||lq(Lτp,w)

and

1

[w(Q)]τ

(∫
Q

|gk(x)|pw(x)dx

) 1
p

≤ 1

[w(Q)]τ

∫
Q

 ∞∑
j=jQ

|gj |q


q
p

w(x)dx


1
p

≤ ||g||Lτp,w(lq).

Through the proof we take into the account that a ∈ lr(Z), ∀ r > 0. We begin by considering the case
0 < p ≤ 1.

Fix a dyadic cube Q and use the Young’s inequality

(4.1) ∀ 0 < ε < 1, ∀ zi ∈ C :

(∑
m∈Z
|zm|

)ε
≤
∑
m∈Z
|zm|ε

to obtain

IQ =
1

[w(Q)]τ

 ∞∑
j=jQ

(∫
Q

∣∣∣∣∣∑
m∈Z

aj−mgm(x)

∣∣∣∣∣
p

w(x)dx

) q
p


1
q

≤ 1

[w(Q)]τ

 ∞∑
j=jQ

(∑
m∈Z
|aj−m|p

∫
Q

|gm(x)|p w(x)dx

) q
p

 1
q

.

Assume 0 < q < p . Then, 4.1 implies

IQ ≤
1

[w(Q)]τ

 ∞∑
j=jQ

∑
m∈Z
|aj−m|q

(∫
Q

|gm(x)|p w(x)dx

) q
p

 1
q

= JQ +HQ

with

JQ =
1

[w(Q)]τ

 ∞∑
j=jQ

∞∑
m=jQ

|aj−m|q
(∫

Q

|gm(x)|p w(x)dx

) q
p

 1
q

=
1

[w(Q)]τ

 ∞∑
m=jQ

∞∑
j=jQ

|aj−m|q
(∫

Q

|gm(x)|p w(x)dx

) q
p

 1
q

≤C||g||lq(Lτp,w)
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and

HQ =
1

[w(Q)]τ

 ∞∑
j=jQ

jQ−1∑
m=−∞

|aj−m|q
(∫

Q

|gm(x)|p w(x)dx

) q
p

 1
q

≤ C 1

[w(Q)]τ

 ∞∑
j=jQ

jQ−1∑
m=−∞

2−|m−j|δq
(∫

Q

|gm(x)|p w(x)dx

) q
p

 1
q

≤ C

 ∞∑
j=jQ

jQ−1∑
m=−∞

2(m−j)δq
(
w(Qm)

w(Q)

)qτ
1

[w(Qm)]qτ

(∫
Qm

|gm(x)|p w(x)dx

) q
p

 1
q

,

where Qm is a dyadic cube containing Q with side length l(Qm) = 2−m,m ≤ jQ − 1. From the Ar0
property, we have

(
w(Qm)

w(Q)

)qτ
≤ C

(
|Qm|
|Q|

)qτr0
' 2nqτr0(jQ−m).

It follows that

HQ ≤ C

 ∞∑
j=jQ

jQ−1∑
m=−∞

2(m−j)δq2nqτr0(jQ−m)

 1
q

||g||lq(Lτp,w)

≤ C

 ∞∑
j=jQ

2(jQ−j)δq
jQ−1∑
m=−∞

2q(δ−nτr0)(m−jQ)

 1
q

||g||lq(Lτp,w)

≤ C||g||lq(Lτp,w).

Now assume that q ≥ p and write

1

[w(Q)]τ

 ∞∑
j=jQ

(∑
m∈Z
|am−j |p

∫
Q

|gm(x)|p w(x)dx

) q
p

 1
q

=
1

[w(Q)]τ

 ∞∑
j=jQ

(∑
m∈Z
|am−j |

(δ−ε)p
δ |am−j |

εp
δ

∫
Q

|gm(x)|p w(x)dx

) q
p

 1
q

.

Choose 0 < ε < δ − nτr0, arguing as before and using the following Hölder’s inequality

∑
m∈Z
|xmym| ≤

(∑
m∈Z
|xm|r

)1/r (∑
m∈Z
|ym|r

′

)1/r′
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where 1
r + 1

r′ = 1, xm, ym are in C and r = q
p , we obtain

IQ ≤
1

[w(Q)]τ

 ∞∑
j=jQ

∑
m∈Z
|am−j |

(δ−ε)q
δ

(∫
Q

|gm(x)|p w(x)dx

) q
p

 1
q

≤ 1

[w(Q)]τ

×

 ∞∑
j=jQ

∞∑
m=jQ

|am−j |
(δ−ε)q
δ

(∫
Q

|gm(x)|p w(x)dx

) q
p

+
∞∑

j=jQ

jQ−1∑
m=−∞

2−|m−j|(δ−ε)q . . .

 1
q

≤ C||g||lq(Lτp,w).

If 1 < p ≤ ∞, we use Minkowski’s inequality to get

IQ ≤
1

[w(Q)]τ

 ∞∑
j=jQ

(∑
m∈Z
|am−j |

(∫
Q

|gm(x)|p w(x)dx

) 1
p

)q 1
q

.

Applying Hölder’s inequality if 1 < q ≤ ∞ or 4.1 if 0 < q ≤ 1 to conclude. �

Proof of Lemma 4.2. We adapt here the proof of [35, Lemma 2.5]. Assume τ − 1/p = −ε < 0 and denote
by δ > 0 the reverse-doubling constant of the weight w ∈ Ap. Pick any x0 ∈ Rn, and let Q be cube
containing x0 with side lenght l(Q) = r. Write

gj = g0j +

∞∑
i=1

gij

with

g0j = χB(x0,2r)gj and gij = χB(x0,2i+1r)\B(x0,2ir)gj for i ≥ 1.

The Stein-Fefferman inequality implies

∫
Q

 ∞∑
j=jQ

|Mg0j(x)|q


p
q

w(x)dx


1
p

≤

∫
Rn

 ∞∑
j=jQ

|g0j(x)|q


p
q

w(x)dx


1
p

≤ C||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)τ
.

On the other hand for i ≥ 1 and x ∈ B(x0, r), we have

Mgij(x) = sup
R>0

1

|B(x,R)|

∫
B(x,R)∩{2ir<|y−x0|<2i+1r}

|gj(y)|dx ≤ C(2ir)−n
∫
Rn
|gij(y)|dy.
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Now, the generalized Minkowski’s inequality leads to ∞∑
j=jQ

|Mgij(x)|q
 1

q

≤ C(2ir)−n

 ∞∑
j=jQ

(∫
Rn
|gij(y)|dy

)q 1
q

≤ C(2ir)−n
∫
B(x0,2i+1r)

 ∞∑
j=jQ

|gij |q
 1

q

dy

≤ C(2ir)−n

∫
B(x0,2i+1r)

 ∞∑
j=jQ−i−1

|gij |q


p
q

w(y)dy


1
p (∫

B(x0,2i+1r)

w
−p′
p

) 1
p′

≤ C(2ir)−n||g||Lτp,w(lq)

(∫
B(x0,2i+1r)

w
−p′
p

) 1
p′
(∫

B(x0,2i+1r)

w(y)dy

)τ

≤ C||g||Lτp,w(lq)(2
ir)−n

(∫
B(x0,2i+1r)

w
−p′
p

) 1
p′
(∫

B(x0,2i+1r)

w(y)dy

) 1
p−ε

≤ C||g||Lτp,w(lq)

(∫
B(x0,2i+1r)

w(y)dy

)−ε

≤ C||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)−ε( ∫
B(x0,r)

w(y)dy∫
B(x0,2i+1r)

w(y)dy

)ε

≤ C2−inεδ||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)τ− 1
p

.

Hence  ∞∑
j=jQ

Mq

( ∞∑
i=1

gij

)
(x)

 1
q

≤ C

 ∞∑
j=jQ

( ∞∑
i=1

Mgij(x)

)q 1
q

≤ C
∞∑
i=1

 ∞∑
j=jQ

Mqgij(x)

 1
q

≤ C
∞∑
i=1

2−inεδ||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)τ− 1
p

≤ C||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)τ− 1
p

.

It follows that ∫
Q

 ∞∑
j=jQ

|Mgj(x)|q


p
q

w(x)dx


1
p

≤ C||g||Lτp,w(lq)

(∫
B(x0,r)

w(y)dy

)τ
.

We conclude that

||Mg||Lτp,w(lq) ≤ C||g||Lτp,w(lq).
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Université Libre de Bruxelles, av F.D. Roosevelt 42, CP 135/01, B-1050 Brussels, Belgium

Email address: ahmed.loulit@ulb.be

29

Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

53



WEIGHTED NORM INEQUALITIES ON ORLICZ-MORREY SPACES
FOR THE MULTILINEAR FRACTIONAL INTEGRAL AND

ORLICZ-FRACTIONAL MAXIMAL OPERATOR

TAKESHI IIDA

Abstract. We generalize Orlicz-Morrey spaces and Orlicz-fractional maximal oper-
ators to treat vector-valued functions, which extend to the multi-Morrey spaces and
multilinear fractional maximal operators to the scale of the Orlicz spaces, respectively.
In this article, we investigate the weighted norm inequalities for linear and multilinear
fractional integrals and maximal operators and Orlicz-fractional maximal operators in
Orlicz-Morrey spaces for multilinear version. One of the main results generalizes and
improves the weighted estimate of the Adams inequality in multi-Morrey spaces. More-
over, we extend the weighted estimates to endpoint cases.
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1. Introduction

This paper describes the weighted norm inequalities of multilinear operators Mα,m, Iα,m and M ~B,α

of Morrey and Orlicz-Morrey spaces for linear and multilinear version (we state the definitions of these
operators and function spaces below). We use the following notation: Let Rn be the n-dimensional Eu-
clidean space. For a set E ⊂ Rn, the symbols |E| and χE denote the Lebesgue measure and characteristic
function of E, respectively. Given a weight w and a measurable set E, let w(E) :=

´
E
w(x) dx. In this

paper, we suppose that the sides of all cubes are parallel to the coordinate axes. For all cube Q and all
a > 0, aQ denotes {ax : x ∈ Q}. D (Rn) denotes the set of all dyadic cubes on Rn and for one dyadic
cube Q0 ∈ D (Rn), let D(Q0) := {Q ∈ D (Rn) : Q ⊂ Q0}.

Operators M , Mα, and Iα are fundamental tools to study Harmonic analysis and potential theory (see
[5, 7, 8, 25, 29]). Recall these operators.

Definition 1.1. Given 0 < α < n, define

Iαf(x) :=

ˆ
Rn

f(y)

|x− y|n−α
dy.(1.1)

Given 0 ≤ α < n, define

Mαf(x) := sup
Q:cube

`(Q)α
 
Q

|f(y)|dy · χQ(x),(1.2)
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where  
Q

F (x)dx :=
1

|Q|

ˆ
Q

F (x)dx = mQ(F ).

In particular, we define Mf(x) := M0f(x), which is the Hardy-Littlewood maximal operator. Here and
below a tacit understanding is that f is measurable.

In this paper, we need the multilinear versions. The symbol ~f = (f1, . . . , fm) denotes the collection

of m measurable functions. For every cube Q, and a vector valued function ~f = (f1, . . . , fm), mQ

(
~f
)

writes
m∏
i=1

 
Q

fi(x)dx.

Definition 1.2. Given 0 < α < mn, ~f , we define

Iα,m

(
~f
)

(x) :=

ˆ
Rmn

f1(y1) · · · fm(ym)

|(x− y1, . . . , x− ym)|mn−α
d~y.(1.3)

Given 0 ≤ α < mn, ~f , we define

Mα,m

(
~f
)

(x) := sup
Q:cube

`(Q)αmQ

(
~f
)
χQ(x).(1.4)

The operator M denotes M0,m.

We know that many authors have investigated the boundedness of the linear and multilinear fractional
integrals Iα on some Morrey type spaces; for example, [1, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 28, 30]
et al. In particular, we are interested in theorem due to [1], which recovers the Hardy-Littlewood-Sobolev
inequality and is the origin of many papers. Firstly, we invoke the result in [1].

Proposition 1.3. Let 0 < α < n, 1 < p ≤ p0 <
n
α and 0 < q ≤ q0 < ∞. If 1

q0
= 1

p0
− α

n and q
q0

= p
p0

,

then
‖Iαf‖Mq0

q
≤ C ‖f‖Mp0

p
,

here, we define the Morrey norm ‖ · ‖Mp0
p

below.

Remark 1.4. Showing Proposition 1.3 in [1, 2], we can verify

|Iαf(x)| ≤ ‖f‖
1− p0q0
Mp0

1

Mf(x)
p0
q0 .(1.5)

Estimate (1.5) and M :Mp0
p →Mp0

p (This result is due to [2]) give the sharp result as follows:

‖Iαf‖Mq0
q
≤ ‖f‖

1− p0q0
Mp0

1

‖f‖
p0
q0

Mp0
p
.(1.6)

Considering the weighted norm estimate by straightly using estimate (1.5), we obtain mix type norm
inequalities as follows:

‖(Iαf)v‖Mq0
q
≤ ‖f‖

1− p0q0
Mp0

1

∥∥∥(Mf)v
q
p

∥∥∥ p0q0
Mp0

p

.(1.7)

However, (1.7) fails to recover the result in [21]. This paper shows that under the appropriate condition
of weights, some the product of weighted norms controls the following inequality

‖(Iαf)v‖Mq0
q
≤ C ‖fw‖

1− p0q0
X · ‖fw‖

p0
q0

Y ,(1.8)

here, the symbols X and Y are some Morrey type spaces, which the norms of X and Y satisfy ‖·‖X . ‖·‖Y .
The following is one example of problem setting in this paper for one linear version. Under the condition
1
q0

= 1
p0
− α

n and q
q0

= p
p0

, we show that

‖(Iαf)v‖Mq0
q
. ‖MA,α(fw)‖Mq0

q
.(1.9)
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Here, MA,α denotes the Orlicz-fractional maximal operator which is below. Under the appropriate con-
dition of a Young function which we define and describe in detail below, since estimate of ‖MA,αf‖Mq0

q

has similar construction of (1.6) (see Corollary 2.5), we can show that weighted norm of estimate (1.9)
controls (1.8).

Secondly, we invoke the following inequality (see [21, 26]).

Proposition 1.5. Let v be a weight on Rn, 0 < α < n, 1 < p ≤ p0 < ∞, 0 < q ≤ q0 < r0 ≤ ∞ and
a > 1. If 1

q0
= 1

p0
+ 1

r0
− α

n , q
q0

= p
p0

and ‖v‖Mr0
aq
<∞ then,

‖(Iαf)v‖Mq0
q
. ‖v‖Mr0

aq
‖f‖Mp0

p
.(1.10)

Remark 1.6. By a condition of weights and the index of fractional maximal type operator, we can unify
the conditions 1

q0
= 1

p0
− α

n and 1
q0

= 1
p0

+ 1
r0
− α

n in Propositions 1.3 and 1.5, respectively. In this case,

if [v, w] denotes one quantity of weights, we show the following type inequality.

‖(Iαf)v‖Mq0
q
. [v, w]

∥∥∥MA, np0
− n
q0

(fw)
∥∥∥
Mq0

q

.(1.11)

This paper recovers and improves the results due to [18, 21], which also generalize Propositions 1.3
and 1.5.

Next, we introduce the multilinear operators. The multilinear maximal operatorM acts onm Lebesgue
spaces’ product and is smaller than the m-fold product of the Hardy-Littlewood maximal function. This
operator is used to obtain precise control of the multilinear singular integral operators of the Calderón-
Zygmund type and to build a theory of weights adapted to the multilinear setting (see [24]). In [24,
p.1225], there is the prototype of Orlicz maximal operators for multilinear version, and we introduce
the generalized operators. Papers [13, 14] showed that the boundedness of rough multilinear fractional
integrals and maximal operators; In [13], in product Lp and weighed Lp spaces, on the other hand,
in [14], weighted estimates in multi-Morrey spaces. Besides, papers [9, 10, 11, 12, 15, 16] showed that

the boundedness of the commutators generated by linear and multilinear fractional integrals and ~b =
(b1, . . . , bm) in Morrey type spaces.

To consider the boundedness of multilinear fractional maximal and integrals, we introduce Morrey and
multi-Morrey spaces (see [22]).

Definition 1.7.

(1) Let 0 < p ≤ p0 <∞. One says that f ∈ Mp0
p (Rn) for f ∈ Lploc if the following norm or quasi-norm

is finite:

‖f‖Mp0
p

:= sup
Q:cube

|Q|
1
p0

( 
Q

|f(x)|pdx
) 1
p

<∞.(1.12)

(2) Let 0 < p1, . . . , pm < ∞ and 0 < p0 < ∞. Assume that 1
p0
≤ 1

p1
+ · · · + 1

pm
. Moreover, let

~P := (p1, p2, . . . , pm) be the collection m indices. One says that ~f = (f1, . . . , fm) ∈ Mp0
~P

(Rn) for

fi ∈ Lpiloc (i = 1, . . . ,m) if the following quantity is finite:∥∥∥~f∥∥∥
Mp0

~P

:= sup
Q:cube

|Q|
1
p0

m∏
i=1

( 
Q

|fi(yi)|pidx
) 1
pi

<∞.(1.13)

To state the main results precisely, we will describe the Young functions, Bp-condition, operators MB

and MB,α. As usual, one says that a function B : [0,∞)→ [0,∞) is a Young function if it is continuous,
convex and increasing satisfying B(0) = 0 and B(t)→∞ as t→∞. Define the B-average of a function
f over a cube Q employing the Luxemburg norm.
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Definition 1.8. Given a Young function B and a cube Q, define

‖f‖B,Q := inf

{
λ > 0 :

 
Q

B

(
|f(x)|
λ

)
dx ≤ 1

}
.(1.14)

A Young function B satisfies that

B(t) ∼= tB′(t) (t > 0)(1.15)

and

aB(t) ≤ B(at) and B

(
t

a

)
≤ B(t)

a
(a > 1).(1.16)

Estimates (1.16) entail

B(t)

t
≤ B(s)

s
(0 < t < s).(1.17)

Given a Young function B, we define the complementary Young function B̄ as follows:

B̄(t) := sup
s>0

(st−B(s)) (t > 0).(1.18)

Remark 1.9. The functions B and B̄ satisfy the following inequalities:

t ≤ B−1(t) · B̄−1(t) ≤ 2t (t > 0).(1.19)

(1.19) shows that (
B
)
(t) ∼= B(t).

We know the following as the generalized Hölder inequality to the scale of Orlicz spaces: 
Q

|f(y)g(y)|dy ≤ 2 ‖f‖B,Q ‖g‖B̄,Q .(1.20)

More generally, if A, B and C are Young functions such that for all t > 0, A−1(t)B−1(t) ≤ C−1(t), then

‖fg‖C,Q ≤ 2 ‖f‖A,Q ‖g‖B,Q .(1.21)

Definition 1.10. Given p, 1 < p < ∞, one says that a Young function B satisfies the Bp-condition if
there exists a constant c > 0 such that ˆ ∞

c

B(t)

tp+1
dt <∞.

The following occurs.

Remark 1.11. If 1 < p < q, then,

Bp $ Bq.(1.22)

By (1.14), we can define the Orlicz-fractional maximal operator.

Definition 1.12. Given 0 ≤ α < n and a Young function B, define the Orlicz-fractional maximal
operators

MB,α(f)(x) := sup
Q:cube

`(Q)α ‖f‖B,Q · χQ(x).(1.23)

Operator MB denotes MB,0.

Remark 1.13. Let 0 ≤ α < n. Given a Young function B, the following inequality holds (see [3, p.108]):

Mαf(x) .MB,α(f)(x).(1.24)

There is the following characterization in [27, Theorem 1.7 in pp.138-139].

Proposition 1.14. Let 1 < p <∞. Given a Young function B, the following statements are equivalent:
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(1) B ∈ Bp,
(2) MB : Lp → Lp.

There is the weak-type version for Proposition 1.14 in [4, Proposition 5.6 in p.100].

Proposition 1.15. Let 1 < p <∞. Given a Young function B, the following statements are equivalent:

(1) B(t) . tp (t ≥ 1),
(2) MB : Lp → Lp,∞.

We introduce Orlicz-Morrey spaces and their multilinear version.

Definition 1.16. Let 0 < r0 <∞ and B be a Young function. One says that f ∈Mr0
B for all measurable

functions f if the quasi-norm is finite:

‖f‖Mr0
B

:= sup
Q⊂Rn

|Q|
1
r0 ‖f‖B,Q .

Remark 1.17. Definition 1.16 corresponds to ϕ(t) = t
1
r0 and Φ ≡ B in [6, (2) in Definition 1.1]. Let

Φ be a Young function. Moreover, lets 1 ≤ r0 < ∞. Then Mr0
Φ (Rn) 6= {0} if and only if Φ(t) . tr0 for

t ≥ 1.

We introduce the multilinear version for Orlicz-Morrey spaces.

Definition 1.18. Let 0 < r0 <∞. Let ~A = (A1, A2, . . . , Am) be a collection of m Young functions. One

says that ~f = (f1, f2, . . . , fm) ∈Mr0
~A

(Rn) for all m measurable functions ~f if the quasi-norm is finite:

∥∥∥~f∥∥∥
Mr0

~A

:= sup
Q⊂Rn

|Q|
1
r0

m∏
i=1

‖fi‖Ai,Q .

To evaluate the estimates for the multilinear fractional integrals and maximal operators, we introduce
the Orlicz-fractional maximal operator for the multilinear version.

Definition 1.19. Given 0 ≤ α < mn and Ai (i = 1, . . . ,m) be Young functions, symbol ~A :=

(A1, . . . , Am) denotes a collection of m Young functions. For ~f = (f1, . . . , fm), we define

M ~A,α

(
~f
)

(x) := sup
Q:cube

`(Q)α
m∏
i=1

‖fi‖Ai,Q · χQ(x).(1.25)

Operator M ~A

(
~f
)

(x) denotes M ~A,0

(
~f
)

(x).

Remark 1.20. For every cube Q0, if x ∈ Q0, then M ~A,α

(
~f
)

(x) ≥ `(Q0)α
m∏
i=1

‖fi‖Ai,Q0
. This implies

that the following inequalities hold: Let 0 ≤ α < mn, 0 < q ≤ q0 <∞ and 0 < p0 <∞. If 1
q0

= 1
p0
− α

n ,

then, ∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

≥
∥∥∥~f∥∥∥

Mp0
~A

.(1.26)

For each 1 ≤ p ≤ ∞, p′ will denote the dual exponent of p, i.e., p′ = p
p−1 with the usual modifications

1′ =∞ and ∞′ = 1.
We organize the rest of this paper as follows: In Section 2, we formulate the main results, in Section

3, we list some lemmas, and in Section 4, we prove the main results.
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2. Main results

We establish the boundedness of the Orlicz-fractional maximal operator for the multilinear version for
unweighted version.

Theorem 2.1. Let 0 ≤ α < mn, 1 ≤ p1, . . . , pm < ∞, 0 < p ≤ p0 < ∞, 0 < q ≤ q0 < ∞ and
Ai (i = 1, 2, . . . ,m) be Young functions. If 1

q0
= 1

p0
− α

n and q
q0

= p
p0

, then,∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

.
∥∥∥~f∥∥∥1− p0q0

Mp0
~A

∥∥∥M ~A

(
~f
)∥∥∥ p0q0
Mp0

p

.(2.1)

Remark 2.2. The proof of Theorem 2.1 originates from [3]. By Theorem 2.1 and Lemma 3.3 below, we
obtain the following inequalities:

Theorem 2.3. Under the condition of Theorem 2.1, we have the followings:

(1) If pi > 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
and Ai ∈ Bpi (i = 1, 2, . . . ,m), then,∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

.
∥∥∥~f∥∥∥1− p0q0

Mp0
~A

∥∥∥~f∥∥∥ p0q0
Mp0

~P

.(2.2)

(2) If p1 = p2 = · · · = pm = 1, then,∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

.
∥∥∥~f∥∥∥1− p0q0

Mp0
~A

∥∥∥~f∥∥∥ p0q0
Mp0

~D

.(2.3)

Here, ~D(t) := (A1(t) log+(t), . . . , Am(t) log+(t)).
(3) If p < 1

m , then, ∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

.
∥∥∥~f∥∥∥

Mp0
~A

.(2.4)

Remark 2.4. Under the condition of (1) in Theorem 2.3, by Propositions 1.14 and 1.15,
∥∥∥~f∥∥∥

Mp0
~A

.∥∥∥~f∥∥∥
Mp0

~P

holds. Theorem 2.3 partially extend the result in [18, Theorem 3] to multilinear version.

Corollary 2.5. Let 0 ≤ α < n, 0 < p ≤ p0 <
n
α , 0 < q ≤ q0 <∞, 1

q0
= 1

p0
− α

n , q
q0

= p
p0

and A be Young

function.

(1) If p > 1 and A ∈ Bp, then,

‖MA,αf‖Mq0
q
. ‖f‖

1− p0q0
Mp0

A

‖f‖
p0
q0

Mp0
p
.(2.5)

(2) If p = 1, then,

‖MA,αf‖Mq0
q
. ‖f‖

1− p0q0
Mp0

A

‖f‖
p0
q0

Mp0
D

.(2.6)

Here, D(t) = A(t) log+ t.
(3) If p < 1, then,

‖MA,αf‖Mq0
q
. ‖f‖Mp0

A
.(2.7)

Secondly, we investigate the weighted estimates for the multilinear fractional integrals and maximal
operators in multi-Morrey spaces. To simplify the notation, we introduce multiple weights constants: Let
v be a weight and ~w = (w1, . . . , wm) be a collection of m weights. Let Ai (i = 1, . . . ,m) and B be Young
functions. Let 0 ≤ α < mn, 0 < p0 < q0 <∞ and 0 < r0 <∞. We define the following quantity

[v, ~w]p0,q0,r0,α,B, ~A := sup
Q⊂Q′

(
|Q|
|Q′|

) 1
r0

|Q′|
1
q0
− 1
p0

+α
n ‖v‖B,Q

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q′

.(2.8)
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In particular, quantity [v, ~w]p0,q0,r0,α,q, ~A denotes [v, ~w]p0,q0,r0,α,B, ~A for the case of B(t) ∼= tq (see the 5th

index in (2.8)).

Remark 2.6. In this paper, for a > 1, we choose r0 ∈ {q0, aq0}. Quantity (2.8) generalizes several
quantities in [21, pp.152-153]. For example, we consider the following case:

[v, ~w]
s0,q0

q, ~P
= sup
Q⊂Q′

(
|Q|
|Q′|

) 1
q0

|Q′|
1
s0

( 
Q

v(x)qdx

) 1
q
m∏
i=1

( 
Q′
wi(x)−p

′
idx

) 1
p′
i
.(2.9)

Taking r0 = q0, 1
q0

= 1
p0

+ 1
s0
− α

n , v(t) = tq and Ai(t) = tpi (i = 1, 2, . . . ,m), (2.8) corresponds to (2.9).

Theorem 2.7. Let 0 ≤ α < mn, 0 < p0 <∞, 0 < q ≤ q0 <∞, p0 < q0 and a > 1. Let Ai (i = 1, . . . ,m)
and B be Young functions.

(1) If [v, ~w]p0,q0,q0,α,q, ~A <∞, then,∥∥∥Mα,m

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]p0,q0,q0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.(2.10)

Here, ~fw := (f1w1, f2w2, . . . , fmwm).
(2) If α > 0, 0 < q ≤ 1 and [v, ~w]p0,q0,aq0,α,q, ~A <∞, then,∥∥∥Iα,m (~f) v∥∥∥

Mq0
q

. [v, ~w]p0,q0,aq0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.(2.11)

(3) If α > 0, 1 < q <∞, B ∈ Bq′ and [v, ~w]p0,q0,aq0,α,B, ~A <∞, then,∥∥∥Iα,m (~f) v∥∥∥
Mq0

q

. [v, ~w]p0,q0,aq0,α,B, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.(2.12)

Remark 2.8. Theorems 2.3 and 2.7 improve the results in [21, Theorem 3.3 in p.152]: For a > 1

sufficiently small, pi > 1 (i = 1, 2, . . . ,m) and q > 1, if Ai(t) = tpi/a and B(t) = taq, then Āi(t) ∼= t(pi/a)′

and B̄(t) ∈ Bq′ hold, respectively. Theorem 2.7 implies that under the appropriate condition of weights,
Orlicz-fractional maximal operator controls weighted norms of fractional integrals and maximal operators.

We invoke the results in [21, Theorem 3.3 in p.152] which Theorems 2.3 and 2.7 enhance.

Corollary 2.9. Let v be a weight on Rn and ~w = (w1, . . . , wm) be a collection of m weights on Rn. Let

0 ≤ α < mn, 0 < p ≤ p0 < ∞, 0 < q ≤ q0 < r0 ≤ ∞ and 1 < a < min
{
r0
q0
, p1, . . . , pm

}
. Suppose that

1
q0

= 1
p0

+ 1
r0
− α

n and q
q0

= p
p0

. Taking ~A(t) =
(
t
p1
a , . . . , t

pm
a

)
and B(t) = taq, we have the followings:

(1) If [v, ~w]p0,q0,q0,α,q, ~A <∞, then,∥∥∥Mα,m

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]p0,q0,q0,α,q, ~A

∥∥∥~fw∥∥∥
Mp0

~P

.

(2) Let α > 0 and 0 < q ≤ 1. If [v, ~w]p0,q0,aq0,α,q, ~A <∞, then∥∥∥Iα,m (~f) v∥∥∥
Mq0

q

. [v, ~w]p0,q0,aq0,α,q, ~A

∥∥∥~fw∥∥∥
Mp0

~P

.

(3) For α > 0 and q > 1, if [v, ~w]p0,q0,aq0,α,B, ~A <∞, then∥∥∥Iα,m (~f) v∥∥∥
Mq0

q

. [v, ~w]p0,q0,aq0,α,B, ~A

∥∥∥~fw∥∥∥
Mp0

~P

.

Thirdly, we can generalize (1) in Theorem 2.7.
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Theorem 2.10. Let 0 ≤ α < mn, 0 < p0 < ∞, 0 < q ≤ q0 < ∞ and p0 < q0. Let Ai, Bi and Ci
(i = 1, 2, . . . ,m) be Young functions. For each Ai, Bi and Ci, we assume that A−1

i (t)B−1
i (t) ≤ C−1

i (t) (i =

1, 2, . . . ,m). Let ~A = (A1, . . . , Am), ~B =
(
B1, . . . , Bm

)
and ~C = (C1, . . . , Cm). If [v, ~w]

p0,q0,q0,α,q, ~B
<∞,

then we have ∥∥∥M~C,α

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]
p0,q0,q0,α,q, ~B

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.(2.13)

Theorems 2.1 and 2.10 give the following estimates:

Corollary 2.11. Under the condition of Theorem 2.10, add the assumption 1
q0

= 1
p0
− α

n and q
q0

= p
p0

.

(1) pi > 1, 1
p = 1

p1
+ · · ·+ 1

pm
and Ai ∈ Bpi (i = 1, 2, . . . ,m), then∥∥∥M~C,α

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]
p0,q0,q0,α,q, ~B

∥∥∥~fw∥∥∥1− p0q0

Mp0
~A

∥∥∥~fw∥∥∥ p0q0
Mp0

~P

.(2.14)

(2) If p1 = p2 = · · · = pm = 1, then,∥∥∥M~C,α

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]
p0,q0,q0,α,q, ~B

∥∥∥~fw∥∥∥1− p0q0

Mp0
~A

∥∥∥~fw∥∥∥ p0q0
Mp0

~D

.(2.15)

(3) If p < 1
m , then, ∥∥∥M~C,α

(
~f
)
v
∥∥∥
Mq0

q

. [v, ~w]
p0,q0,q0,α,q, ~B

∥∥∥~fw∥∥∥
Mp0

~A

.(2.16)

3. Some lemmas

In Sections 3 and 4, we assume that fi(x) ≥ 0 a.e. x ∈ Rn (i = 1, . . . ,m). Firstly, to show (3) in
Lemma 3.3 and (4) in Lemma 3.12 below, we invoke the next lemma (see [27, Lemma 4.1 in p.146]):

Lemma 3.1. Suppose that B is a Young function and that f is a non-negative bounded function with
compact support. For each λ > 0,

|{x ∈ Rn : MBf(x) > λ}| ≤ C0

ˆ
{x∈Rn:2f(x)>λ}

B

(
f(x)

λ

)
dx.

Remark 3.2. We use constant C0 in Lemma 3.1 below.

Lemma 3.3. Let 1 ≤ p1, . . . , pm <∞, 0 < p ≤ p0 <∞ and Ai (i = 1, 2, . . . ,m) be Young functions.

(1) If pi > 1, 1
p = 1

p1
+ · · ·+ 1

pm
and Ai ∈ Bpi (i = 1, 2, . . . ,m), then,∥∥∥M ~A

(
~f
)∥∥∥
Mp0

p

.
∥∥∥~f∥∥∥

Mp0
~P

.(3.1)

(2) If p = 1
m , then ∥∥∥M ~A

(
~f
)∥∥∥
Mp0

p

.
∥∥∥~f∥∥∥

Mp0
~D

.(3.2)

(3) If p < 1
m , then ∥∥∥M ~A

(
~f
)∥∥∥
Mp0

p

.
∥∥∥~f∥∥∥

Mp0
~A

.(3.3)

Proof. (1) Fix Q0 ⊂ Rn a cube. fj = fjχ3Q0
+ fjχ(3Q0)C = f0

j + f∞j (j = 1, 2, . . . ,m). Then,

M ~A

(
~f
)

(x) ≤M ~A

(
~f0

)
(x) +

∑
~̀6=~0

M ~A

(
~f`

)
(x),
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where ~f0 =
(
f0

1 , . . . , f
0
m

)
, ~f` =

(
f `11 , . . . , f `mm

)
and ~̀ = (`1, . . . , `m) ∈ {0,∞}m. We take a cube

Q ⊂ Rn that the cube Q satisfies Q ∩Q0 6= ∅ and assume that x ∈ Q ∩Q0. In the case ~̀ 6= ~0, there

exists at least i ∈ {1, 2, . . . ,m} such that `i =∞. If Q ∩ (3Q0)C = ∅, for this index i,
∥∥∥f `ii ∥∥∥

Ai,Q
= 0

holds. This shows that
∏m
j=1

∥∥∥f `jj ∥∥∥
Aj ,Q

= 0 holds. Therefore, we may assume that Q ∩ (3Q0)C 6= ∅.
In this situation, note that Q0 ⊂ 3Q.
Keeping this in mind, we obtain

M ~A

(
~f`

)
(x) . sup

Q0⊂3Q

m∏
i=1

‖fi‖Ai,3Q = sup
Q0⊂Q′

m∏
i=1

‖fi‖Ai,Q′ .

Since Ai ∈ Bpi (i = 1, 2, . . . ,m), Proposition 1.15 gives the inequality:

‖fi‖Ai,Q′ .
( 

Q′
|fi(yi)|pi dyi

) 1
pi

.(3.4)

Therefore, we have

sup
Q0⊂Q′

m∏
i=1

‖fi‖Ai,Q′ . sup
Q0⊂Q′

m∏
i=1

( 
Q′
|fi(yi)|pi dyi

) 1
pi

.

By (1.13),

M ~A

(
~f`

)
(x) .

∥∥∥~f∥∥∥
Mp0

~P

sup
Q0⊂Q′

|Q′|−
1
p = |Q0|−

1
p

∥∥∥~f∥∥∥
Mp0

~P

.

Therefore, we get the following inequality:

|Q0|
1
p0

( 
Q0

M ~A

(
~f`

)
(x)pdx

) 1
p

.
∥∥∥~f∥∥∥

Mp0
~P

.

On the other hand, we evaluate M ~A

(
~f0

)
(x). Changing the order of ‘sup’ and ‘

∏
’, we obtain

M ~A

(
~f0

)
(x) ≤

m∏
i=1

MAi

(
f0
i

)
(x).

By Hölder’s inequality for 1
p = 1

p1
+ · · ·+ 1

pm
,( 

Q0

(
m∏
i=1

MAi

(
f0
i

)
(x)

)p
dx

) 1
p

≤
m∏
i=1

( 
Q0

(
MAi

(
f0
i

)
(x)
)pi

dx

) 1
pi

.

Since Ai ∈ Bpi (i = 1, 2, . . . ,m), Proposition 1.14 implies that

m∏
i=1

( 
Q0

(
MAi

(
f0
i

)
(x)
)pi

dx

) 1
pi

.
m∏
i=1

( 
3Q0

|fi(x)|pi dx
) 1
pi

.

Therefore, we obtain

|Q0|
1
p0

( 
Q0

M ~A

(
~f0

)
(x)pdx

) 1
p

.
∥∥∥~f∥∥∥

Mp0
~P

.

Hence, we get the desired result.

(2) Changing the order ‘sup’ and ‘
∏

’ again, we obtain

M ~A

(
~f
)

(x) ≤
m∏
i=1

MAi (fi) (x).(3.5)
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Moreover, since m = 1 + · · ·+ 1︸ ︷︷ ︸
m

, by Hölder’s inequality, we obtain for every cube Q0,

( 
Q0

M ~A

(
~f
)

(x)
1
m dx

)m
≤

( 
Q0

m∏
i=1

MAi (fi) (x)
1
m dx

)m
≤

m∏
i=1

 
Q0

MAifi(x)dx.(3.6)

In [23, p. 371 in Theorem 1.5], we showed the following inequalities: For every cube Q0, 
Q0

MAf(x)dx . ‖f‖D,Q0
.(3.7)

Estimates (3.6) and (3.7) imply that

|Q0|
1
p0

( 
Q0

M ~A

(
~f
)

(x)
1
m dx

)m
.
∥∥∥~f∥∥∥

Mp0
~D

.(3.8)

(3) Note thatˆ
Q0

M ~A

(
~f
)

(x)pdx

= p

ˆ ∞
0

λp−1
∣∣∣{x ∈ Q0 :M ~A

(
~f
)

(x) > λ
}∣∣∣ dλ

= p

(ˆ ∏m
i=1‖fi‖Ai,Q0

0

+

ˆ ∞
∏m
i=1‖fi‖Ai,Q0

)
λp−1

∣∣∣{x ∈ Q0 :M ~A

(
~f
)

(x) > λ
}∣∣∣ dλ

= p(I + II).

(3.9)

We evaluate I:

I ≤
ˆ ∏m

i=1‖fi‖Ai,Q0

0

λp−1|Q0|dx = |Q0|
[
λp

p

]∏m
i=1‖fi‖Ai,Q0

0

=
1

p
|Q0|

m∏
i=1

‖fi‖pAi,Q0
.(3.10)

Next, we evaluate II. By (3.5),

II ≤
ˆ ∞
∏m
i=1‖fi‖Ai,Q0

λp−1

∣∣∣∣∣
{
x ∈ Q0 :

m∏
i=1

MAi (fi) (x) > λ

}∣∣∣∣∣ dλ.(3.11)

For λ > 0, we take λi (i = 1, 2, . . . ,m) as follows:

λi =

(
λ∏m

j=1 ‖fj‖Aj ,Q0

) 1
m

· ‖fi‖Ai,Q0
.(3.12)

Then, arithmetic shows
∏m
i=1 λi = λ holds. Hence, we have

II ≤
ˆ ∞
∏m
i=1‖fi‖Ai,Q0

λp−1

∣∣∣∣∣
{
x ∈ Q0 :

m∏
i=1

MAi (fi) (x) >
m∏
i=1

λi

}∣∣∣∣∣ dλ.(3.13)

Moreover, considering the contraposition,{
x ∈ Q0 :

m∏
i=1

MAi (fi) (x) >
m∏
i=1

λi

}
⊂

m⋃
i=1

{x ∈ Q0 : MAi (fi) (x) > λi} .(3.14)

By (3.14),

II ≤
m∑
j=1

ˆ ∞
∏m
i=1‖fi‖Ai,Q0

λp−1
∣∣{x ∈ Q0 : MAj (fj) (x) > λj

}∣∣ dλ.(3.15)
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By Lemma 3.1 and the definition of λj ,

II ≤ C0

m∑
j=1

ˆ ∞
∏m
i=1‖fi‖Ai,Q0

λp−1

(ˆ
Q0

Aj

(
fj(x)

λj

)
dx

)
dλ

= C0

m∑
j=1

ˆ ∞
∏m
i=1‖fi‖Ai,Q0

ˆ
Q0

λp−1Aj

 fj(x)

‖fj‖Aj,,Q0

·

(∏m
k=1 ‖fk‖Ak,Q0

λ

) 1
m

 dxdλ.

(3.16)

Since
∏m
i=1 ‖fi‖Ai,Q0

< λ, (1.16) gives

II ≤ C0

(
m∏
k=1

‖fk‖Ak,Q0

) 1
m
(ˆ ∞

∏m
i=1‖fi‖Ai,Q0

λp−1− 1
m dλ

)

×
m∑
j=1

( 
Q0

Aj

(
fj(x)

‖fj‖Aj,,Q0

)
dx

)
|Q0|

=
C0

1
m − p

(
m∏
i=1

‖fi‖Ai,Q0

)p m∑
j=1

( 
Q0

Aj

(
fj(x)

‖fj‖Aj,,Q0

)
dx

)
|Q0|.

(3.17)

By (1.14),

II ≤ C0
m2

1−mp
|Q0|

(
m∏
i=1

‖fi‖Ai,Q0

)p
.(3.18)

(3.10) and (3.18) imply that

|Q0|
1
p0

( 
Q0

M ~A

(
~f
)

(x)pdx

) 1
p

≤
(

1 + C0
m2p

1−mp

) 1
p ∥∥∥~f∥∥∥

Mp0
~A

.(3.19)

�

To analyze Iα,m

(
~f
)

(x), the following is an essential lemma (see [21, p.157]).

Lemma 3.4. For a dyadic cube Q0, fix x ∈ Q0. Let γ0 = m3Q0

(
~f
)

and A0 =
(
2n+132nm

)m
. Set, for

k = 1, 2, . . . ,

Dk =
⋃{

Q ∈ D(Q0), Q 3 x,m3Q

(
~f
)
> γ0A

k
0

}
.

Considering the maximal cubes concerning inclusion, we can write

Dk =
⋃
j

Qk,j .

Here, the cubes {Qk,j} has the following properties:

(1) Qk,j ∈ D(Q0) are nonoverlapping.
(2) The following inequalities hold:

γ0A
k
0 < m3Qk,j

(
~f
)
≤ 2mnγ0A

k
0 .(3.20)

Moreover, let E0 = Q0\D1 and Ek,j = Qk,j\Dk+1. Then, the following properties hold:

(3) {E0} and {Ek,j} are a disjoint family of sets which decomposes Q0.
(4) The sets E0 and Ek,j satisfy

|E0| ≤ |Q0| ≤ 2|E0| and |Ek,j | ≤ |Qk,j | ≤ 2|Ek,j |.(3.21)
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(5) Let

D0(Q0) :=
{
Q ∈ D(Q0) : m3Q

(
~f
)
> γ0A0

}
,

Dk,j(Q0) :=
{
Q ∈ D(Q0) : Q ⊂ Qk,j , γ0A

k
0 < m3Q

(
~f
)
≤ γ0A

k+1
0

}
.

(3.22)

Then, D(Q0) = D0(Q0) ∪

⋃
k,j

Dk,j(Q0)

 holds and we have

ˆ
Q0

Iα,m

(
~f0

)
(x)v(x)g(x)dx

. `(Q0)αm3Q0

(
~f
)
mQ0 (vg) |Q0|+

∑
k,j

`(Qk,j)
αm3Qk,j

(
~f
)
mQk,j (vg) |Qk,j |.

(3.23)

Next, in the proof of Theorem 2.7, we use the following principal lemma (see [21, p.156]). To simplify

the notation, let ~Im(t) := (t, t, . . . , t)︸ ︷︷ ︸
m

.

Lemma 3.5. Let v be a weight on Rn. For a dyadic cube Q0, fix ~f0 = (f1χ3Q0
, . . . , fmχ3Q0

). Adding tq

to ~Im(t), let ~Im,q(t) =
(
~Im(t), tq

)
be the collection m+ 1 Young functions. Then, there exists a constant

C independent of v, ~f and Q0 such that the following inequalities hold:

(1) Let 0 ≤ α < mn. If 0 < q <∞, then∥∥∥Mα,m

(
~f0

)
v
∥∥∥
Lq(Q0)

≤ C
∥∥∥M̃~Im,q,α

(
~f0, v

)∥∥∥
Lq(Q0)

.(3.24)

Here
(
~f, v
)

:= (f1, . . . , fm, v) and

M̃~Im,q,α

(
~f, v
)

(x) := sup
Q:cube

`(Q)αm3Q

(
~f
)( 

Q

v(y)qdy

) 1
q

χQ(x).

(2) Let 0 < α < mn. If 0 < q ≤ 1, then∥∥∥Iα,m (~f0

)
v
∥∥∥
Lq(Q0)

≤ C
∥∥∥M̃~Im,q,α

(
~f0, v

)∥∥∥
Lq(Q0)

.(3.25)

(3) Let 0 < α < mn. If q > 1, then∥∥∥Iα,m (~f0

)
v
∥∥∥
Lq(Q0)

≤ C
∥∥∥M̃~Im,q,α

(
~f0, v

)∥∥∥
Lq(Q0)

.(3.26)

Remark 3.6. Lemma 3.5 implies that the norm of m+1-fold multilinear type operator controls weighted
norm of m-fold multilinear fractional integrals and maximal operator. Even one linear case, we need to
consider the estimate of bilinear type maximal operator. To show (3) of Theorem 2.7, we need to modify
(3.26) to Orlicz-fractional type maximal operator.

Lemma 3.7. Let v be a weight on Rn and B be a Young function. Adding B(t) to ~Im(t), let
~Im,B(t) =

(
~Im(t), B(t)

)
be the collection of m + 1 Young functions. For a dyadic cube Q0, fix

~f0 = (f1χ3Q0
, . . . , fmχ3Q0

). If q > 1 and B ∈ Bq′ , then,∥∥∥Iα,m (~f0

)
v
∥∥∥
Lq(Q0)

.
∥∥∥M̃~Im,B ,α

(
~f0, v

)∥∥∥
Lq(Q0)

.(3.27)

Here,

M̃~Im,B ,α

(
~f, v
)

(x) := sup
Q:cube

`(Q)αm3Q

(
~f
)
‖v‖B,Q χQ(x).
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Proof. Let g ∈ Lq
′
(Q0) such that ‖g‖Lq′ (Q0) = 1, supp (g) ⊂ Q0, g(x) ≥ 0 a.e. x ∈ Q0. By duality

argument, we analyze ˆ
Q0

Iα,m

(
~f0

)
(x)v(x)g(x)dx.

By (3.23), ˆ
Q0

Iα,m

(
~f0

)
(x)v(x)g(x)dx

. `(Q0)αm3Q0

(
~f
)
mQ0

(vg) |Q0|+
∑
k,j

`(Qk,j)
αm3Qk,j

(
~f
)
mQk,j (vg) |Qk,j |.

(3.28)

By (1.20) and (3.21),

`(Qk,j)
αm3Qk,j

(
~f
)
mQk,j (vg) |Qk,j | ≤ 4`(Qk,j)

αm3Qk,j

(
~f
)
‖v‖B,Qk,j ‖g‖B,Qk,j |Ek,j |.(3.29)

Since |Ek,j | =
´
Ek,j

dx,

`(Qk,j)
αm3Qk,j

(
~f
)
‖v‖B,Qk,j ‖g‖B,Qk,j |Ek,j |

=

ˆ
Ek,j

`(Qk,j)
αm3Qk,j

(
~f
)
‖v‖B,Qk,j ‖g‖B,Qk,j dx

≤
ˆ
Ek,j

M̃~Im,B ,α

(
~f0, v

)
(x)MB̄g(x)dx,

(3.30)

A similar argument to (3.29) and (3.30) gives

`(Q0)α

(
m∏
i=1

 
3Q0

fi(yi)dyi

) 
Q0

v(x)g(x)dx|Q0|

.
ˆ
E0

M̃~Im,B ,α

(
~f0, v

)
MB̄g(x)dx.

(3.31)

Estimates (3.28)-(3.31) imply thatˆ
Q0

Iα,m

(
~f0

)
(x)v(x)g(x)dx .

ˆ
Q0

M̃~Im,B ,α

(
~f0, v

)
(x)MB̄g(x)dx.(3.32)

By the Hölder inequality for q > 1,ˆ
Q0

M̃~Im,B ,α

(
~f0, v

)
(x)MB̄g(x)dx

.

(ˆ
Q0

M̃~Im,B ,α

(
~f0, v

)
(x)qdx

) 1
q
(ˆ

Q0

MB̄g(x)q
′
dx

) 1
q′

.

(3.33)

Since B ∈ Bq′ , by Proposition 1.14,(ˆ
Q0

MB̄g(x)q
′
dx

) 1
q′

. ‖g‖Lq′ (Q0) = 1.(3.34)

Estimates (3.32)-(3.34) imply that

ˆ
Q0

Iα,m

(
~f0

)
(x)v(x)g(x)dx .

(ˆ
Q0

M̃~Im,B ,α

(
~f0, v

)
(x)qdx

) 1
q

.(3.35)

�

By [4, Remark 5.12 in p.102], Lemma 3.8 holds:
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Lemma 3.8. If 1 < q <∞ and B(t) . tq
′

(t ≥ 1), then, tq . B(t).

Lemma 3.9. Given 0 ≤ α < n, the followings hold:

(1) For all x ∈ Rn,

Mα,m

(
~f
)

(x) ∼=Mα,m,3D

(
~f
)

(x).(3.36)

Here, Mα,m,3D

(
~f
)

(x) := sup
x∈Q∈D(Rn)

`(3Q)α
 

3Q

|f(y)|dy.

(2) Let ~A = (A1, . . . , Am) be collection of m Young functions. For all x ∈ Rn,

M ~A,α

(
~f
)

(x) ∼=M ~A,α,3D

(
~f
)

(x).(3.37)

Here, M ~A,α,3D

(
~f
)

(x) := sup
x∈Q∈D(Rn)

`(3Q)α
m∏
i=1

‖fi‖Ai,3Q.

The proof of Lemma 3.9 originates from [23] (see also [27, proof of Lemma 4.1]).

Proof. Fix a point x ∈ Rn. It suffices to verifyM ~A,α

(
~f
)

(x) .M ~A,α,3D

(
~f
)

(x). For every cube Q ⊂ Rn

such that Q 3 x, there exists a unique integer k ∈ Z such that 2−(k+1)n ≤ |Q| < 2−kn. Then, we can
choose dyadic cubes Ji (i = 1, 2, . . . , 2n) such that |Ji| = 2−kn and the dyadic cubes Ji (i = 1, 2, . . . , 2n)
cover Q. That is,

Q ⊂
2n⋃
i=1

Ji(3.38)

and

|Q| < |Ji| ≤ 2n|Q|.(3.39)

Hence,

(3.40) `(Q)α
m∏
j=1

‖fj‖Aj ,Q = `(Q)α
m∏
j=1

‖fjχJ‖Aj ,Q ,

where J :=
2n⋃
i=1

Ji. Obviously, for i = 1, 2, . . . , 2n,

|J | = 2n|Ji|.(3.41)

By (3.38),

`(Q)α
m∏
j=1

‖fjχJ‖Aj ,Q ≤ `(Q)α
m∏
j=1

2n∑
i=1

‖fjχJi‖Aj ,Q .(3.42)

By (3.39), for j = 1, 2, . . . ,m,

‖fjχJi‖Aj ,Q ≤ inf

{
λj > 0 :

2n

|Ji|

ˆ
Ji

Aj

(
fj(x)

λj

)
dx ≤ 1

}
.(3.43)

Since Ji ⊂ 3J1,

inf

{
λj > 0 :

2n

|Ji|

ˆ
Ji

Aj

(
fj(x)

λj

)
dx ≤ 1

}
≤ inf

{
λj > 0 :

6n

|3J1|

ˆ
3J1

Aj

(
fj(x)

λj

)
dx ≤ 1

}
.

(3.44)
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By (1.16),

(3.45) inf

{
λj > 0 :

6n

|3J1|

ˆ
3J1

Aj

(
fj(x)

λj

)
dx ≤ 1

}
≤ 6n ‖fj‖Aj ,3J1 .

Estimates (3.40)–(3.45) give

`(Q)α
m∏
j=1

‖fj‖Aj ,Q ≤ 6mn`(3J1)α
m∏
j=1

‖fj‖Aj ,3J1 .(3.46)

Since the cube J1 3 x is one dyadic cube, we obtain the desired equivalent. �

Similarly to the proof of Lemma 3.9, we can show that the ordinary Morrey spaces are the equivalence
of the dyadic Morrey spaces:

Lemma 3.10. For 0 < p ≤ p0 <∞ and F ∈ Lploc, we have

‖F‖Mp0
p

∼= ‖F‖Mp0
p,D

,(3.47)

where,

‖F‖Mp0
p,D

:= sup
Q∈D(Rn)

|Q|
1
p0

( 
Q

|F (x)|pdx
) 1
p

.

Lemma 3.11. For x ∈ Q0 and ~f = (f1, . . . , fm),

Iα,m

(
~f0

)
(x) .

∑
Q∈D(Q0)

`(Q)αm3Q

(
~f
)
χQ(x).(3.48)

To analyze M~C,α,3D (f1χ3Q0
, . . . , fmχ3Q0

) (x) for Q0 ∈ D(Rn), the following is an essential Lemma.

Lemma 3.12. For a dyadic cube Q0, fix x ∈ Q0. Let γ1 := `(3Q0)α
m∏
i=1

‖fi‖Ci,3Q0
and A1 >

max {(2 · 3nC0m)m, 2mn}. Here, the constant C0 is in Lemma 3.1. Set, for k = 1, 2, . . . ,

Dk =
⋃{

Q ∈ D(Q0), Q 3 x, `(3Q)α
m∏
i=1

‖fi‖Ci,3Q > γ1A
k
1

}
.

Considering the maximal cubes concerning inclusion, we can write

Dk :=
⋃
j

Qk,j .

Then, the cubes {Qk,j} has the following properties:

(1) Qk,j ∈ D(Q0) are nonoverlapping.
(2) The following inequalities hold:

γ1A
k
1 < `(3Qk,j)

α
m∏
i=1

‖fi‖Ci,3Qk,j ≤ 2mnγ1A
k
1 .(3.49)

Let E0 := Q0\D1 and Ek,j = Qk,j\Dk+1. Then, the sets E0 and Ek,j have the following properties:

(3) {E0} and {Ek,j} are a disjoint family of sets which decomposes Q0.
(4) The sets E0 and Ek,j satisfy that

|E0| ≤ |Q0| ≤ 2|E0| and |Ek,j | ≤ |Qk,j | ≤ 2|Ek,j |.(3.50)

Lemma 3.1 gives the proof of Lemma 3.12, which originates from [21, p.158].
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Proof of Lemma 3.12. Note that

Qk,j ∩Dk+1

⊂

{
x ∈ Qk,j : Q 3 x,Q ∈ D(Q0), Q ⊂ Qk,j , `(3Q)α

m∏
i=1

‖fi‖Ci,3Q > γ1A
k+1
1

}

⊂

{
x ∈ Qk,j :M~C

(
f1χ3Qk,j , . . . , fmχ3Qk,j

)
(x) >

γ1A
k+1
1

`(3Qk,j)α

}
.

(3.51)

Changing the order of ‘sup’ and ‘
∏

’, we obtain{
x ∈ Qk,j :M~C

(
f1χ3Qk,j , . . . , fmχ3Qk,j

)
(x) >

γ1A
k+1
1

`(3Qk,j)α

}

⊂

{
x ∈ Qk,j :

m∏
i=1

MCi

(
fiχ3Qk,j

)
(x) >

γ1A
k+1
1

`(3Qk,j)α

}
.

(3.52)

Letting Γi :=

(
γ1A

k+1
1

`(3Qk,j)α

) 1
m ‖fi‖Ci,3Qk,j(
‖f1‖C1,3Qk,j

· · · ‖fm‖Cm,3Qk,j
) 1
m

, we have
m∏
i=1

Γi =
γ1A

k+1
1

`(3Qk,j)α
. Consider-

ing the contraposition of (3.52), we can show that{
x ∈ Qk,j :

m∏
i=1

MCi

(
fiχ3Qk,j

)
(x) >

γ1A
k+1
1

`(3Qk,j)α

}

⊂
m⋃
i=1

{
x ∈ Qk,j : MCi

(
fiχ3Qk,j

)
(x) > Γi

}
.

(3.53)

By Lemma 3.1, for i = 1, 2, . . . ,m,∣∣{x ∈ Qk,j : MCi

(
fiχ3Qk,j

)
(x) > Γi

}∣∣ ≤ C0

ˆ
3Qk,j

Ci

(
fi(x)

Γi

)
dx.(3.54)

By the definition of Γi,ˆ
3Qk,j

Ci

(
fi(x)

Γi

)
dx

=

ˆ
3Qk,j

Ci

 2n

A
1
m
1

(
`(3Qk,j)

α ‖f1‖C1,3Qk,j
· · · ‖fm‖Cm,3Qk,j

2mnγ1Ak1

) 1
m

· fi(x)

‖fi‖Ci,3Qk,j

 dx

(3.55)

Since A1 > 2mn and (3.49), applying (1.16),

ˆ
3Qk,j

Ci

 2n

A
1
m
1

(
`(3Qk,j)

α ‖f1‖C1,3Qk,j
· · · ‖fm‖Cm,3Qk,j

2mnγ1Ak1

) 1
m

· fi(x)

‖fi‖Ci,3Qk,j

 dx

≤ 2n

A
1
m
1

(
`(3Qk,j)

α ‖f1‖C1,3Qk,j
· · · ‖fm‖Cm,3Qk,j

2mnγ1Ak1

) 1
m ˆ

3Qk,j

Ci

(
fi(x)

‖fi‖Ci,3Qk,j

)
dx.

(3.56)

By (1.14),

ˆ
3Qk,j

Ci

(
fi(x)

‖fi‖Ci,3Qk,j

)
dx ≤ 3n|Qk,j |.(3.57)

Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

69



Estimates (3.51)-(3.57) give

|Qk,j ∩Dk+1| ≤
(

(3nC0m)
m

A1

) 1
m

|Qk,j |.(3.58)

Since A1 > (2 · 3nC0m)m,

|Qk,j ∩Dk+1| ≤
1

2
|Qk,j |.(3.59)

A similar argument to (3.51)-(3.59) gives

|Q0 ∩D1| ≤
1

2
|Q0|.(3.60)

By (3.59) and (3.60), we obtain the desired result. �

Remark 3.13. In Lemmas 3.4 and 3.12, the sets Dk, Qk,j and Ek,j are different, respectively. In the
context of this paper, we can distinguish these sets explicitly. So, we use these symbols without distinction,
respectively.

(2) in Lemma 3.9 and Lemma 3.12 give the following inequality:

Lemma 3.14. Let 0 ≤ α < mn, 0 < q <∞, ~C = (C1, C2, . . . , Cm) be a collection of m Young functions.

Adding a function tq to ~C, we let ~Cq =
(
~C, tq

)
be a collection of m + 1 Young functions. For a dyadic

cube Q0, fix ~f0 = (f1χ3Q0 , . . . , fmχ3Q0). Then,ˆ
Q0

M~C,α

(
~f0

)
(x)qv(x)qdx .

ˆ
Q0

M̃~Cq,α

(
~f0, v

)
(x)qdx,(3.61)

Here,

M̃~Cq,α

(
~f, v
)

(x) := sup
Q:cube

`(Q)α
m∏
i=1

‖fi‖Ci,3Q

( 
Q

v(y)qdy

) 1
q

χQ(x).

Proof. By Lemma 3.9, we may verifyˆ
Q0

M~C,α,3D

(
~f0

)
(x)qv(x)qdx .

ˆ
Q0

M̃~Cq,α

(
~f, v
)

(x)qdx.(3.62)

Using E0 and Ek,j in Lemma 3.12, we can decompose Q0 = E0 ∪

⋃
k,j

Ek,j

. Then,

ˆ
Q0

M~C,α,3D

(
~f0

)
(x)qv(x)qdx

=

ˆ
E0

+
∑
k,j

ˆ
Ek,j

M̃~C,α,3D

(
~f0

)
(x)qv(x)qdx = I0 +

∑
k,j

IIk,j .

(3.63)

By definitions of sets Ek,j and Qk,j ,

IIk,j .

(
`(Qk,j)

α
m∏
i=1

‖fi‖Ci,3Qk,j

)q
·
ˆ
Ek,j

v(x)qdx.(3.64)

By (3.50),

IIk,j .
ˆ
Ek,j

M̃~Cq,α

(
~f0, v

)
(x)qdx.(3.65)
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By the definition of set E0, a similar argument to (3.64) and (3.50) gives

I0 .
ˆ
E0

M̃~Cq,α

(
~f0, v

)
(x)qdx.(3.66)

Estimates (3.63)-(3.66) give (3.62). �

4. Proofs of the main theorems

Proof of Theorem 2.1. Note that

M ~A,α

(
~f
)

(x) = sup
Q3x

(
|Q|

α
n ·

q0
q0−p0

m∏
i=1

‖fi‖Ai,Q

)1− p0q0
(

m∏
i=1

‖fi‖Ai,Q

) p0
q0

.(4.1)

Since 1
q0

= 1
p0
− α

n ,

M ~A,α

(
~f
)

(x) = sup
Q3x

(
|Q|

1
p0

m∏
i=1

‖fi‖Ai,Q

) q0−p0
q0

(
m∏
i=1

‖fi‖Ai,Q

) p0
q0

.(4.2)

By (1.18) and (1.25),

sup
Q3x

(
|Q|

1
p0

m∏
i=1

‖fi‖Ai,Q

) q0−p0
q0

(
m∏
i=1

‖fi‖Ai,Q

) p0
q0

≤
∥∥∥~f∥∥∥ q0−p0q0

Mp0
~A

M ~A

(
~f
)

(x)
p0
q0 .(4.3)

Estimates (4.1)-(4.3) give∥∥∥M ~A,α

(
~f
)

(x)
∥∥∥
Mq0

q

≤
∥∥∥~f∥∥∥ q0−p0q0

Mp0
~A

·
∥∥∥∥(M ~A

(
~f
)) p0

q0

∥∥∥∥
Mq0

q

.(4.4)

Since q
q0

= p
p0

, ∥∥∥∥(M ~A

(
~f
)) p0

q0

∥∥∥∥
Mq0

q

=
∥∥∥M ~A

(
~f
)∥∥∥ p0q0
Mp0

p

.(4.5)

Estimates (4.4) and (4.5) imply that∥∥∥M ~A,α

(
~f
)∥∥∥
Mq0

q

≤
∥∥∥~f∥∥∥ q0−p0q0

Mp0
~A

∥∥∥M ~A

(
~f
)∥∥∥ p0q0
Mp0

p

.(4.6)

�

Proof of Theorem 2.7. By Lemma 3.10, we may analyze the weighted estimate of the operatorMα,m

(
~f
)

(x)

inMq0
q,D. For a dyadic cube Q0, fix x ∈ Q0. then, let fj = fjχ3Q0

+fjχ(3Q0)C = f0
j +f∞j (j = 1, 2, . . . ,m).

Then, we decompose ~f = ~f0 +
∑
~̀6=~0

~f`, where ~f` =
(
f `11 , . . . , f `mm

)
and (`1, . . . , `m) ∈ {0,∞}m. Since

~f = ~f0 +
∑
~̀6=~0

~f`,

Mα,m

(
~f
)

(x) ≤Mα,m

(
~f0

)
(x) +

∑
~̀6=~0

Mα,m

(
~f`

)
(x).

and

Iα,m

(
~f
)

(x) = Iα,m

(
~f0

)
(x) +

∑
~̀6=~0

Iα,m

(
~f`

)
(x).
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(1) Firstly, we evaluate Mα,m

(
~f`

)
(x). By a similar argument in the proof of Lemma 3.3, if x ∈ Q0,

then

Mα,m

(
~f`

)
(x) . sup

Q0⊂Q
`(Q)αmQ

(
~f
)
.(4.7)

By (1.20),

sup
Q0⊂Q

`(Q)αmQ

(
~f
)
. sup
Q0⊂Q

`(Q)α
m∏
i=1

‖fiwi‖Ai,Q
∥∥w−1

i

∥∥
Ai,Q

.

= sup
Q0⊂Q

|Q|
1
q0

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,Q

)
|Q|

α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

.

= sup
Q0⊂Q

|Q|
1
q0

( 
Q

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,Q

)q
dx

) 1
q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

.

(4.8)

By (1.25), we have

|Q|
1
q0

( 
Q

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,Q

)q
dx

) 1
q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

≤ |Q|
1
q0

( 
Q

M ~A, np0
− n
q0

(
~fw

)
(x)qdx

) 1
q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

.

(4.9)

By (1.12),

|Q|
1
q0

( 
Q

M ~A, np0
− n
q0

(
~fw

)
(x)qdx

) 1
q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

≤
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

.

(4.10)

Estimates (4.7)-(4.10) imply that

|Q0|
1
q0

( 
Q0

Mα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

.
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

× sup
Q0⊂Q

(
|Q0|
|Q|

) 1
q0

|Q|
1
q0

+α
n−

1
p0

( 
Q0

v(x)qdx

) 1
q
m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

.

(4.11)

By using [v, ~w]p0,q0,q0,α,q, ~A, we obtain

sup
Q0⊂Q

(
|Q0|
|Q|

) 1
q0

|Q|
1
q0
− 1
p0

+α
n

( 
Q0

v(x)qdx

) 1
q
m∏
i=1

∥∥w−1
i

∥∥
Ai,Q

≤ [v, ~w]p0,q0,q0,α,q, ~A .(4.12)

Hence, we have

|Q0|
1
q0

( 
Q0

Mα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

≤ [v, ~w]p0,q0,q0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.13)
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Secondly, we evaluate Mα,m

(
~f0

)
(x). By (1) in Lemma 3.9, we may replace Mα,m with Mα,m,3D.

By Lemma 3.5, we haveˆ
Q0

Mα,m,3D

(
~f0

)
(x)qv(x)qdx .

ˆ
Q0

M̃~Im,q,α

(
~f0, v

)
(x)qdx.(4.14)

By (1.20),

M̃~Im,q,α

(
~f0, v

)
(x)

. sup
x∈Q∈D(Q0)

`(Q)α

(
m∏
i=1

‖fiwi‖Ai,3Q

)∥∥w−1
i

∥∥
Ai,3Q

·mQ (vq)
1
q

∼= sup
x∈Q∈D(Q0)

(
|Q|
|3Q|

) 1
q0

|3Q|
1
q0
− 1
p0

+α
nmQ (vq)

1
q

m∏
i=1

∥∥w−1
i

∥∥
Ai,3Q

× `(Q)
n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,3Q .

(4.15)

By using [v, ~w]p0,q0,q0,α,q, ~A, for every x ∈ Q0,

M̃~Im,q,α

(
~f0, v

)
(x) . [v, ~w]p0,q0,q0,α,q, ~A · M ~A, np0

− n
q0

(
~f
)

(x).(4.16)

Estimates (4.14)-(4.16) give the following:

|Q0|
1
q0

( 
Q0

Mα,m

(
~f0

)
(x)qv(x)qdx

) 1
q

≤ [v, ~w]p0,q0,q0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.(4.17)

Therefore, estimates (4.13) and (4.17) give the desired result.

(2) Firstly, we evaluate Iα,m

(
~f`

)
(x). By a geometric observation, for x ∈ Q0, {yj : |x− yj | ≤

2k`(Q0)} ⊂ 3 · 2kQ0. Then,

Iα,m

(
~f`

)
(x) .

∞∑
k=1

∣∣3 · 2kQ0

∣∣αn m∏
j=1

( 
3·2kQ0

fj(yj)dyj

)
.(4.18)

By (1.20),

∞∑
k=1

∣∣3 · 2kQ0

∣∣αn m∏
j=1

( 
3·2kQ0

fj(yj)dyj

)

.
∞∑
k=1

∣∣3 · 2kQ0

∣∣αn m∏
j=1

‖fjwj‖Aj ,3·2kQ0

∥∥w−1
j

∥∥
Aj ,3·2kQ0

=
∞∑
k=1

∣∣3 · 2kQ0

∣∣αn− 1
p0

m∏
j=1

∥∥w−1
j

∥∥
Aj ,3·2kQ0

×
∣∣3 · 2kQ0

∣∣ 1
q0

 
3·2kQ0

` (3 · 2kQ0

) n
p0
− n
q0

m∏
j=1

‖fjwj‖Aj ,3·2kQ0

q

dx


1
q

.

(4.19)

By (1.12) and (1.25),

Iα,m

(
~f`

)
(x) .

∞∑
k=1

∣∣3 · 2kQ0

∣∣αn− 1
p0

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

m∏
j=1

∥∥w−1
j

∥∥
Aj ,3·2kQ0

.(4.20)
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Estimate (4.20) entails

|Q0|
1
q0

( 
Q0

Iα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

.
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

×
∞∑
k=1

(
|Q0|

|3 · 2kQ0|

) 1
aq0 ∣∣3 · 2kQ0

∣∣ 1
q0

+α
n−

1
p0

( 
Q0

v(x)qdx

) 1
q
m∏
i=1

∥∥w−1
i

∥∥
Ai,3·2kQ0

×
(
|Q0|

|3 · 2kQ0|

) 1
q0

(1− 1
a )
.

(4.21)

By using [v, ~w]p0,q0,aq0,α,q, ~A,

|Q0|
1
q0

( 
Q0

Iα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

≤ [v, ~w]p0,q0,aq0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

∞∑
k=1

(
|Q0|

|3 · 2kQ0|

) 1
q0

(1− 1
a )

(4.22)

Since the series
∞∑
k=1

(
|Q0|

|3 · 2kQ0|

) 1
q0

(1− 1
a )

is convergent,

|Q0|
1
q0

( 
Q0

Iα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

. [v, ~w]p0,q0,aq0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.23)

Secondly, we evaluate Iα,m

(
~f0

)
(x). By Lemma 3.5,

ˆ
Q0

Iα,m

(
~f0

)
(x)qv(x)qdx ≤ C

ˆ
Q0

M̃~Im,q,α

(
~f0, v

)
(x)qdx.(4.24)

By Lemma 1.20,

M̃~Im,q,α

(
~f0, v

)
(x)

. sup
Q3x

`(Q)α
m∏
i=1

‖fiwi‖Ai,3Q ·
∥∥w−1

i

∥∥
Ai,3Q

mQ (vq)
1
q

. sup
Q:cube

(
|Q|
|3Q|

) 1
aq0

|3Q|
α
n+ 1

q0
− 1
p0mQ (vq)

1
q

m∏
i=1

∥∥w−1
i

∥∥
Ai,3Q

×

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,3Q

)
χQ(x).

(4.25)

By using (1.25) and [v, ~w]p0,q0,aq0,α,q, ~A, we have

M̃~Im,q,α

(
~f0, v

)
(x) . [v, ~w]p0,q0,aq0,α,q, ~AM ~A, np0

− n
q0

(
~fw

)
(x).(4.26)
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Estimates (4.24)-(4.26) give the following.

|Q0|
1
q0

( 
Q0

Iα,m

(
~f0

)
(x)qv(x)qdx

) 1
q

. [v, ~w]p0,q0,aq0,α,q, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.27)

Therefore, estimates (4.23) and (4.27) give the desired result.

(3) Firstly, we evaluate Iα,m

(
~f`

)
(x). By Lemma 3.8,

(ffl
Q0
v(x)qdx

) 1
q

. ‖v‖B,Q0
occurs. Hence, by

[v, ~w]p0,q0,aq0,α,B, ~A,(
|Q0|

|3 · 2kQ0|

) 1
aq0 ∣∣3 · 2kQ0

∣∣ 1
q0

+α
n−

1
p0

( 
Q0

v(x)qdx

) 1
q
m∏
i=1

∥∥w−1
i

∥∥
Ai,3·2kQ0

. [v, ~w]p0,q0,aq0,α,B, ~A.

(4.28)

Since
∞∑
k=1

(
|Q0|

|3 · 2kQ0|

) 1
q0

(1− 1
a )

is convergent, (4.21) and (4.28) imply that

|Q0|
1
q0

( 
Q0

Iα,m

(
~f`

)
(x)qv(x)qdx

) 1
q

. [v, ~w]p0,q0,aq0,α,B, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.29)

Secondly, we evaluate Iα,m

(
~f0

)
(x). By Lemma 3.7,

ˆ
Q0

Iα,m

(
~f0

)
(x)qv(x)qdx .

ˆ
Q0

M̃~Im,B ,α

(
~f0, v

)
(x)qdx.(4.30)

On the other hand, by using [v, ~w]p0,q0,aq0,α,B, ~A, we have

M̃~Im,B ,α

(
~f0, v

)
(x) . [v, ~w]p0,q0,aq0,α,B, ~AM ~A, np0

− n
q0

(
~fw

)
(x).(4.31)

Estimates (4.30) and (4.31) imply that

|Q0|
1
q0

( 
Q0

Iα,m

(
~f0

)
(x)qv(x)qdx

) 1
q

. [v, ~w]p0,q0,aq0,α,B, ~A

∥∥∥M ~A, np0
− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.32)

Therefore, estimates (4.29) and (4.32) give the desired result.

�

Proof of Theorem 2.10. By the same as the proof of Theorem 2.7, for every dyadic cube Q0, let fiχ3Q0
=

f0
i and fiχ(3Q0)C = f∞i . Then,

M~C,α

(
~f
)

(x) ≤M~C,α

(
~f0

)
(x) +

∑
~̀6=~0

M~C,α

(
~f`

)
(x),

where ~f0 = (f0
1 , . . . , f

0
m), ~f` = (f `11 , . . . , f `mm ) and ~̀= (`1, . . . , `m) ∈ {0,∞}m.
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Firstly, we evaluate M~C,α

(
~f`

)
(x). For x ∈ Q0, note that

M~C,α

(
~f`

)
(x) . sup

Q0⊂Q
`(Q)α

m∏
i=1

‖fi‖Ci,Q .(4.33)

By (1.21),

sup
Q0⊂Q

`(Q)α
m∏
i=1

‖fi‖Ci,Q

. sup
Q0⊂Q

`(Q)α
m∏
i=1

‖fiwi‖Ai,Q
∥∥w−1

i

∥∥
Bi,Q

= sup
Q0⊂Q

`(Q)α−
n
p0 |Q|

1
q0

( 
Q

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,Q

)q
dx

) 1
q m∏
i=1

∥∥w−1
i

∥∥
Bi,Q

.

(4.34)

By (1.12) and (1.25),

sup
Q0⊂Q

`(Q)α−
n
p0 |Q|

1
q0

( 
Q

(
`(Q)

n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,Q

)q
dx

) 1
q m∏
i=1

∥∥w−1
i

∥∥
Bi,Q

≤
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

· sup
Q0⊂Q

|Q|
α
n−

1
p0

m∏
i=1

∥∥w−1
i

∥∥
Bi,Q

.

(4.35)

Estimates (4.33)-(4.35) give

|Q0|
1
q0

( 
Q0

M~C,α

(
~f`

)
(x)qv(x)qdx

) 1
q

.
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

× sup
Q0⊂Q

(
|Q0|
|Q|

) 1
q0

|Q|
1
q0
− 1
p0

+α
n

( 
Q0

v(x)qdx

) 1
q
m∏
i=1

∥∥w−1
i

∥∥
Bi,Q

.

(4.36)

By [v, ~w]
p0,q0,q0,α,q, ~B

,

|Q0|
1
q0

( 
Q0

M~C,α

(
~f`

)
(x)qv(x)qdx

) 1
q

. [v, ~w]
p0,q0,q0,α,q, ~B

·
∥∥∥M ~A, np0

− n
q0

(
~fw

)∥∥∥
Mq0

q

.

(4.37)

Secondly, we evaluate M~C,α

(
~f0

)
(x). By Lemma 3.14,

ˆ
Q0

M~C,α

(
~f0

)
(x)qv(x)qdx .

ˆ
Q0

M̃~Cq,α

(
~f0, v

)
(x)qdx.(4.38)

By using (1.21), (1.25) and [v, ~w]
p0,q0,q0,α,q, ~B

, we have

M̃~Cq,α

(
~f0, v

)
(x)

. sup
Q3x

(
|Q|
|3Q|

) 1
q0

|3Q|
α
n+ 1

q0
− 1
p0mQ (vq)

1
q

m∏
i=1

∥∥w−1
i

∥∥
Bi,3Q

`(3Q)
n
p0
− n
q0

m∏
i=1

‖fiwi‖Ai,3Q

≤ [v, ~w]
p0,q0,q0,α,q, ~B

M ~A, np0
− n
q0

(
~fw

)
(x).

(4.39)
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Estimates (4.38) and (4.39) giveˆ
Q0

M~C,α

(
~f0

)
(x)qv(x)qdx . [v, ~w]

q

p0,q0,q0,α,q, ~B

ˆ
Q0

M ~A, np0
− n
q0

(
~fw

)
(x)qdx.(4.40)

Estimates (4.37) and (4.40) give the desired result. �
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[27] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator
between weiaghted Lp-spaces with different weights, Proc. London Math. Soc. 3, 71, 1, (1995), 135-
157.

[28] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential
Analysis, 36 (2012), 517-556.

[29] E. M. Stein, Harmonic Analysis: Real-variable methods, Orthogonality, and Oscillatory integrals,
Princeton Univ. Press, 1993.

[30] S. Sugano, Some inequalities for generalized fractional integral operators on generalized Morrey
spaces, 14, 4, 2011, 849-865.

Department of General Education, National Institute of Technology, Fukushima Col-
lege

Email address: tiida@fukushima-nct.ac.jp

Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

78



NORM INEQUALITIES ON MORREY SPACES FOR THE
OSCILLATION AND VARIATION OPERATORS
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Abstract. This paper is devoted to investigating the bounded behaviors of the oscilla-
tion and variation operators for the family of multilinear singular integrals with Lipschitz
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1. Introduction

Given m is a positive integer, and b is a function on R. Let Rm+1 (b;x, y) be the m+1-th order Taylor
series remainder of b at x about y, that is,

Rm+1 (b;x, y) = b (x)−
∑
γ≤m

1

γ!
b(γ) (y) (x− y)

γ
.

In this paper, we consider the family of operators T b :=
{
T b
ϵ

}
ϵ>0

given by [4], where T b
ϵ are the multilinear

singular integral operators of Tϵ as follows

(1.1) T b
ϵ f (x) =

∫
|x−y|>ϵ

Rm+1 (b;x, y)

|x− y|m
K (x, y) f (y) dy.

Thus, if m = 0, then T b
ϵ is just the commutator of Tϵ and b, which is given by

Tϵ,bf (x) =

∫
|x−y|>ϵ

(b (x)− b (y))K (x, y) f (y) dy,

where K is said to be a Calderón-Zygmund standard kernel such that

(1.2) |K (x, y)| ≤ C

|x− y|
, for x ̸= y
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and for all x, x0, y ∈ R with |x− y| > 2 |x− x0|
|K (x, y)−K (x0, y)|+ |K (y, x)−K (y, x0)|

≤ C

|x− y|

(
|x− x0|
|x− y|

)δ

,(1.3)

where 1 > δ > 0. But, if m > 0, then T b
ϵ are non-trivial generation of the commutators.

The theory of multilinear analysis was received extensive studies in the last 3 decades (see [3, 4, 6]
for example). Hu and Wang [4] proved that the weighted (Lp, Lq)-boundedness of the oscillation and

variation operators for T b when the m-th derivative of b belongs to the homogenous Lipschitz space Λ̇β .

In this sense, we recall the definitions of homogenous Lipschitz space Λ̇β and bounded mean oscillation
space BMO as follows:

Definition 1.1. (Homogenous Lipschitz space) Let 0 < β ≤ 1. The homogeneous Lipschitz space

Λ̇β is defined by

Λ̇β (R) =

{
b : ∥b∥Λ̇β

= sup
x,h∈R,h̸=0

|b (x+ h)− b (x)|
|h|β

< ∞

}
.

Obviously, if β > 1, then Λ̇β (R) only includes constant. So we restrict 0 < β ≤ 1.

Definition 1.2. (Bounded Mean Oscillation (BMO)) Let |I| denote the Lebesgue measure of the
interval I. We denote the mean value of b on the interval I = I(x, y) ⊂ R by

bI = M (b, I) = M (b, x, y) =
1

|I|

∫
I

b(y)dy,

and the mean oscillation of b on the interval I = I(x, y) by

MO (b, I) = MO (b, x, y) =
1

|I|

∫
I

|b(y)− bI |dy.

We also define for a non-negative function ϕ on R

MOϕ (b, I) = MOϕ (b, x, y) =
1

ϕ (|I|) |I|

∫
I

|b(y)− bI |dy.

Now, we define

BMOϕ (R) =
{
b ∈ Lloc

1 (R) : sup
I

MOϕ (b, I) < ∞
}

and

∥f∥BMOϕ
= sup

I
MOϕ (b, I) .

The real importance comes when ϕ = 1, in which case BMOϕ (R) = BMO (R).

Now, we recall the definition of basic space such as Morrey space. The Morrey space is a generalization
of Lebesgue space. It was introduced by Morrey in [5] to study the solutions of some quasi-linear elliptic
partial differential equations. A number of results from Lebesgue spaces had been extended to Morrey
spaces [1].

The Morrey space Mq
p (R) is defined as follows:

Definition 1.3. (Morrey space) For 1 ≤ p ≤ q < ∞, the Morrey space Mq
p (R) is the collection of all

measurable functions f whose Morrey space norm is

∥f∥Mq
p (R) = sup

I⊂R
I:Interval

1

|I|
1
p−

1
q

∥fχI∥Lp(R) < ∞.
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Remark 1.4. [3] · If p = q, then

∥f∥Mq
q (R) = ∥f∥Lq(R).

· if q < p, then Mq
p (R) is strictly larger than Lq (R). For example, f(x) := |x|−

1
q ∈ Mq

p (R) but

f(x) := |x|−
1
q /∈ Lq (R).

In 2016, Zhang andWu [6] gave the boundedness of the oscillation and variation operators for Calderón-
Zygmund singular integrals and the corresponding commutators on the weighted Morrey spaces. In 2017,
Hu and Wang [4] established the weighted (Lp, Lq)-inequalities of the variation and oscillation operators
for the multilinear Calderón-Zygmund singular integral with a Lipschitz function in R. In 2020, Gürbüz
[3] has proved the boundedness of the oscillation and variation operators for the multilinear singular
integrals with Lipschitz functions on weighted Morrey spaces.

Inspired of these results [3, 4, 6], we study the boundedness of the oscillation and variation operators
for the family of the multilinear singular integral defined by (1.1) on Morrey spaces Mq

p (R) when the

m-th derivative of b belongs to the homogenous Lipschitz space Λ̇β in this work.
Suppose that K satisfies (1.2) and (1.3). Then, Zhang and Wu [6] considered the family of operators

T := {Tϵ}ϵ>0 and a related the family of commutator operators Tb := {Tϵ,b}ϵ>0 generated by Tϵ and b
which are given by

(1.4) Tϵf (x) =

∫
|x−y|>ϵ

K (x, y) f (y) dy

and

(1.5) Tϵ,bf (x) =

∫
|x−y|>ϵ

(b (x)− b (y))K (x, y) f (y) dy.

In this sense, following [6], the definition of the oscillation operator of T is given by

O (Tf) (x) :=

( ∞∑
i=1

sup
ti+1≤ϵi+1<ϵi≤ti

∣∣Tϵi+1
f (x)− Tϵif (x)

∣∣2) 1
2

,

where {ti} is a decreasing fixed sequence of positive numbers converging to 0 and a related ρ-variation
operator is defined by

Vρ (Tf) (x) := sup
ϵi↘0

( ∞∑
i=1

∣∣Tϵi+1f (x)− Tϵif (x)
∣∣ρ) 1

ρ

, ρ > 2,

where the supremum is taken over all sequences of real number {ϵi} decreasing to 0. We also take into
account the operator

O′ (Tf) (x) :=

( ∞∑
i=1

sup
ti+1<ηi<ti

∣∣Tti+1f (x)− Tηif (x)
∣∣2) 1

2

.

On the other hand, it is obvious that

O′ (Tf) ≈ O (Tf) .

That is,

O′ (Tf) ≤ O (Tf) ≤ 2O′ (Tf) .

Recently, Campbell et al. in [2] proved the oscillation and variation inequalities for the Hilbert transform
in Lp(1 < p < ∞) and then following [2], we denote by E the mixed norm Banach space of two-variable
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function h defined on R× N such that

∥h∥E ≡

(∑
i

(
sup
s

|h (s, i)|
)2
)1/2

< ∞.

Given T := {Tϵ}ϵ>0 is a family operators such that lim
ϵ→0

Tϵf (x) = Tf (x) exists almost everywhere for

certain class of functions f , where Tϵ defined as (1.4). For a fixed decreasing sequence {ti} with ti ↘ 0,
let Ji = (ti+1, ti] and define the E-valued operator U (T ) : f → U (T ) f given by

U (T ) f (x) =
{
Tti+1

f (x)− Tsf (x)
}
s∈Ji,i∈N =


∫

{ti+1<|x−y|<s}

K (x, y) f (y) dy


s∈Ji,i∈N

.

Then

O′ (Tf) (x) = ∥U (T ) f (x)∥E =
∥∥∥{Tti+1

f (x)− Tsf (x)
}
s∈Ji,i∈N

∥∥∥
E

=

∥∥∥∥∥∥∥


∫
{ti+1<|x−y|<s}

K (x, y) f (y) dy


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

.

Let Φ = {β : β = {ϵi} , ϵi ∈ R, ϵi ↘ 0}. We denote by Fρ the mixed norm space of two variable functions
g (i, β) such that

∥g∥Fρ
≡ sup

β

(∑
i

|g (i, β)|ρ
)1/ρ

.

We also take into account the Fρ-valued operator V (T ) : f → V (T ) f such that

V (T ) f (x) =
{
Tϵi+1

f (x)− Tϵif (x)
}
β={ϵi}∈Φ

.

Thus,

Vρ (T ) f (x) = ∥V (T ) f (x)∥Fρ
.

Throughout this paper, C always means a positive constant independent of the main parameters
involved, and may change from one occurrence to another. We also use the notation F ≲ G to mean
F ≤ CG for an appropriate constant C > 0, and F ≈ G to mean F ≲ G and G ≲ F .

2. Main result

We are now ready to present and establish the main result of this paper.

Theorem 2.1. Let K (x, y) satisfies (1.2) and (1.3), ρ > 2, and T := {Tϵ}ϵ>0 and T b :=
{
T b
ϵ

}
ϵ>0

be given

by (1.1) and (1.4), respectively. If O (T ) and Vρ (T ) are bounded on Lp0 (R, dx) for some 1 < p0 < ∞,

and b(m) ∈ Λ̇β (R) with m ∈ N for 0 < β < 1, then O
(
T b
)
and Vρ

(
T b
)
are bounded from Mq

p (R) to

BMO(R) for any 1 < p ≤ q = 1
β .

Corollary 2.2. [6] Let K (x, y) satisfies (1.2) and (1.3), ρ > 2, and T := {Tϵ}ϵ>0 and Tb := {Tϵ,b}ϵ>0

be given by (1.4) and (1.5), respectively. If O (T ) and Vρ (T ) are bounded on Lp0 (R, dx) for some

1 < p0 < ∞, and b ∈ Λ̇β for 0 < β < 1, then O (Tb) and Vρ (Tb) are bounded from Mq
p (R) to BMO(R)

for any 1 < p ≤ q = 1
β .
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2.1. The Proof of Theorem 2.1.

Proof. We consider the proof related to O
(
T b
)
firstly. Fix an interval I = (x0 − l, x0 + l) satisfying

|I| = 2l, and we write as f = f1 + f2, where f1 = fχ4I , χ4I denotes the characteristic function of 4I.
Let

CI =
1

|I|

∫
I


∫

{ti+1<|z−y|<s}

Rm+1 (b; z, y)

|z − y|m
K (z, y) f2 (y) dy


s∈Ji,i∈N

dz.

Thus, it is sufficient to show that the conclusion

1

|I|

∫
I

|O′ (T b
)
(f) (x)− CI |dx =

1

|I|

∫
I

∥∥U (T b
)
(f) (x)− CI

∥∥
E
dx ≲ ∥b∥Λ̇β

∥f∥Mq
p

holds for every interval I ⊂ R. Then
1

|I|

∫
I

∥∥U (T b
)
(f) (x)− CI

∥∥
E
dx

≲
1

|I|

∫
I

∥∥U (T b
)
(f1) (x) + U

(
T b
)
(f2) (x)− CI

∥∥
E
dx

≲
1

|I|

∫
I

∥∥U (T b
)
(f1) (x)

∥∥
E
dx+

1

|I|

∫
I

∥∥U (T b
)
(f2) (x)− CI

∥∥
E
dx

=: F1 + F2.

First, we choose 1 < p1 < min
{

1
β , p
}

and q1 with 1
q1

= 1
p1

− β and to estimate F1, and use (9) in [3]

(by taking w = 1 there), also following [6], we obtain

F1 =
1

|I|

∫
I

O′ (T bf1
)
(x) dx

≲
1

|I|

∫
I

∣∣O′ (T bf1
)
(x)
∣∣q1 dx

 1
q1

|I|1−
1
q1

≲
∥∥∥b(m)

∥∥∥
Λ̇β

1

|I|

∫
R

|f1 (x)|p1 dx

 1
p1

|I|1−
1
q1

=
∥∥∥b(m)

∥∥∥
Λ̇β

1

|I|

∫
4I

|f (x)|p1 dx

 1
p1

|I|1−
1
q1

=
∥∥∥b(m)

∥∥∥
Λ̇β

1

|4I|
1
p−

1
q

∫
4I

|f (x)|p dx

 1
p

|4I|
1
p−

1
q |4I|

1
p1

− 1
p |I|−

1
q1

≲ ∥b∥Λ̇β
∥f∥Mq

p
.

Thus,

(2.1)
1

|I|

∫
I

∥∥U (T b
)
(f1) (x)

∥∥
E
dx ≲ ∥b∥Λ̇β

∥f∥Mq
p
.
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Second, we have

F2 =
1

|I|

∫
I

∥∥U (T b
)
(f2) (x)− CI

∥∥
E

=
1

|I|

∫
I

∥∥∥∥∥∥U (T b
)
(f2) (x)−

1

|I|

∫
I

U
(
T b
)
(f2) (z) dz

∥∥∥∥∥∥
E

dx

≤ 1

|I|2
∫∫
I×I

∥∥U (T b
)
(f2) (x)− U

(
T b
)
(f2) (z) dz

∥∥
E
dzdx.

Thus, following [6], we write

∥∥U (T b
)
(f2) (x)− U

(
T b
)
(f2) (z) dz

∥∥
E

=

∥∥∥∥∥∥∥∥∥∥∥



∫
{ti+1<|x−y|<s}

Rm+1(b;x,y)
|x−y|m K (x, y) f2 (y) dy

−
∫

{ti+1<|z−y|<s}

Rm+1(b;z,y)
|z−y|m K (z, y) f2 (y) dy


s∈Ji,i∈N

∥∥∥∥∥∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥∥


∫
{ti+1<|x−y|<s}

(
Rm+1 (b;x, y)

|x− y|m
K (x, y)− Rm+1 (b; z, y)

|z − y|m
K (z, y)

)
f2 (y) dy


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

+

∥∥∥∥∥∥∥

∫
R

(
χ{ti+1<|x−y|<s} (y)− χ{ti+1<|z−y|<s} (y)

) Rm+1 (b; z, y)

|z − y|m
K (z, y) f2 (y) dy


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

=: G1 +G2.

For k = 0, 1, 2, . . ., let Ek =
{
y : 2k.4l ≤ |y − z| < 2k+1.4l

}
, Dk =

{
y : |y − z| < 2k.4l

}
, and

bk (z) = b (z)− 1

m!

(
b(m)

)
Dk

zm.

By Lemma 2 in [3], for any y ∈ Ek, it is obvious that

Rm+1 (b;x, y) = Rm+1 (bk;x, y) .
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Note that for x, z ∈ I, y ∈ Ek, we have

Rm+1 (b;x, y)

|x− y|m
K (x, y)− Rm+1 (b; z, y)

|z − y|m
K (z, y)

=
Rm+1 (bk;x, y)

|x− y|m
K (x, y)− Rm+1 (bk; z, y)

|z − y|m
K (z, y)

=
(Rm (bk;x, y)−Rm (bk; z, y))

|x− y|m
K (x, y)

+Rm (bk; z, y)

(
1

|x− y|m
− 1

|z − y|m
)
K (x, y)

− 1

m!
b
(m)
k (y)

(
(x− y)

m

|x− y|m
− (z − y)

m

|z − y|m
)
K (x, y)

+
Rm+1 (bk; z, y)

|z − y|m
(K (x, y)−K (z, y)) .(2.2)

By Minkowski’s inequality,
∥∥∥{χ{ti+1<|x−y|<s}

}
s∈Ji,i∈N

∥∥∥
E
≤ 1, and (2.2) we get

G1 ≤
∫
R

∣∣∣∣Rm+1 (b;x, y)

|x− y|m
K (x, y)− Rm+1 (b; z, y)

|z − y|m
K (z, y)

∣∣∣∣ |f2 (y)|∥∥∥{χ{ti+1<|x−y|<s}
}
s∈Ji,i∈N

∥∥∥
E
dy

≤
∫
R

∣∣∣∣Rm+1 (b;x, y)

|x− y|m
K (x, y)− Rm+1 (b; z, y)

|z − y|m
K (z, y)

∣∣∣∣ |f2 (y)| dy
≤

∞∑
k=0

∫
Ek

|Rm (bk;x, y)−Rm (bk; z, y)|
|x− y|m

|K (x, y)| |f (y)| dy

+
∞∑
k=0

∫
Ek

|Rm (bk; z, y)|
∣∣∣∣ 1

|x− y|m
− 1

|z − y|m
∣∣∣∣ |K (x, y)| |f (y)| dy

+
∞∑
k=0

∫
Ek

1

m!

∣∣∣b(m)
k (y)

∣∣∣ ∣∣∣∣ (x− y)
m

|x− y|m
− (z − y)

m

|z − y|m
∣∣∣∣ |K (x, y)| |f (y)| dy

+
∞∑
k=0

∫
Ek

∣∣∣∣Rm+1 (bk; z, y)

|z − y|m
∣∣∣∣ |K (x, y)−K (z, y)| |f (y)| dy

=: H1 +H2 +H3 +H4.

For H1, from mean value theorem, there exists σ ∈ I such that

(2.3) Rm (bk;x, y)−Rm (bk; z, y) = (x− z)Rm−1 (b
′
k;σ, y) .

Then, for x, σ ∈ I, y ∈ Ek, µ ∈ Iyσ , since b(m) ∈ Λ̇β (R) with m ∈ N for 0 < β < 1, then we have

∣∣∣b(m)
k (µ)

∣∣∣ = ∣∣∣∣b(m) (µ)−
(
b(m)

)
Dk

∣∣∣∣
≲
∥∥∥b(m)

∥∥∥
Λ̇β

(
2kl
)β |x− y|m−1

.(2.4)
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Hence, by |y − z| ≈ |y − x| ≈ |y − σ|, Lemma 2 in [3] and (2.4) we get

Rm−1 (b
′
k;σ, y) ≲ |σ − y|m−1

 1

|Iyσ |

∫
Iy
σ

∣∣∣b(m)
k (µ)

∣∣∣s dµ


1
s

≲ |x− y|m−1
∥∥∥b(m)

∥∥∥
Λ̇β

(
2kl
)β

.(2.5)

Later, by (2.3) and (2.5)

|Rm (bk;x, y)−Rm (bk; z, y)| ≲ |x− z| |x− y|m−1
∥∥∥b(m)

∥∥∥
Λ̇β

(
2kl
)β

.

Since, for x, z ∈ I, y ∈ (4I)
C
, |x− z| ≤ 2l ≤ 2

3 |z − y| and |K (x, y)| ≲ 1
|z−y| , then

H1 =
∞∑
k=0

∫
Ek

|Rm (bk;x, y)−Rm (bk; z, y)|
|x− y|m

|K (x, y)| |f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

(
2kl
)β ∫

Ek

1

(2k.4l)
2 |f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

1

2k

(
2kl
)β

2k.4l

∫
|z−y|<2k+1.4l

|f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

1

2k

(
2kl
)β

2k.4l

∣∣2k.4l∣∣1− 1
q

|2k.4l|
1
p−

1
q

 ∫
2k+1I

|f (y)|p dy

 1
p

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p

∞∑
k=0

1

2k

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.

Second, for H2, from [4], we know that

Rm (bk;x, y) ≲ |x− y|m

 1

|Iyx |

∫
Iy
x

∣∣∣b(m)
k (z)

∣∣∣s dz


1
s

≲
∥∥∥b(m)

∥∥∥
Λ̇β

(
2kl
)β |x− y|m(2.6)

and

(2.7)

∣∣∣∣ 1

|x− y|m
− 1

|z − y|m
∣∣∣∣ ≲ |x− z|

|x− y|m+1 .
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Hence, by (2.6), (2.7) and the same estimate (for H1) as above (here we omit the details)

H2 =
∞∑
k=0

∫
Ek

|Rm (bk; z, y)|
∣∣∣∣ 1

|x− y|m
− 1

|z − y|m
∣∣∣∣ |K (x, y)| |f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

(
2kl
)β ∫

Ek

1

(2k.4l)
2 |f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.

As for H3, from [4], we know that

(2.8)

∣∣∣∣ (x− y)
m

|x− y|m
− (z − y)

m

|z − y|m
∣∣∣∣ ≲ |x− z|

|x− y|

and

∣∣∣b(m)
k (y)

∣∣∣ = ∣∣∣∣b(m) (y)−
(
b(m)

)
Ek

∣∣∣∣
≲
∥∥∥b(m)

∥∥∥
Λ̇β

∣∣2kI∣∣β .(2.9)

Hence, by (2.8), (2.9), |y − z| ≈ |y − x|, |K (x, y)| ≲ 1
|z−y| and Hölder’s inequality we get

H3 =
∞∑
k=0

∫
Ek

1

m!

∣∣∣b(m)
k (y)

∣∣∣ ∣∣∣∣ (x− y)
m

|x− y|m
− (z − y)

m

|z − y|m
∣∣∣∣ |K (x, y)| |f (y)| dy

≲
∞∑
k=0

∫
Ek

∣∣∣∣b(m) (y)−
(
b(m)

)
Ek

∣∣∣∣ |x− z|
|z − y|2

|f (y)| dy

≲
∞∑
k=0

1

2k
1

2k.4l

∫
|z−y|<2k.4l

∣∣∣∣b(m) (y)−
(
b(m)

)
Ek

∣∣∣∣ |f (y)| dy

≲
∞∑
k=0

1

2k

 1

2k.4l

∫
|z−y|<2k.4l

|f (y)|p dy


1
p
 1

2k.4l

∫
|z−y|<2k.4l

∣∣∣∣b(m) (y)−
(
b(m)

)
Ek

∣∣∣∣p′

dy


1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

1

2k

∣∣2kI∣∣β
|2kI|

 ∫
2k+1I

|f (y)|p dy

 1
p

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p

∞∑
k=0

1

2k

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.
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Finally, we consider the term H4. From [4], we know that

|Rm+1 (bk; z, y)| ≤ |Rm (bk; z, y)|+
1

m!

∣∣∣b(m)
k (y) (z − y)

m
∣∣∣

≲
∥∥∥b(m)

∥∥∥
Λ̇β

(
2kl
)β |z − y|m +

∣∣∣∣b(m) (y)−
(
b(m)

)
Ek

∣∣∣∣ |z − y|m

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∣∣2kI∣∣β |z − y|m(2.10)

and

(2.11) |K (x, y)−K (z, y)| ≲ |x− z|δ

|z − y|1+δ
.

Thus, by (2.10), (2.11) and the same estimates (for H1 and H3) as above (here we omit the details)

H4 =
∞∑
k=0

∫
Ek

∣∣∣∣Rm+1 (bk; z, y)

|z − y|m
∣∣∣∣ |K (x, y)−K (z, y)| |f (y)| dy

≲
∞∑
k=0

∫
Ek

|Rm (bk; z, y)|
|x− y|m

|x− z|δ

|z − y|1+δ
|f (y)| dy

+

∞∑
k=0

∫
Ek

∣∣∣b(m)
k (y) (z − y)

m
∣∣∣

|x− y|m
|x− z|δ

|z − y|1+δ
|f (y)| dy

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∞∑
k=0

1

2kδ

∣∣2kI∣∣β
|2kI|

 ∫
2k+1I

|f (y)|p dy

 1
p

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p

∞∑
k=0

1

2kδ

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.

By the estimates of H1, H2, H3 and H4 above, we know that

G1 ≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.

Now we turn to estimate G2. Notice that the integral∫
R

(
χ{ti+1<|x−y|<s} (y)− χ{ti+1<|z−y|<s} (y)

) Rm+1 (b; z, y)

|z − y|m
K (z, y) f2 (y) dy

will be non-zero if either
(
χ{ti+1<|x−y|<s} (y) = 1, χ{ti+1<|z−y|<s} (y) = 0

)
or(

χ{ti+1<|x−y|<s} (y) = 0, χ{ti+1<|z−y|<s} (y) = 1
)
. That means this integral will only be non-zero in

the following cases:
(1) ti+1 < |x− y| < s and |z − y| ≤ ti+1;
(2) ti+1 < |x− y| < s and |z − y| ≥ s;
(3) ti+1 < |z − y| < s and |x− y| ≤ ti+1;
(4) ti+1 < |z − y| < s and |x− y| ≥ s.
In (1), we know that

ti+1 < |x− y| ≤ |x− z|+ |z − y| < l + ti+1
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as |x− z| < l. Similarly, in case (3), we have

ti+1 < |z − y| < l + ti+1

as |x− z| < l. In (2), we have

s < |z − y| ≤ |z − x|+ |x− y| < l + s

and in (4), we have

s < |x− y| < l + s.

By (1.2) and using Hölder’s inequality, it follows that∫
R

(
χ{ti+1<|x−y|<s} (y)− χ{ti+1<|z−y|<s} (y)

) Rm+1 (b; z, y)

|z − y|m
K (z, y) f2 (y) dy

≲
∫
R

χ{ti+1<|x−y|<s} (y)χ{ti+1<|x−y|<l+ti+1} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣ |f2 (y)||z − y|

dy

+

∫
R

χ{ti+1<|x−y|<s} (y)χ{s<|z−y|<l+s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣ |f2 (y)||z − y|

dy

+

∫
R

χ{ti+1<|z−y|<s} (y)χ{ti+1<|z−y|<l+ti+1} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣ |f2 (y)||z − y|

dy

+

∫
R

χ{ti+1<|z−y|<s} (y)χ{s<|x−y|<l+s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣ |f2 (y)||z − y|

dy

≲

∫
R

χ{ti+1<|x−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p

(2l)
1
p′

+

∫
R

χ{ti+1<|z−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p

(2l)
1
p′ .

Now for G2, we decompose it into two parts as follows:

G2 =

∥∥∥∥∥∥∥

∫
R

(
χ{ti+1<|x−y|<s} (y)− χ{ti+1<|z−y|<s} (y)

) Rm+1 (b; z, y)

|z − y|m
K (z, y) f2 (y) dy


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

≲

∥∥∥∥∥∥∥

∫

R

χ{ti+1<|x−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

(2l)
1
p′

+

∥∥∥∥∥∥∥

∫

R

χ{ti+1<|z−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

(2l)
1
p′

=: J1 + J2.
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First, by (2.10), it follows that

J1 =

∥∥∥∥∥∥∥

∫

R

χ{ti+1<|x−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

(2l)
1
p′

≲


∑
i∈N

sup
s∈Ji

∫
R

χ{ti+1<|x−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 2
p


1
2

(2l)
1
p′

≲

∑
i∈N

∫
R

χ{ti+1<|x−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy


1
p

(2l)
1
p′

≲


∫
R

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy


1
p

(2l)
1
p′

≲


∞∑
k=0

∫
Ek

∣∣∣∣Rm+1 (bk; z, y)

|z − y|m
∣∣∣∣p |f (y)|p

|z − y|p
dy


1
p

(2l)
1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β


∞∑
k=0

∣∣2kI∣∣βp ∫
Ek

|f (y)|p

|z − y|p
dy


1
p

(2l)
1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β


∞∑
k=0

∣∣2kI∣∣βp−p
∫
Ek

|f (y)|p dy


1
p

(2l)
1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β

{ ∞∑
k=0

∣∣2kI∣∣βp−p+1− p
q ∥f∥pMq

p

} 1
p

(2l)
1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p

{ ∞∑
k=0

2k(1−p)

} 1
p

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.

Similarly, J2 has the same estimate above. Here we omit the details, thus the inequality

J2 =

∥∥∥∥∥∥∥

∫

R

χ{ti+1<|z−y|<s} (y)

∣∣∣∣Rm+1 (b; z, y)

|z − y|m
∣∣∣∣p |f2 (y)|p

|z − y|p
dy

 1
p


s∈Ji,i∈N

∥∥∥∥∥∥∥
E

(2l)
1
p′

≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p

is valid.
Putting estimates J1 and J2 together, we get the desired conclusion

G2 ≲
∥∥∥b(m)

∥∥∥
Λ̇β

∥f∥Mq
p
.
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Similarly, Vρ

(
T b
)
has the same estimate as above (here we omit the details), thus the inequality∥∥Vρ

(
T bf

)
(x)
∥∥
BMO

≲ ∥b∥Λ̇β
∥f∥Mq

p

is valid.
Therefore, Theorem 2.1 is completely proved. □

3. Conclusion

The oscillation and variation for martingales and some families of operators have been studied in
many recent papers on probability, ergodic theory, and harmonic analysis. Thus, in this paper, we
have established several criterions of boundedness for the oscillation and variation operators related to
multilinear singular integrals with Lipschitz functions. The Morrey spaces play important roles both
in harmonic analysis and partial differential equation. In particular, the mapping properties of the
Calderón-Zygmund singular integral with a Lipschitz function in R had been obtained for Morrey spaces.
Therefore, it motivates us to investigate the extension of these inequalities to the oscillation and variation
operators on Morrey spaces. Indeed, the results obtained in this paper are extensions of some known
results. So this research is meaningful.

References

[1] D. R. Adams, Morrey spaces, Lecture Notes in Applied and Numerical Harmonic Analysis,
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1. INTRODUCTION 
 
Let 𝔻 be the unit disk in the complex plane ℂ and 𝐻(𝔻) be the class of analytic functions in 
𝔻. The Bloch space ℬ is the class of all 𝑓 ∈ 𝐻(𝔻) for which 
 ‖𝑓‖ℬ: = |𝑓(0)| + sup

𝑧∈𝔻
(1 − |𝑧|2)|𝑓′(𝑧)| < ∞. 

The little Bloch space ℬ0, consists of all 𝑓 ∈ 𝐻(𝔻) satisfying 
 lim

|𝑧|→1−
(1 − |𝑧|2)|𝑓′(𝑧)| = 0. 

The Hardy space 𝐻𝑝(𝔻)(0 < 𝑝 < ∞) is the sets of 𝑓 ∈ 𝐻(𝔻) with 
 ‖𝑓‖𝐻𝑝

𝑝 = sup
0<𝑟<1

1
2𝜋 ∫  2𝜋

0 �𝑓�𝑟𝑒𝑖𝑖��𝑝𝑑𝑑 < ∞. 

Assume that 𝐾: [0,∞) → [0,∞) is a continuous and nondecreasing weighted function. Let 
weighted Dirichlet type space 𝒟𝐾,𝛼 be the spaces of function 𝑓 ∈ 𝐻(𝔻) satisfying  

 ‖𝑓‖𝒟𝐾,𝛼
2 : = |𝑓(0)|2 + ∫  𝔻 |𝑓′(𝑧)|2 �1−|𝑧|2�

𝐾(1−|𝑧|2)
𝑑𝐴𝛼(𝑧) < ∞, 

where 𝑑𝐴𝛼(𝑧) = (1 − |𝑧|2)𝛼𝑑𝑑(𝑧) and 𝛼 ≥ 0. When 𝐾(𝑡) = 𝑡𝑝 and 𝛼 = 0, 0 < 𝑝 < 1, it 
gives classic Dirichlet space 𝒟𝑝. Especially, when 𝐾(𝑡) = 𝑡𝑝 and 𝑝 = 𝛼, it gives the Hardy 
space 𝐻2; when 𝐾(𝑡) = 𝑡𝑝 and 𝛼 = 𝑝 + 1, we have the Bergman spaces 𝐴2. We refer the 
paper [11] for studying small Hankel operator acting on 𝒟𝑝, and the paper [13] and [14] for 
studying multipliers on 𝒟𝑝 spaces. When 𝛼 = 0, under Dirichlet conditions on weighted 
function 𝐾, Kerman and Sawyer [5] have characterized Carleson measures and multipliers of 
𝒟𝐾,𝛼 in terms of a maximal operator. Aleman has given some basic properties of 𝒟𝐾,𝛼 in [1]. 
For more results on 𝒟𝐾,𝛼 spaces, we refer to [2], [7] and [8]. 
Let 𝐼 be an arc of 𝜕𝔻 and |𝐼| be the normalized Lebesgue arc length of 𝐼. The Carleson square 
based on 𝐼, denoted by 𝑆(𝐼), is defined by  
 𝑆(𝐼): = �𝑧 = 𝑟𝑒𝑖𝑖 ∈ 𝔻: 1 − |𝐼| ≤ 𝑟 < 1, 𝑒𝑖𝑖 ∈ 𝐼�. 
Let 𝜇 be a positive Borel measure on 𝔻. For 0 < 𝑠 < ∞, 𝜇 is called an 𝑠 −Carleson measure 
if 
 sup

𝐼⊂𝜕𝔻

𝜇�𝑆(𝐼)�
|𝐼|𝑠

< ∞. 

That is, 
 𝜇�𝑆(𝐼)� ≤ 𝐶|𝐼|𝑠 
for all interval 𝐼 ⊂ 𝜕𝔻. 
If 𝜇 is an 𝑠 −Carleson measure, we set 
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 ‖𝜇‖𝑠: = sup
𝐼⊂𝜕𝔻

𝜇�𝑆(𝐼)�
|𝐼|𝑠

. 

For a nonnegative Borel measure 𝜇 on the unit disk 𝔻, we define 𝒯𝐾∞(𝜇) as the space of all 
𝜇 −measurable functions 𝑓 on 𝔻 satisfying 
 ‖𝑓‖𝒯𝐾∞(𝜇)

2 = sup
𝐼⊂𝜕𝔻

1
𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓(𝑧)|2𝑑𝑑(𝑧) < ∞. 

When 𝐾(𝑡) = 𝑡𝑝 and 0 < 𝑝 < 1, it gives the well known tent spaces, which was first 
introduced by Xiao in [15]. For more information related to tent space, we refer to [[6], [9], 
[10]]. 
Given 𝑓, 𝑔 ∈ 𝐻(𝔻). The Volterra integral operator 𝑇𝑔 and its companion operator 𝐼𝑔 are 
defined by  
 𝑇𝑔𝑓(𝑧): = ∫  𝑧0 𝑔′(𝑤)𝑓(𝑤)𝑑𝑑 
and 
 𝐼𝑔𝑓(𝑧): = ∫  𝑧0 𝑔(𝑤)𝑓′(𝑤)𝑑𝑑, 
𝑧 ∈ 𝔻, respectively. Both operators have been studied extensively (see [12]). 
Recently, the authors [16] have studied the boundedness and essential norm of Volterra type 
integral operators 𝑇𝑔 and 𝐼𝑔 from Dirichlet type spaces 𝒟𝐾,𝛼 to Morrey type spaces 𝐻𝐾,𝛼

2  such 
that 𝑔 ∈ ℬ. As a continuation to their work, we consider the Carleson embedding from 𝒟𝐾,𝛼 
to 𝒯𝐾∞(𝜇). We prove that 𝐼:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) if and only if 𝜇 is a (𝛼 + 1) −Carleson measure, 
when 0 < 𝛼 < 3. 
Throughout the paper, we assume that the weighted function 𝐾 satisfies: 
 ∫  10

𝜑𝐾(𝑠)
𝑠

𝑑𝑑 < ∞ (1) 
 and 
 ∫  ∞

1
𝜑𝐾(𝑠)
𝑠2

𝑑𝑑 < ∞, (2) 
 where 
 𝜑𝐾(𝑠) = sup

0≤𝑡≤1
𝐾(𝑠𝑠)/𝐾(𝑡), 0 < 𝑠 < ∞. 

Note that 𝐾 satisfies (2), by [[4], Lemma 2.2], there exists a small 𝑐 > 0 such that  
 𝜑𝐾(𝑡) ≤ 𝐶𝑡1−𝑐 , 𝑡 ≥ 1. (3) 
 
Finally, in the rest of this paper, 𝐶 expresses unspecified positive constant, possibly different 
at each occurrence; the symbol 𝑓 ⪯ 𝑔 means that 𝑓 ≤ 𝐶𝐶. If 𝑓 ⪯ 𝑔 and 𝑔 ⪯ 𝑓, then we write 
𝑓 ≈ 𝑔. 

  
2. MAIN RESULTS 

 
      We are now ready to present and establish the main results of this paper. 
Theorem 2.1.  Suppose that 𝐾 satisfies (1) and (2). Let 0 < 𝛼 < 3 and 𝜇 is a positive Borel 
measure on 𝔻. Then the inclusion mapping 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is bounded ⟺ 𝜇 is a (𝛼 +
1) −Carleson measure. That is, 
 sup

𝐼⊂𝜕𝔻

𝜇�𝑆(𝐼)�
|𝐼|𝛼+1

< ∞. 

Theorem 2.2.  Suppose that 𝐾 satisfies (1) and (2). Let 0 < 𝛼 < 3 and 𝜇 is a positive Borel 
measure on 𝔻. Then the inclusion mapping 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is compact ⟺ 𝜇 is a vanishing 
(𝛼 + 1) −Carleson measure. That is, 
 sup

|𝐼|→0

𝜇�𝑆(𝐼)�
|𝐼|𝛼+1

= 0. 
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2.1  The Proof of Theorem 2.1. 
Proof. 
Necessity: 
Assume that 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is bounded. Let  

 𝑓𝑎(𝑧): = �1−|𝑎|2��𝐾(1−|𝑎|2)

(1−𝑎�𝑧)
3+𝛼
2

. 

By Lemma 2 in [16], we get 𝑓𝑎 ∈ 𝒟𝐾,𝛼. Fixed an arc 𝐼 ⊂ 𝜕𝔻. Let 𝑒𝑖𝑖 be the center of 𝐼 and 
𝑎 = (1 − |𝐼|)𝑒𝑖𝑖. Then 
 |1 − 𝑎�𝑧| ≈ 1 − |𝑎| = |𝐼|, |𝑓𝑎(𝑧)|2 ≈ 𝐾(|𝐼|)

|𝐼|1+𝛼
, 𝑧 ∈ 𝑆(𝐼). 

Therefore, 
 𝜇�𝑆(𝐼)�

|𝐼|1+𝛼
≈ 1

𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑎(𝑧)|2𝑑𝑑(𝑧) < ∞. 
That is, 𝜇 is a (𝛼 + 1) −Carleson measure. 
Sufficiency: 
Assume that 𝜇 is a (𝛼 + 1) −Carleson measure. Fixed 𝑓 ∈ 𝒟𝐾,𝛼. Let 𝐼 be any arc on 𝜕𝔻 and 
𝑎 = (1 − |𝐼|)𝑒𝑖𝑖, where 𝑒𝑖𝑖 is the midpoint of 𝐼. From Lemma 1 in [16], 

 |𝑓(𝑎)|2 ⪯
‖𝑓‖𝒟𝐾,𝛼𝐾(|𝐼|)

|𝐼|1+𝛼
. 

Since  
 1

𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓(𝑧)|2𝑑𝑑(𝑧) 

 ⪯ 1
𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓(𝑎)|2𝑑𝑑(𝑧) + 1

𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓(𝑧) − 𝑓(𝑎)|2𝑑𝑑(𝑧) 
 = 𝐹 + 𝐺. 
 It is obvious that  
 𝐹 ⪯ 𝜇�𝑆(𝐼)�

|𝐼|1+𝛼
‖𝑓‖𝒟𝐾,𝛼

2 ⪯ ‖𝑓‖𝒟𝐾,𝛼
2 . 

By Lemma 3 in [16], we have 𝐴𝛼−12 ⊂ 𝐿2(𝑑𝑑). Note that  
 ‖𝑓‖𝐴𝛼−12

2 ≈ ∫  𝔻 |𝑓′(𝑧)|2(1 − |𝑧|2)𝛼+1𝑑𝑑(𝑧) ≤ ‖𝑓‖𝒟𝐾,𝛼
2 . 

Thus, 𝒟𝐾,𝛼 ⊂ 𝐴𝛼−12 . Based on these facts, we turn to estimate 𝐺. The estimate will be divided 
into two cases. 
Case 1: 1 ≤ 𝛼 < 3. 
Let 𝑧 = 𝜑𝑎(𝑤). Note that 
 |𝜑𝑎′ (𝑤)|(1 − |𝑤|2) = 1 − |𝜑𝑎(𝑤)|2. 
Then, we obtain  

 𝐺 ≈ �1−|𝑎|2�4

𝐾(1−|𝑎|2)∫  𝑆(𝐼) �
𝑓(𝑧)−𝑓(𝑎)

(1−𝑎�𝑧)2
�
2
𝑑𝑑(𝑧) 

 ≤ �1−|𝑎|2�4

𝐾(1−|𝑎|2)∫  𝔻 �𝑓(𝑧)−𝑓(𝑎)
(1−𝑎�𝑧)2

�
2
𝑑𝑑(𝑧) 

  

 ⪯ �1−|𝑎|2�4

𝐾(1−|𝑎|2)∫  𝔻 �𝑓(𝑧)−𝑓(𝑎)
(1−𝑎�𝑧)2

�
2

(1 − |𝑧|2)𝛼−1𝑑𝑑(𝑧) 

 ≤ �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻
|𝑓(𝑧)−𝑓(𝑎)|2�1−|𝑎|2�2

|1−𝑎�𝑧|4
(1 − |𝑧|2)𝛼−1𝑑𝑑(𝑧) 

 = �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 |(𝑓 ∘ 𝜑𝑎)(𝑤) − (𝑓 ∘ 𝜑𝑎)(0)|2(1 − |𝜑𝑎(𝑤)|2)𝛼−1𝑑𝑑(𝑤) 

 ⪯ �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 |(𝑓 ∘ 𝜑𝑎)′(𝑤)|2(1 − |𝑤|2)2(1 − |𝜑𝑎(𝑤)|2)𝛼−1𝑑𝑑(𝑤) 

 = �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 �𝑓′�𝜑𝑎(𝑤)��2|𝜑𝑎′ (𝑤)|2(1 − |𝑤|2)2(1 − |𝜑𝑎(𝑤)|2)𝛼−1𝑑𝑑(𝑤) 
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 = �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 �𝑓′�𝜑𝑎(𝑤)��2(1 − |𝜑𝑎(𝑤)|2)𝛼+1𝑑𝑑(𝑤) 

 = �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 |𝑓′(𝑧)|2(1 − |𝑧|2)𝛼+1 �1−|𝑎|2�2

|1−𝑎�𝑧|4
𝑑𝑑(𝑧) 

 = ∫  𝔻 |𝑓′(𝑧)|2 �1−|𝑧|2�𝛼+1

𝐾(1−|𝑧|2)
𝐾�1−|𝑧|2�
𝐾(1−|𝑎|2)

�1−|𝑎|2�4

|1−𝑎�𝑧|4
𝑑𝑑(𝑧) 

 ⪯ ∫  𝔻 |𝑓′(𝑧)|2 �1−|𝑧|2�𝛼+1

𝐾(1−|𝑧|2)
�𝐾(|1−𝑎�𝑧|)
𝐾(1−|𝑎|2)

� �1−|𝑎|2�4

|1−𝑎�𝑧|4
𝑑𝑑(𝑧) 

 ⪯ ∫  𝔻 |𝑓′(𝑧)|2 �1−|𝑧|2�𝛼+1

𝐾(1−|𝑧|2)
(|1−𝑎�𝑧|)1−𝑐

(1−|𝑎|2)1−𝑐
�1−|𝑎|2�4

|1−𝑎�𝑧|4
𝑑𝑑(𝑧) 

 ⪯ ‖𝑓‖𝒟𝐾,𝛼
2 , 

where the last second and fourth inequalities are deduced by (3) and Lemma 2.1 in [3], 
respectively. 
Case 2: 0 < 𝛼 < 1. 
Checking the proof of above, we have 

 𝐺 ⪯ �1−|𝑎|2�2

𝐾(1−|𝑎|2)∫  𝔻 |(𝑓 ∘ 𝜑𝑎)(𝑤) − (𝑓 ∘ 𝜑𝑎)(0)|2(1 − |𝜑𝑎(𝑤)|2)𝛼−1𝑑𝑑(𝑤) 

 ≤ �1−|𝑎|2�1+𝛼

𝐾(1−|𝑎|2) ∫  𝔻 |(𝑓 ∘ 𝜑𝑎)(𝑤) − (𝑓 ∘ 𝜑𝑎)(0)|2(1 − |𝑤|2)𝛼−1𝑑𝑑(𝑤) 

 ≤ �1−|𝑎|2�1+𝛼

𝐾(1−|𝑎|2) ∫  𝔻 |(𝑓 ∘ 𝜑𝑎)′(𝑤)|2(1 − |𝑤|2)𝛼+1𝑑𝑑(𝑤) 

 ≤ �1−|𝑎|2�1+𝛼

𝐾(1−|𝑎|2) ∫  𝔻 �𝑓′�𝜑𝑎(𝑤)��2(1 − |𝜑𝑎(𝑤)|2)2(1 − |𝑤|2)𝛼−1𝑑𝑑(𝑤) 

 ≤ �1−|𝑎|2�1+𝛼

𝐾(1−|𝑎|2) ∫  𝔻 |𝑓′(𝑧)|2(1 − |𝑧|2)2(1 − |𝜑𝑎(𝑧)|2)𝛼−1 �1−|𝑎|2�2

|1−𝑎�𝑧|4
𝑑𝑑(𝑤) 

 

 = ∫  𝔻 |𝑓′(𝑧)|2 �1−|𝑧|2�𝛼+1

𝐾(1−|𝑧|2)
𝐾�1−|𝑧|2�
𝐾(1−|𝑎|2)

�1−|𝑎|2�2
(1+𝛼)

|1−𝑎�𝑧|2(1+𝛼) 𝑑𝑑(𝑤) 
 ⪯ ‖𝑓‖𝒟𝐾,𝛼

2 . 
 Combining the estimates 𝐹 and 𝐺, we conclude that 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is bounded. □ 
 
2.2  The Proof of Theorem 2.2. 
Proof. 
Necessity: 
Assume that 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is compact. Given a sequence of arcs {𝐼𝑛} with lim

𝑛→∞
|𝐼𝑛| = 0. 

Denote the center of 𝐼𝑛 by 𝑒𝑖𝜃𝑛 and 𝑎𝑛 = (1 − |𝐼𝑛|)𝑒𝑖𝜃𝑛. Let  

 𝑓𝑛(𝑧): = �1−|𝑎𝑛|2��𝐾(1−|𝑎𝑛|2)

(1−𝑎�𝑛𝑧)
3+𝛼
2

, 𝑧 ∈ 𝔻. 

It is clear that {𝑓𝑛} is bounded in 𝒟𝐾,𝛼 and {𝑓𝑛} converges to zero uniformly on any compact 
subset of 𝔻. Then lim

𝑛→∞
‖𝑓𝑛‖𝒯𝐾∞(𝜇) = 0. Since  

 |𝑓𝑛(𝑧)|2 ≈ 𝐾(|𝐼𝑛|)
|𝐼𝑛|1+𝛼

, 𝑧 ∈ 𝑆(𝐼𝑛), 
we obtain  
 𝜇�𝑆(𝐼𝑛)�

|𝐼𝑛|1+𝛼
≈ 1

𝐾(|𝐼𝑛|)∫  𝑆(𝐼𝑛) |𝑓𝑛(𝑧)|2𝑑𝑑(𝑧) ⪯ ‖𝑓𝑛‖𝒯𝐾∞(𝜇)
2 → 0, (𝑛 → ∞). 

By the arbitrariness of {𝐼𝑛}, we deduce that 𝜇 is a vanishing (𝛼 + 1) −Carleson measure. 
Sufficiency: 
Assume that 𝜇 is a vanishing (𝛼 + 1) −Carleson measure, then 𝜇 is also a (𝛼 + 1) −Carleson 
measure and lim

𝑟→1−
‖𝜇 − 𝜇𝑟‖𝛼+1 = 0 by Lemma 2.2 in [6]. It follows from the boundedness 
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above, 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is bounded. Let {𝑓𝑛} be a bounded sequence in 𝒟𝐾,𝛼 such that {𝑓𝑛} 
converges to zero uniformly on each compact subset of 𝔻. We have 
 1

𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑛(𝑧)|2𝑑𝑑(𝑧) 

 ⪯ 1
𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑛(𝑧)|2𝑑𝜇𝑟(𝑧) + 1

𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑛(𝑧)|2𝑑(𝜇 − 𝜇𝑟)(𝑧) 

 ⪯ 1
𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑛(𝑧)|2𝑑𝜇𝑟(𝑧) + ‖𝜇 − 𝜇𝑟‖𝛼+1‖𝑓𝑛‖𝒟𝐾,𝛼

2  

 ⪯ 1
𝐾(|𝐼|)∫  𝑆(𝐼) |𝑓𝑛(𝑧)|2𝑑𝜇𝑟(𝑧) + ‖𝜇 − 𝜇𝑟‖𝛼+1 → 0(𝑟 → 1−,𝑛 → ∞). 

 Thus, we get lim
𝑛→∞

‖𝑓𝑛‖𝒯𝐾∞(𝜇) = 0. That is, 𝑖:𝒟𝐾,𝛼 → 𝒯𝐾∞(𝜇) is compact. □ 
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