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1. INTRODUCTION AND USEFUL INFORMATIONS

1.1. Background. Suppose that S"~! = {# € R" : |x| = 1} is the unit sphere on R™ (n > 2) equipped
with the normalized Lebesgue measure do (z'). We say that a function Q(x,z) defined on R™ x R™
belongs to the space Lo, (R™) x Lg(S™71) for s > 1, if Q (z, 2) satisfies the following conditions:

For any x, z € R™ and A > 0,

(1.1) Oz, Az) = Q(z, 2);
and for any z € R" \ {0} and 2’ = z/|z|
1/s
(1.2) 190 L. &7 )x Lo (s7-1) = sup / |z, 2")|" do () < 0.
TER™
n—1

Let us consider the following commutators with variable kernel of rough fractional type integral oper-
ators with variable kernel defined by

0, Ia.a]f(z) = b(2)Io.o f (%) — Io,a(bf)(2)

= [1) - b0 L sy,

|z — y|n—«
RTL
and
[b7 Mﬂ,a]f(x) =0 (LE) MQ,af (33) - MQ,a (bf) (37)
— sup|B(z, t)| 5 / b(2) — b @) 12z — )] |FW)ldy,

t>0
B(z,t)
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where f is a suitable function and Q € Lo (R™) x Ly(S™™ 1), s > 1, is homogeneous of degree zero with
respect to the second variable y on R™.

Recently, rough commutators with variable kernel of fractional type have been receiving more widely
attention. Many results about the rough commutators with variable kernel [b, I o] and [b, Mg ] on
various function spaces have been studied, respectively, see [1, 3] for details. However, the boundedness
of these operators on vanishing generalized weighted Morrey spaces has almost never been studied. In
this work, it is planned to fill the gap in the existing literature by our original results. That is, the
purpose of this paper is to consider the mapping properties for the rough fractional type commutator
operators with variable kernel [b, I o] and [b, Mg o] on vanishing generalized weighted Morrey spaces.

Now, we need the weight class A (p,q) introduced by Muckenhoupt and Wheeden in [5] to study
weighted boundedness of fractional integrals.

We say that w (z) € A(p,q) for 1 < p < g < 0o if and only if

(1.3) sup | Bz, )| / wizyide | | 1B / w(z)Pdz | < oo,
Blen) B(z,r) B(z.r)
where the supremum is taken over all the balls B(z,r). Note that, by Holder’s inequality, for all balls
B(x,r) we have
(1.4) 1B )25 ol e 10 e () 2 1
By (1.3), we have

A
Iy

(1.5) /w(x)qu /w(x)*f”dx < |B(z, 7)1t .

B(z,r) B(z,r)

)

=

Moreover, if w (:U)S, € A(L, %), then by (1.4) and (1.5), we obtain

1
(1.6) 0" g e 0™ ey = 1B F
Recall that reverse Holder’s inequality is defined by
1 -1
Bs(up) / w(x)ldz / w(x)dx < 00

B(z,r) B(z,r)
such that 1 < g < co.

It is noteworthy to mention that the vanishing generalized weighted Morrey spaces have been defined
by Giirbiiz in [2].

Definition 1.1. (Vanishing generalized weighted Morrey spaces) Let 1 < p < oo, ¢(z,r) :
R"x (0,00) — (0,00) and w is nonnegative measurable function on R™. Vanishing generalized weighted
Morrey space VM, ,(w) = VM, (R™ w) is defined as the space of functions f € VM, ,(w) =
VM, ,(R", w) such that

1
1.7 lim sup —— ) w) = 0.
(1.7) Yim sup ey Ml s @n.w)

Naturally, ¢(z,t) satisfies the following conditions:

B(zx,t
(1.8) lim sup (w(B@,D)” =0,
t—=0 zern (P(-T, t)
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and

Sl

B(x,t

(1.9) inf sup (WB@ D)
t>1 pern <P(~Ta t)

From now on, we denote by ¢ € B (w) if ¢(z,r) : R"x (0,00) — (0,00) and satisfies (1.8) and (1.9).

For functions supported on z-centred Euclidean ball B(z,r) C R™, the space of functions of bounded
mean oscillation BMO (R™) is the set of all b € Li°°(R™) such that

> 0.

1
su _ b(x) — bp(z.m|dr < 00,
i |B(x,r)|B(/)| () = bp(ar)]

1
bB(w,r):W / b(y)dy

B(z,r)

where

is the mean of b over the ball B(z,r) and the supremum is taken over all balls B(x,r). Now, we define

1
BMO (R") =<{be L'*(R"): su _ / b(x) — bp(z.m|dr < 0
( ) 1 ( ) xER",I7)">O |B.’£ r |B( )| ( ) B(x, )‘

and

b sup / b(z) — bp(e,r|de.

| ”BMO epn 'r‘>0 |B %0) |b( B( )|
B(.L r)

Let b € BMO(R™). Then, for any 1 < p < 0o, by the John-Nirenberg inequality, we can obtain

1

p

1
1.10 b ~ sup 7/ b(x) — bp(z.m|Pdx
(110 Blao= g, | ey, | o) boce

and for 0 < 2r < t there is a constant C' > 0 such that
t
(1.11) 1bB(2.r) — bB)| < CllbllBaro In -

Finally, A < B means that A < CB with some positive constant C' independent of appropriate
quantities and if A < B and B < A, we write A &~ B, and also p’ and s’ always denote the conjugate
index of any p > 1 and s > 1, that is, é:zl—%and%:zl—%

2. MAIN RESULTS
Our result can be stated as follows.

Theorem 2.1. Suppose that 0 < a<n, 1< s <p<a,q:%

,1<g<oo,be BMOR"), Q(x,z)
satisfies (1.1) and (1.2) for any x € R™\ {0}. Forp > 1, w(x)® Z

, ?) and s’ < p, the inequality

Q=

1. T.0) L1 5000y 0y S bl 3310 (07 (B (20,7)))

7 £l (B(zo,t),wp) dt
2.1 1+1In- L : - —
2 /< " > (we (B (x0,1))) 7 ¢

2r
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holds for any ball B (xo,r) and for all f € LI (R™). If o1 € B(wP), 32 € B(w?) and the pair (¢1, ¢2)
satisfies the following conditions

(2.2) Cs, = / (1+1n t) qup 2@ L

/ r) wert (wi (B (x,1)))7 ¢
for every § > 0, and
(2.3) / (1 n t) _ a1y oo )
] ") (wi (B (x,1)))e ¢ (wa (B (z,1)))*
then for p > 1, w (:1:)‘9/ cA (5, %) and s’ < p,
(2.4) I1b: 10,0l flly as, ., wey S [0llBa0 1 Fllv s, (r) »
(25) 16 Mol g, uny S Ibll2010 1 Fllya .

Proof. Let b € BMO(R™). For any xo € R", we write as f = fi + fo, where fi (y) = f (4) XB(xo.2r) (4);
fo () = (¥) X(B(xo .20y (¥)> 7> 0. Then

(o, Iﬂ,a]f||Lq(wq’B(IU,r)) < |I[b, Ifl,a}flqu(wq,B(mo’r)) + ([0, IQ,a}fZHLq(wq}B(mo’r)) :

Let us estimate ||[b, Iﬂva]flnLq(wq,B(wo,r)) and ||[b, Iﬂva]fQHLq(w‘l,B(zo,r))’ respectively.
Since f; € L, (wP,R™), by the boundedness of [b, I o] from L, (w”,R™) to L, (w?, R™) (see Theorem
3.6.11in [4]), (1.6) and since 1 < s’ < p < q, we get
[0, IQ,a]f1||Lq(wq7B(x07T)) < |l[o, Iﬂ,a]fl‘qu(wq,Rn)
S lblsao 11l we rm)

= ||b||BMO ||fHLp(wp,B(zo,2r))
o0
o dt
S Wm0 Wl oy [ s
2r

~blBarollw® Il o (5o 0™ HL(L,)/(B(ZM))

7 dt
o PR
2r

Q=

S bl Baro (w (B(zo, 7))

y dt
X I, (wr, Bzo .ty 1w IIL(%)wB(mo,t))m
2r :

Q=

< [bllBao (w? (B(xo,7)))

T . 1
o PSP I
2r °

< Bllsao (w? (B(xo,r)))

(2.6) % / (1 tIn t> ||fHLp(B(mo,t),wpl) ldt.
"/ (wi (B (zo,1)) " !

2r
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For ||[b, IQ,(X]fQ||Lq(7ﬂ(1713(m’r))7 noting that |zg — z| < r, 2r < |xg — y|, we have
lzo —yl < 2|z —y| < 3|zo —yl,
thus

Lol @IS [ 160) - bw) W ()] dy

yi Qz,z—y
S [ 106) = b '|<_y|)' @) dy

2r
i 2,2 — )
|() B( 0,)‘ |x0—y|"*a| ]
2r
= Fl +F2
To estimate F1, let 1 < s,q < oo, such that % = i + é, % = % — = Then, by using Hélder’s inequality,

(1.10), (1.11) and (2.7) in [2], we obtain

P S [ 160) = bt 1062 = 0150 [ 5y
2r lzo—yl

oo

dt
~ / / [by) = baeo,m| 19z, = 9)| | F ()| dy ot

2ror<|zo—y|<t

T dt
S [ B = bowol 06—l If Wl dyy s
Sr B(zo,t)
T dt
+ ’bB(xo,r) - bB(zg,t)’ |Q(1’,{L’ - y)' |f (y)| dyW
Ir B(xo,t)



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

dt
N / || (b () — bB(g;o,t)) Nz, z — ')HLS(B(wo,t)) ||f||Ls/(B(xo,t)) fn—atl

dt
L.(BGot) ML, (Bt mart

+ / |bB(mo,r) - bB(ato,t)| ||Q(;177x — )|

o0
dt
§/MO—%m,Sl(Jﬂm%WWhMMWNMwwmmﬁiﬁ

t dt
+lbllasro [ 1021962 = Il (e 11 (500 et

2r

a a1 dt
S ||b||BM0/ 112, (5o, 1B (o, )71 |B (o, 20)[72 =y

o0

t 1 dt
+ ||b||BMo/1n; 1L, (Bo.ty) 1B (0, 28)] 7 prmpy
2r
T t 1 dt
Slolmsro [ (1410 ) 1l e 1B (oo, 201
2r

S ||b||BMo/ <1+1 ) ”fHLp(B Io,t),wpl) %7
2r r (wq (B (an 7‘))) q

then taking the norm, we have

IF1 L, (B o) we) S 0l BaO (W (B (20,7)))7

/<1+1 ) 1,5 (an.0)-u7) dt
") (w (B (xo,7))) t

2r

Now turn to estimate F5. By using Holder’s mequahty and from (2.7) in [2], it is easy to see that

P /|b | 1965 = DTG [ et

|zo—yl

/»b snn] [ 1067 = 0110yt

:E() t)
< |b(z) = b | HQ ol y I T
~ B(wzo,T) Ls(B(zo,t) Ly(B(zo,t)) tn—aFl

FNA L, (Bg.0).wP) d
o s
(w3 (B(x0,r))) ¥
Then, applying reverse Holder’s inequality and by (1.10), we get the following
1

a

S |b(SU — bB(:vm

® 11l (B(zq,t),wP) dt
1B e S / b(z) — bp(ao,r N (z) dx L Lp(Blro.n.wp) di
L‘I(B( 05 )7 ) B( ) ‘ ( ' )‘ 2r (wq(B(movr)))‘ll ¢

To,T
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1 =
as @
_as_
S / w? (z) dx / [6() = bB(aon | da
B (x0,7) B(zo.)
s [ My seon.ur de
2r (wi(B(zo,r))) !
s—1
. _as_ s
K / |b(2)~bp(ag,rm|*~T do
5 s=1 | B(xo,r)
~ / w?® (z) dx |B(zo, )| o - [B(w0,7)]

B(zo,r)

TNy (8o di
X — T 7
2r  (wi(B(z0,7)))4
1 o0
~ |[bllBaro (w? (B (x0,7)))* T
g
Thus, combining all the estimates for [[F1[l,_(p(zo,r),we) 204 [|F2] 1 (B(zg,r)we): We g€t

I

1
1 Tl ol o o0y < IBllBAO (w0 (B, 7))

7 t f x wr) 1
(2.7) ></<1+1n) 712, e ot

r

J (w? (B (xo,7))) 7

At last, from (2.6) and (2.7), the proof of (2.1) is completed.
Moreover, by the definition of vanishing generalized weighted Morrey spaces, (2.1) and (2.3), we have

1
bIa wi) — 71),[& w9 xo,T
1 To.al vty oy = 50— b Tl e

Q=

Blsrmo  sup  ——— (w? (B (z0,7))

z€eR™ r>0 902(‘%171)
oo

% / <1 + ln t) Hf”Lp(B(a:o,t),wPl) ﬂ
) ") (wd (B (wg,r))) T

1
S IbllBvo  sup
zER™ ,7>0 <P2($, 7’)

A

Q=

(w? (B (x0,7)))

o

X / {@1 (z,t)"" ”fHLp(B(JCO,t)ﬂUp)] <1+ln fn) m

(w? (B (wo,7)))7

S

r

S bllBao £y, wr) ern >0 P2(2,7)
T€R" - ’

/()((Bpmd

< 62800 1 v, qury -

At last, it is sufficient to prove that

1
li wP,B(xo,r =0
b ) | e 2te0
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implies
. 1
}Lr{(l) ggseu]lgt WHW Iﬂ’a]f||Lq(wq7B(mo7r)) =0.
To show that

sup
zER™ 902(33, r

for any small r > 0, we split the right hand side of (2.1) as follow
1

@2(xvr)

] 116, Ia,al fll Ly (we, Baor)) < €

(2.8) 16: Ie,0] fll Ly (we,B(zo.r)) < Co [Fy (2,7) + Gy (z,7)]

where 0 < r < %, and

Q=

(w? (B (x0,7)))
¢2(I’T)

i : ¢ 171 |
></<1—|—ln) 1@, ?) - sup Lp(Blro)w?) | = gy
) (w7 (B (zo,r)))7 0<r<t ©1(x,t) t

T

Fy (2,7) := |[bllBaro

and

Q=

(w? (B (x0,7)))
@2($,T)

T f wost)wr) | 1
x/(1+lnt> 21CR) T sup | HLI’(B( 00w | 2 g,
t ") (we (B (ao,r) e o<t [ prl@mt) [t

Since f € VM o, (w?,R™), for all 0 < r < 9, we can choose any fixed ¢ > 0 such that

Gy (z,7) := [|bll MO

sup sup 1Nz, (wr B €
seRmo<r<y  P1(T,T) 2CGy||bllBmo’
where the constants C' and Cy come from (2.3) and (2.8), respectively. Then, for 0 < r < 1, by (2.3), we

have

Q=

e (w (B (x0.7))
Co.F, )< —
sup CoFo (@) < 56w

P
X / (1 +1n i) > (giiji))); %dt < %

T

The estimation of Gy (z,7) may be obtained by choosing r sufficiently small. Indeed, it follows from (2.2)
that

Q=

(B (o,
sup CoGy (2,7) < Czig”bHBZVIOM
zER™ 902(17,7")

where Cs, is the constant from (2.2).
Then, since p2 € B (w?), it suffices to choose r small enough such that

||fHVMp’kp1 (wpan) )

1

(B a
wup W (B0t : |
zER™ p2(z,7) 2CoCy||bll o ||f||VMM,1(wp,]R")

Hence,

sup CGy (z,71) <
xER™

NN e
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Thus,

16, Ia,0l fll L, (we,B(wo,r)) -
QDQ(xv 7‘)

€,

which means that

lim sup
70 yeprn @2(x,7T)

110, Io,a] fll L, (we,B(zo.r)) = 0,

which completes the proof of (2.4). On the other hand, since [b, Mq o] f(z) < [b, [jo,o] (|f]) (z), x € R?
(see Remark 3.6.2 in [4]) we can also use the same method for [b, Mg ], so we omit the details. As a
result, we complete the proof of Theorem 2.1. (I

1]
2]

[3]

[4]
[5]
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COMPLEX INTERPOLATION AND COMMUTATORS ACTING ON
MORREY SPACES

YOSHIHIRO SAWANO AND DENNY IVANAL HAKIM

ABSTRACT. The goal of this note is to improve the boundedness result of commutators
generated by the fractional integral operator I, of order o, 0 < o < n and BMO func-
tions by the use of the complex interpolation. In particular, we prove the boundedness
of commutators generated by BMO functions and fractional integral operators from the
Calderén-Lozanovskii product between Morrey spaces to Morrey spaces. Moreover, we
also discuss the compactness of these commutators. The results concern the boundedness
property of commutators acting on the complex interpolation spaces of Morrey spaces.
However, the actual proof uses the Calderén-Lozanovskii product and the complex in-
terpolation is hidden behind the Calderén—Lozanovskii product.

Mathematics Subject Classification (2010): 42B25, 42B35, 46B70, 47B38
Key words: Fractional integral operators, commutators, Morrey spaces, Calderén—
Lozanovskii product, complex interpolation spaces

Article history:

Received 17 December 2020

Received in revised form 20 January 2021
Accepted 23 January 2021

1. INTRODUCTION

The goal of this note is to refine a result on the Morrey-boundedness of commutators generated by BMO
functions and the fractional integral operator I,, of order o € (0, ) in terms of the complex interpolation.
To this end, we will start with the definition of the Morrey space M?(R™) for 1 < ¢ < p < oo. We write

Qz,r) = {y = (y1,92,--,Yn) ER"™ : j711n2ax n|xj —y;l < r} when z = (21, x2,...,2,) € R"and r > 0.

Denote by Q the set of all cubes of the form Q(z,r) for some x € R™ and r > 0. Let 1 < ¢ < p < oc.
Then the Morrey space ME(R™) is the set of all measurable functions f on R" for which

1
1_1 ¢
1fla = sup |Q<x7r>\w/ Folidy | < .
(z,r)ER™ X (0,00) Q(w,r)

As we mentioned we handle commutators generated by BMO functions and the fractional integral operator
I, a € (0,n). To this end, we next recall the definition of the related function spaces and operators. We
start with I, a € (0,n). Let I, be the fractional integral operator of order « given by

(1.1) I.f(z) = /R 1)

n |z =yl
which is defined for a suitable measurable function f. Next we recall the definition of BMO(R"™). If E has
positive measure and f is integrable over E, Then denote by mg(f) the average of f over E. |E| denotes
the volume of E. Define ||f|l. = sup mq(|f — mqo(f)]) for f € L] (R™). One says that f € LL _(R")
QeQ

dy (xz €R"),

loc loc

10
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has bounded mean oscillation (abbreviated to f € BMO(R™)), if || f||« < oco. In this paper, we handle

the commutator [a, I,] defined by [a, I,]f(x) = / Wf(y)dy for v € (0,n) and a € BMO(R").
Y|

R |x —
Here, f is a suitable function that will be chosen so that the right-hand side makes sense.

We are interested in the improvement of the following theorem due to Di Fazio and Ragusa [9] on the
boundedness of the commutator [a, I,], initially considered by Chanillo [6].

Proposition 1.1. Let a € BMO(R"™) and 0 < a < n. Assume that the parameters p,q,s,t € (1,00)

satisfy ¢ < p, t < s, ; = % — < and % = é Then la, I,] is a bounded linear operator from MB(R™) to

MG (R™), that is, for any f € ME(R™), the integral definining [a, I f(z) converges absolutely for almost
all x € R™ and the mapping f € ME(R") = [a, [,]f € M(R™) is a bounded linear operator.

The proof of Proposition 1.1 heavily hinges on the boundedness of I, initially proved by Adams
[1]. See the inclusive textbook [42] for more about the action of fractional integral operators on Morrey
spaces.

Proposition 1.2. The conclusion of Proposition 1.1 remains valid if we replace [a, I,] by I,.

One of the techniques to prove Proposition 1.2 is to use Hedberg’s inequality [21]. A standard argument
shows that Hedberg’s inequality can be refined by the use of the Morrey norm || - || v, see [38]. As is
established in [32, 36], we can measure how strongly we can use the Morrey norm || - ||, by the use of
the complex interpolation or the Calderén-Lozanovskii product, which we recall now.

Let 0 < 0 < 1, and let X'(R™) and Y(R") be Banach lattices. Then the Calderén-Lozanovskii product
(X(R™)'9(V(R™))?, which is due to Calderén [5, §13.5] and Lozanovskii [28, 29], is the set of all
measurable functions f for which |f| < |fo|'7?|f1]? for some fo € X(R") and f; € Y(R™). The norm of
f e (XR))I=9(Y(R"))? is given by

£l aeyi-acye = mf{(l| foll) =" (I £1112)"}

where fo and f; move over all functions in X'(R™) and Y(R"™) satisfying |f| < |fol*7|f1]°. See [34] for
more about the Calderén—Lozanovskii product.
We recall a result of [36].

Proposition 1.3. Assume that the parameters p,q,s,t € (1,00) satisfy ¢ < p, t < s, % — = and
1= L. Write § = ¢ € (0,1). Then the fractional integral operator I, maps (M#b(R™))'=0(M](R™))?
boundedly to MS(R")

The goal of this note is to obtain an analog of Proposition 1.3 for the commutator [a, I,]. Due to
the singularity of BMO functions, we need to replace MY (R™) by a slightly smaller space MflogL(R").
Motivated by [37], we write

: 1 / /
Hf”LlogL;Q(ac,r) = inf {/\ >0 : W /Q(z’r) | ()\y)l log (3 + |(>\y)|) dy < 1}

for a measurable function f. The quantity ||f||10g1.;Q(z,r) is called the Orlicz average of f. The Orlicz—
Morrey space M7, 1 (R™), p > 1, is the set of all measurable functions f for which | f|lre =

LlogL

1
sup |Q(SC, T)| P Hf”Llog L;Q(z,r) is finite.
z€R™ r>0

We seek to prove the following theorem:
Theorem 1.4. Let a € BMO(R"™) and 0 < o < n. Assume that the parameters p,q, s,t € (1,00) satisfy
g<pt<s 1= %—9 and I = L. Write@ = 22 € (0,1). Then [a, I,] maps (Mg(R”))l’e(MflogL(R"))e

n

boundedly to M3 (R™). Furthermore, the estimate

(1.2) @, La]ll (mz)1-6 (M
holds.

P e M S llalls
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It seems that our results can be extended to the generalized settings [10, 12, 13, 14, 15, 27]. However,
to simplify, we content ourselves with the Euclidean space.

Remark 1.5. Since X(R")NY(R™) C X (R™)!=Y(R")? for any Banach lattices X (R™) and Y(R™) and
MER™) C M7, 1, (R?) for any p > 1, we see that ML(R") C (ME(R™))=( ’ﬁlogL(R"))e. Thus,
Theorem 1.4 can be viewed as an improvement of Proposition 1.1.

We do not discuss seriously whether [a, I, ] f(x) can be defined almost everywhere. In fact, we can also
consider operators having singularity slightly stronger than commutators defined above. We define the
linear operator Cla, I,] by

5 la(z) — aly)|

Cla, 1] f(x) E/ Wf(y)dy
for a measurable function f as long as the integral makes sense for almost all x € R™. This definition
goes back to the paper [4]. Usually, due to the positivity of the integral kernel, we may assume that f
is non-negative almost everywhere. However, under some extra integrability condition, we will mainly
consider the case where f is not always non-negative.

Then we can prove the boundedness of Cla, I,,].

Theorem 1.6. The same conclusion remains valid in Theorem 1.4 if we replace [a, I,] by Cla, I,].

Theorem 1.4 will follow immediately once we prove Theorem 1.6: We concentrate on Theorem 1.6.
We can also discuss the compactness of commutators in Theorem 1.4.

Theorem 1.7. In addition to the assumption of Theorem 1.4, if a € VMO(R™), then [a, I,] is a compact
operator from (M{;(R”))l’g(MflogL(R"))e to M (R™).

Remark 1.8. The space VMO(R™) is defined to be the set of all functions a € BMO(R™) for which
lim  sup Mgz, (la — Mg, (a)]) =0.

r—0t rERM
The converse of Theorem 1.7 is also available.

Corollary 1.9. In addition to the assumption of Theorem 1.4 if [a,I,] is a compact operator from
(MP(R™)( ﬁlogL(R"))a to M3 (R™) then a € VMO(R"™).

In fact, this is a direct corollary of a result obtained in [8] asserting that a € VMO(R") if [a, I,] is a
compact operator from ME(R") to M;(R™).

We can paraphrase our theorems in terms of the complex interpolation functors. We focus on the
complex interpolation of MJ(R") and M .1 (R"). Remark that there are two different complex inter-
polation functors, both of which we recall. We write S = {z € C : 0 < Re(z) < 1} and let S be its
closure. For j = 0,1, we set j +iR = {z € C : Re(z) = j}. Also, for a Banach space X, the space
Lip(R; X) stands for the Banach space (modulo constants) of all continuous functions f : R — X for

. s)—f(t
which || fl|Lipr:x) =  Sup II£(s) = F@®)llx

s,tER,sF#t |S - t‘
Definition 1.10. Let 1 < ¢ < p < 0.
(1) The space f(MZ(R"),M{lOgL(R”)) is defined as the set of all functions F : S — MP(R") +
MilogL(R") = MflogL(R”) such that

(a) F is continuous on S and 51612 HF(Z)||M5+M§10gL < 00,
z

is finite.

(b) F is holomorphic on S,
(c) the functions t € R — F(it) € ME(R™) and t € R+ F(1+it) € M7, (R") are bounded
and continuous on R.
The space F(ME(R™), M{ 1, 1.(R™)) is equipped with the norm

Pl ong a0 = e (500 DGO Lagesup 1P+ D)l )

12
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(2) Let 0 € (0,1). The first/lower complex interpolation space [Mb(R"), My ., 1 (R")]g with respect
to the couple (M(R™), M, (R")) is defined to be the Banach lattice of all functions f €
ME(R™) + MT 1,1, (R?) = M7 1, 1, (R?) such that f is realized as f = F(0) for some element
F e F(MER™), M{ 1., (R™)). The norm on [ME(R™), M. 1 (R™)]p is defined by

1tz a1
= it {[|Fllrmzap,. ) ¢ f = F(6) for some F € FOME(R™), MP,1 (R™))}.

Definition 1.11. Let 1 < ¢ < p < oo. Also let 6 € (0,1).
(1) The space GIME(R™), MY, 1, (R")) stands for the set of all functions G : S — MY 1og L (R™)
such that

(a) G is continuous on S and sup H Glz)
z€8

T+[z|

o0
ME+MP <
q LlogL

)

(b) G is holomorphic on S,
(c) the functionst € R — G(it)—G(0) € MP(R™) andt € R G(1+it) —G(1) € My, (R")
are Lipschitz continuous on R for each j =0, 1.
The space G(MB(R™), MY, 1,(R")) is equipped with the norm

(1.3) 1G gz az oy = max {IG) wipce aazys 16O + i) ipce ez, |-

LlogL

(2) The second/upper complex interpolation space [MP(R™), ’ﬁlogL(R")]e with respect to the couple
(ME(R™), MY o 1, (R™)) is defined to be the linear space of all functions f € MY .1 (R") such
that f = G'(0) for some G € G(ME(R™), MY .1 (R")). For f € [Mé’(R”),MilogL(R")}e, its
norm on [ME(R"), ZﬁlogL(R")]e is defined by

1z e, re
= inf{HG”g(M’é,MilogL) : [ = G'(0) for some G € G(ME(R™), M7, ,(R™))}.
See [3] for these definitions. According to the general theory in [3],
[MER™), MY 1 1, (R™)]? D [ME(R™), M 10,1 (R")]
for 1 < g < p < co. More precisely, it is important that [M}(R"), M7, . (R")]y is the closure of
MERM)NMY |, (R™) in [ME(R™), M | (R™)]? with coincidence of norms [2]. In general this inclusion
is strict; see [22, 23] as well as [16, 19, 20, 30, 43]. It is remarkable that based on [22, 23], much more is

investigated on smoothness Morrey spaces in [17, 18, 41, 43]
In [31] we obtained the following expression:

(1.4) [MER™), MY 11, (R™)]? = (ME(R™) (MY 1o 1, (R™))°.
Thus, we can rephrase our theorems in terms of the complex interpolation functors.

Theorem 1.12. Let a € BMO(R") and 0 < a < n. Assume that the parameters p,q, s,t € (1,00) satisfy
g<p, t<s, 1=1_9gpqg 1= L. Write = 22 € (0,1). Under the assumption of Theorem 1.4 [a, 1]

7 s p n

maps [Mg(R”),MflogL(R")]e boundedly to M (R™). Furthermore, the estimate
(1.5) e, Talllmg@ey az o @ere—m S llall«
holds.

Theorem 1.13. In addition to the assumption of Theorem 1.4, if a € VMO(R™), then [a, I,] is a compact
operator from [MB(R™), MY\, .(R™)]? to M;(R™).

The converse is also available.

13



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

Corollary 1.14. In addition to the assumption of Theorem 1.4 if [a,l,] is a compact operator from
[MB(R™), MY o 1, (R™)]g to MZ(R™) then a € VMO(R™). In particular, under the assumption of Theorem

1.4 if [a, I,] is a compact operator from [M{;(R"),M’ﬁlogL(R”)]e to M3 (R™) then a € VMO(R™).

We remark that the compactness of [a, I,] from [ME(R"™), M7, 1 (R ™))% to M;(R™) guarantees the
one from [MB(R"), My, (R")]p to M7(R") thanks to the embedding from [ME(R"), M7, 1, (R™)]o
into [MB(R"), MY 1,1, (R™)]’.

In the light of the result in the famous paper [23], there is a gap between Corollaries 1.9 and 1.14. In
fact, [MZ(R”),M’IilogL(R”)]Q and [./\/l’q’(R”),M’ﬁlogL(R”)]g are different. Since Chen, Ding and Wang
used compactly supported functions for the proof of [8, Theorem 1.2], we can close this gap.

The remaining part of this paper is organized as follows: Section 2 collects preliminary facts, while
Section 3 and Section 4 prove Theorems 1.6 and 1.7, respectively.

2. PRELIMINARIES

2.1. A vector-valued maximal inequality. We invoke the following extension of the Fefferman—Stein
vector-valued inequality for the Hardy—Littlewood maximal operator M.

Lemma 2.1. (38, 39] Let 1 <t < s < oo and 1 <r <oo. Then for any sequence {f;}52; C M{(R"),

= =
oo

o0

> (Mfy S [l
j=1 M Jj= M

2.2. Fractional Orlicz maximal operators. As an auxiliary step, we will investigate the boundedness
property of the fractional Orlicz maximal operator given by

Mo, Liogrf(2) = sup x@(2){(Q)* (| fllLos:0
QeQ
for f € LO(R™), where L°(R") stands for the linear space of all measurable functions on R”. If & = 0, then

abbreviate My 1,101, t0 My, 10g1.. We also remark that this operator is slightly bigger than the fractional
maximal operator given by

Mo f(z) = sup xq@(@)UQ)*"[|fll1(q)-
QeQ
In fact, we have M, f < My 1iog1f for any f € LO(R™).

Lemma 2.2. Let 0 < a < n. Assume that the parameters p,q,s,t € (1,00) satisfy ¢ < p, t < s,

1 1 t
S Z gl = ~. Write § = % € (0,1). Then Map1ogr maps (ME(R™)'O(ME, | (R™))f

S p n p
boundedly to M3 (R™).

Proof. The proof resembles that of the main theorem in [36]. Here we supply the proof for the com-
pleteness. Let f € (MBE(R™))'~ Q(MLIOgL( ™)?. We may assume f # 0; otherwise the conclusion

Ma,L1ogLf =0 € (ME(R™))~4( Liogr(R ™))?. Recall that
I lcatgysocatgn, o = LSl illoeg 5 o € ME(RY), fi € ME o (™)),

It follows directly from the definition at least that

{||fo\|}v_l§||f1||3wglogL tfo € MGR™), fr € M1 L(R™)} = (Ifllmzyi-o a1 e 00)
or that
{Hfo||}\2§||f1||§\,lilogL  fo € MER™), fi € MLt (R} = [1fll vz ooz, o+ 00):

14
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which yields
€ ({0l I ilheg, | ¢ fo € MER™), fi € M, (RM))

= (Iflfmzyr-eaee,yo,00).

LlogL

Consequently there exist fo € ML(R™) and f; € MilogL(R") such that |f] < |fo|'=?|f1|° and that

20 fllomzyr-o e

LlogL

—6
(2.1) ol 1l < 2 lowmyi-eaer,,, e

Let x € R™ and suppose that Q) € Q contains x. Thanks to the generalized H'older inequality for Orlicz
spaces, or thanks to the inequality a'=%% < a + b for a,b > 0,

—8 9
[fllogrie S (1folltiog @)~ (IfillLog1i@)’
Therefore,
_ a_ 6 4
U fliogrie S Mot fo(@)' =101 7 il = (Mriogrfo(@) " 1Aallle -
Consequently,

P
Mo g o1 (@) S (M ogn fo(e) 1 ill%y .
Taking the Morrey norm || - || a:, we get

P
(2-2) ”]woz,LlogLfH/\/l'tS 5 ||MLlogLf0||/S\/1§Hf1||?\/1§logL-
Since My, 101 f(x) Se M[\f|1+5](a:)ﬁ for any € > 0, we have
[MiiogLfollae S Il follmez-

Combining this inequality, (2.1), (2.2) and the identity P_q 0, we have the desired result. O
s

2.3. Mean oscillation. For the proof of the theorem, we will use the mean oscillation [26].
Recall that the decreasing rearrangement of f € L°(R™) is given as follows:
@) =inf{A>0: |{|f| > A} <t} (>0).

Let Q € Q, and f € L°(Q) be a real-valued function.

We use the following notation: for a right-open cube Q°, which is not always a dyadic cube, D(Q°)
is the set of all dyadic cubes with respect to a cube Q. The mean oscillation of f € L%(Q) of level
A € (0,1) is given by wy(f; Q) = ilgé((f —)xq)*(A\|@Q]), where * denotes the decreasing rearrangement

for functions. We will use
(2.3) walaf +b;Q) = lalwr(f; Q)
for a,b € C and f € LO(R™).

Before we go further, a useful remark is in order. Let g be a measurable function defined on a cube
Q. Then since g* is decreasing,

1 AlQ| 1 QI 1
(2.4 ONRN < i [ o< s [T o ar= s [ ejas
Lemma 2.3. Let Q = Q(z,r) be a fired cube. Let0 < A < 1,a € BMO(R™), 0 < o <n and f € L (R™).
Then
(2.5) wA(Cla, L] f; Q) < Nl Inf La[lf)(w) + lallx mf Mo riogrf(w).

Here L (R™) stands for the space of all compactly supported essentially bounded functions.

We employ the following notation for the proof: For a > 0, r > 0 and = € R", we write aQ(z,r) =
Q(z, ar), so that aQ(x,r) is the a-times expansion of Q(x,r). Denote by WLP(R™) the weak LP space.

15
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Proof of Lemma 2.3. We decompose
(2.6) Cla, L] f = Cla, La][xs@f] + Cla, La][xrm\3q f].
Fix z € . We handle the first term in the right-hand side of (2.6). We calculate

Cla, L]lxsaf1(2)] < la(z) — mq(a)Lalxsql fl](2) + Lalla — mq(a)l - x3qlf[](2)-

Since In[xsolf]] is an Aj-weight according to [7, Lemma 5.2(2)], more precisely, M[I,[x30!fl]] Sa
I, [x30lf]], it satisfies the reverse Holder inequality:

mq(Lalxsolf1'75) ™ < mo(Lalxsqlf1])

for € > 0. Thus, by [7, Lemma 5.2(1)], we have

mq(la —mq(a)llalxselfI) < llallL(3Q) msq(|f])-

Meanwhile, we estimate I,[la — mg(a)| - x3ql|f|](x) by using the John-Nirenberg inequality, Holder’s
inequality for weak/strong Lebesgue spaces over a probability space (see [11, Exercise 1.1.11]) and the
duality Llog L-Exp(L) over a probability space. We recall

. 1 f
1/ 1lExp(L);@(a,r) = inf {)\ >0 100, /Q(m) <€Xp <3 + |()\y)|> - 1> dy < 1}

for a measurable function f. As well as the above inequalities, by the use of the Hardy—Littlewood—
Sobolev inequality, which asserts that I, maps L'(R™) to WL7= (R"), we have

Halla = mq(a)l - xsol Iy, =2s
Ixell, 72a

< llla—mq(a)) - x3qlflllL:
Ixell, w2

S llal[«(Q)*mriog L3¢ (| f1)-

Combining these estimates with (2.4), we obtain

(2.7) wa/2(ICla, Lallxsa [l Q) S mq(ICla, Lallxsa /1) < llall-&(@)*mriog L3 (I £])-

For the second term of (2.6), we estimate

mq(lalla =me(a)l - xselfl]) S

‘é[a,u emaflir) — [ )y
< |l lbesa i) - [ RSty
ma(@) — ay)| ma(@) — ay)|
g Ty [ S )y
£) ma(@) — aly)|
Slow) —mo@) [y [ ST )y

Note that the quantities

L mel@) —a)]
/R”'\?»Q TG /R"\scz 2 —y[rriza 1 Wldy

16
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are constants. Thus, from (2.3), we deduce

w 4 mela |f(v)] . |mg(a) —aly)|
e <| Qo) iy [ ) Q)

Re\3Q |2 — Y|

= wna (la = mol@)| Q) | 'fgjl'adyw/R Ww )ldy

R™\3Q |z — n\3Q |

O [ 0L
/]R"\3Q [z =y /Rn\gQ o — g = Tallfll(w)

for each w € Q = Q(z, 7). Therefore, we can estimate the second term of (2.6) as follows:

o )

iralla - mola); L [ el —at)]
Sunaa-mo(@ @) [ werf )y

rm\3Q |2 —y|" |z —y[rtize

Note also that

N R e SO

=y

Slall i, Ll +r [ 2@ 00l g,

R™\3Q |z —

By the inclusion

R"\3Q c J@Q\27'Q)
j=1
and Hélder’s inequality for Orlicz spaces (the duality Llog L-Exp(L) over a probability space), we obtain

Imq(a) — aly)l, ; I o
/R"\SQ Iz — g[rii-a 1 (y Idy<; e a/Qlef(y) la(y) — mq(a)|dy

o0

Z (207)1- s I ILegziglla = mo(a)[expy2io

j:l

— J

< J
Nul)IelgMa,LlogLf(w); 5y llalls

—1 .
<r Ha||*“1)161fQMa,LlogLf(w)~

In total,
. m
orva | [Clos Llbamsasie) - [ ImettZtl g,
R"\3Q |z —yl
< . .
23 S llall inf TalIf1)G0) + Nl 0 Mapiogrf (),
By combining (2.7) and (2.8), we obtain (2.5). O

For the proof of Theorem 1.6 we employ the Lerner—-Hyt6nen decomposition from [24, Theorem 1.1]
and [25, Theorem 4.5]; see also the textbook [33].

Lemma 2.4. Let f : Q% — R be a measurable function defined on a right-open cube Q°. Then there
exists a family {Q}}jeny, kex, C D(Q°) such that {Q}kek, = {Q°}, that

XUpex,,, QS XUyer, @4 S XQ%

j+1
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that
1
Jj+1 Ve
U e’ <5l
k/EK]+1
and that
Xoolf =Med(f; Q) <Y D wan2(f3Qf)xgy -
j=0 keK;

Here, the inequality is understood as the one for almost every point and Med(f;Q°) stands for a real
number satisfying

e e @« Ja) > Med(F; @)}, e € Q@ + f(x) < Med(F: Q")) < 51"

2.4. Compactness criterion. Our proof of the compactness of operators hinges on the following simple
observation, which is a direct consequence of Kolmogorov’s theorem. See [35].

Lemma 2.5. Let k € L°(R™ x R™). Then the integral operator T, given by
Ti@)= | k@ y)f)dy,

is a compact operator from LP(R™) to LY(R™) for all 1 < p,q < 0.
In particular, T is a compact operator from MBH(R™) to M;(R™) whenever 1 < ¢ < p < oo and
1<t<s<o0.

2.5. An estimate of Welland type. We write

(Lnf@ = [ oo (o~ 1) F0)dy

yn—e

and

(Ma)rf (z) = sup r®™ /Q Wl

r>R
for f € LO(R").
Lemma 2.6. Let 0 < oo <n and 6 € (0,min(a,n — o). Then
(Ia)Rf(x) 5 \/(MaJré)R/nf('r)(Mafé)R/nf(x)

for all non-negative measurable functions f and for all R > 0.

Proof. Welland [40] proved that

1 f <\/Ma+t5f ) a— 5f( )

for all non-negative measurable functions f. Remark also that Q(z, R/n) C B(z, R). Since

Marslxam (e, f1(2) < n sUp(2)2+5—m / 1F()ldy
>0 Q(z,m)\B(z,R)

< c¢n sup (27“)a+5_"/ |f(y)ldy
r>R/n Q(z,7)\B(z,R)

= cn(Ma+5)R/nf(m)
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for some constant ¢, depending only on n, if we replace f by Xrn\B(s,r)f, then we obtain
(La)rf(2) = La[XRn\B(2,R) f]()
S\ Massham b, f1(@) Ma—slxen (e, /1)

S\ (Mass) rpnf (@) (Ma-s) o f @),

as required. ([

3. PROOF OF THEOREM 1.6

By the monotone convergence theorem and the fact that the integral kernel C [a, I,] is non-negative,
we may assume that f € L°(R™). By decomposing f into the positive part and the negative part, we
may assume that f is non-negative. In this case, C[a, I,]f € LP°(R™) for some py € (1,00) and hence
Med(Cla, I]f;[=J,J)") — 0 as J — oo. Therefore,

1€, Ta] fllamg < lim inf [[x (.7~ (Cla, L] f — Med(Cla, L] f [=J, J)™)) | v

Fix J € N here and below. Thanks to the Lerner-Hytonen decomposition, (Lemma 2.4) we obtain

X ()€, LI @)~ Med(Cla, L5 [, 1] < 32 3 o (Cles L5 @ 2)

j=0 keK;

for some collection {Q‘zj}jeNo,k‘eK]‘ of cubes as in Lemma 2.4. If we use Lemma 2.3, then we obtain

IX[- ]J)”( 2)(Cla, L] f (x) = Med(Cla, L] f5 [, J)"))|

< lall« Z Z mf Inf(= XQJ x) + [la|| Z Z 1nf MaLlogLf( )XQ]( )

J=0 keK, j=0 keK; *€
Write
El=Q,\ |J @t (eNykek).
k' eK 1
Since 2|E}| > |Q1|, we have

MXEi( )> | |XQJ( )Z%XQi(x) (:CGRn)

oA
and hence

IX[- JJ)”( 2)(Cla, L] f (z) — Med(Cla, L] f5 [, J)"))|

S llall Z > lnf Iof(2)(Mx gy ())* + ||all. Z > lnf Mo s ogrf (2)(Mx gy (7))

=0 keK; =0 keK;

Meanwhile, by Lemma 2.1, we obtain

=

Z Z inf I,f(z MXEi)Q = Z Z inf Iof(z MXEi')Z

i=0 ke, €Ok e =0 ke, *€Qk
f« M3

Nl=

N

ZZ inf I,f(z XE{

J
J=0 ke K, *€

2s
M33

19



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

Likewise once again by Lemma 2.1, we have

N

Z > inf Mopiognf(2)(Mxp)® = Z Y inf Mapiogrf(2)(Mxg)®

=0 ke kK, *€Q % M J=0 ke K, *€Q %
¢ M3:

oo

Z Z inf Ma LlogLf( )XE;

=0 keR, *€Q

A

M3
As a result,

X[ g7 (Cla, Ia] f — Med(Cla, In] f5 [=J, J)™)) || me

ol |35 it GO0+ 3 YD il Mapiosn f() (M)
J=0 keK; >k =0 kek, *€Q M;
< llall« Z Z lnf Io f(2 XE7 +Z Z 1nf Ma LiogLf (2 )XE7
j=0 keK; =0 keK; €@k e
t

Since {Elz}jeNo,keKj is disjoint, it follows that

IX(—s.0y7 (Cla, L] f — Med(Cla, L] f; [, J)™)) | me
(3-1) 5 ”aH* |Iaf + Moc,LlOgLfHMf :

It remains to use Proposition 1.3 and Lemma 2.2. In fact, according to Proposition 1.3 and the inclusion
MY 1og L(R™) € MT(R™), we have

(3.2) Hafllag S WFlmgy-eomp )0
Meanwhile, by virtue of Lemma 2.2, we have
(3.3) 1Mo 1ogLfllnmg S N llazy-onz, o

Thus, the desired result follows from (3.1)-(3.3).

4. PROOF OF THEOREM 1.7

We will reduce matters to a couple of steps. Let

o talofle) = [ D8l = s

for & > 0. Remark that any linear operator T from (M2 (R™))*~ Q(MLIOgL( ™"))? to Mg (R™) is compact
if T is realized as the norm limit of the sequence of compact operators from (/\/l{]’(IR”))l_e(./\/lilogL(R”))‘9
to M3 (R™).

Before we come to the proof of Theorem 1.7, based on the above principle, we explain the plan of the
proof as follows:

(1) We may assume a € C°(R™); see Section 4.1.
(2) We have only to deal with [a, I,]c for e > 0; see Section 4.2.
(3) As a key step, we will show that [a, I4]g — 0, R — oo in the operator norm; see Section 4.3.
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(4) Using Lemma 2.5, we prove the compactness of [a, I,]c — [a, I4]r for R > ¢ > 0; see Section 4.4.
Once this is done, we first conclude that [a, I,] is compact from (Mg(R"))lfe(MflogL(R”))e

to M3 (R™) and then also conclude that [a, I,] is compact from (M{;(R"))l_a(./\/li1OgL(R”))9
ME(R™).
4.1. Reduction to the case of a € C°(R"™). In view of (1.2), we may assume that a € C"X’(R")
In fact, since a € VMO(R"), there exists a sequence {a;}?2; C Cg°(R") such that |la — a;.
277, Thus, [/[a,ls] — [aj, La]ll(rm)- O(MD )P M < 277 thanks to (1.2). Thus, once we show that
[a;,I,] is compact from (Mg(R"))l_e(MilogL(]R"))e to M3 (R™), it follows that [a, I,] is compact from
(MERM) (M, (B)? to M3 ().

4.2. Reduction to the compactness of [a, [,].. Observe that

[a, Tole f(x) = [a, La] f ()] S elall f]](z)
by the mean value theorem. Since I, maps (M#?(R™))'~¢( ilogL(R”))‘g boundedly to M (R™) thanks
to Proposition 1.3, we have only to show the compactness of the operator [a, I,]c.

4.3. Reduction to the compactness of [a,1,]. — [a,I,]r. The key observation for the proof is the
following estimate:

Proposition 4.1. Leta € C°(R™). Then the operator norm of [a, Io|r from (MP(R™))'~ Q(MLlogL( n))?
to M;(R™) converges to 0 as R — oo.

Proof. Let f € (MP(R™)'~%(M] ., (R™))?. Note that
[a, Io]rf(z) = a(z)(Ia)rf(x) — (Ia)r(af)(z) (z €R").

We will take care of each term. Choose ¢ > 0 sufficiently small so that oo 4+ < %. Define u* and v* by

1 1  afé 1 9
=5 _anand? . Then we have

Ia(x)( L) rf(2)] < R™°la(x)Lays(lf])(2)-

Since a € L°(R™), it follows from Holder’s inequality for Morrey spaces and Proposition 1.3 that

o TasllFMlate S Marsllllpgr SUFN ppimiotme ) sme S I lltgy—orp oy 00

(MP) (MT)
Meanwhile, by Lemma 2.6 and Hélder’s inequality for Morrey spaces,
(4.1) I(Za)rla - flllag S \/ll acto) /[0 S jgot | (Ma—s)r/nla ST e
N \/llMa+6 Pl e NMa—s) e Il g
We can handle with ease || My4s[a - f] ”MZI by the use of the Adams theorem. In fact, we have
(42) Mol Al S - Sl < 1 aeg-

We will move on to the estimate of ||(Ma—s)pr/n[a
satisfy |f| < [fo|'=?|f1|°. Then we have
(Q)* " mq(la- f) < UQ)* " mq(la- fol)'~"ma(|fi])’
= 6(Q) " (mq(la- fol))'*(4(Q) 7 mq (| /1))’
SR Mla- fol (@)~ (Il fill paz)’
for any cube @ with z € @ and nf(Q) > R. Therefore,
(Ma—s)r/mla- fl(x) S R™°Mla- fol(@)' " (I fillpaz)’

f]||MZ:. Let fo € ME(R™) and f; € MilogL(R”)
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By taking the norm || - - on both sides, we obtain

e
v

1(Ma—s)r/mla My < RZ(IMIa- foll o) (1 fllaz)®
v (1—0)v—
SR (la foll , ga-ora=)" " (If1llaaz)°-
(1-0)v—

Arithmetic shows that p > (1 — #)u~ and that ¢ > (1 — 6)v~. Thus, we are in the position of choosing

U and V so that
1 1 1 1 1 1

1;+ﬁ 1-0wu" q¢q V ({1A-0)v "
By applying Holder’s inequality for Morrey spaces and the fact that a € MY (R™), we obtain

1(Ma—s)r/nla [y S B (lall ) U follagg) = Ufrllaeg)” S B follaag) = (11l aer)°
As a result, since fp and f; are arbitrary, we obtain
(4.3) 1(Ma—s)r/nla fl ppu- S R\ flomny-emz,, e
Combining (4.1), (4.2) and (4.3), we conclude

|(La)rla - flllm; < J‘T‘sHf||(A/tfg)l—ﬂ(/wglogL)9

for all f € (MP(R™))}=9( ’ﬁlogL(R"))e, proving the lemma. O
4.4. Conclusion of the proof of Theorem 1.7. Note that the integral kernel k of [a, I,]. — [a, [a]r
is given by
a(z) — a(y)
k(z,y) = 28— aW) -
(x7 y) ‘I‘ — y|n_(’ X(E,R)(‘x y|)

and belongs to L°(R™ x R™) thanks to the fact that a € C°(R™). Thus, in view of Proposition 4.1 and
Lemma 2.5, the operator [a, Io]e — [a,Ia]r is compact from (ME(R™))=%( ZﬁlogL(R"))e to M;(R™).
Hence, [a, I,,] is compact from (Mg’(R”))l’a(M’ﬁlogL(R”))e to ME(R™).
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ATOMIC AND MOLECULAR DECOMPOSITIONS OF WEIGHTED
TRIEBEL-LIZORKIN-TYPE SPACES
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ABSTRACT. Weighted General Triebel-Lizorkin spaces are introduced and studied with
the use of discrete wavelet transforms. This study extends the methods of dyadic ¢-
transforms of Frazier and Jawerth [12] and [39]. We consider the classes of almost diago-
nal operators on some appropriate Sequence Spaces and we obtain atomic and molecular
decompositions of Weighted Triebel-Lizorkin-type Spaces.
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0. INTRODUCTION

Function Spaces play a crucial role in the genesis of functional analysis and widely used in the devel-
opment of the modern analysis of partial differential equations. For instance, Morrey [26] study the local
regularity of solutions of some partial differential equations in an appropriate space, called Morrey space.
This local regularity of solutions is more precise than on the familiar Lebesgue spaces.

During the last decades various classical operators of harmonic analysis, such as maximal, singular, and
potential operators were widely investigated both in classical and generalized Morrey spaces, we refer the
reader to [17) 18] 20} 191 2], 22] 241 25 29] and the references therein.

The classical Besov and Triebel-Lizorkin spaces are class of function spaces containing many well-
known classical function spaces and are more suitable in the treatment of a large type of partial differential
equations, see for instance [7, I1]. A comprehensive treatment of these function spaces and their history
can be found in Triebel’s monographs [37, 38] and in the fundamental paper of M. Frazier and B. Jawerth
[12].

In recent years, there has been increasing interest in a new family of function spaces, called New class
of Besov and Triebel-Lizorkin spaces. These spaces unify and generalize many classical spaces including
Besov spaces, Morrey spaces, Triebel-lizorkin spaces, see for instance [39} B30].

0.1. Some background tools. In this section, w denotes a weight function R" i.e, w is an almost every
(a.e) positive locally integrable function in R™. A function f € LP(w), 0 < p < oo if and only if

1

il = ([ V@Putoie)” < o

2010 Mathematics Subject Classification. 42B25, 42B35, 42C40.
Key words and phrases. Triebel-Lizorkin spaces, Discrete characterization, ¢-transform, Almost di-
agonal operator, Atomic decomposition, Molecular decomposition.
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A weight function w is said to be in the Muckenhoupt classes A, 1 < p < oo if there exists a constant
C}p > 0 such that for every cube @,

i/ wdy (1/ wl_p,dy)p_l <C
QI Jg Q[ Jo -F

L4y L —1, well for p=1,

Whel’l1<p<00,p -

1
ol /Q w(y)dy < Cruw(z),

for a.e. = € @Q, or equivalently Mw(z) < Ciw(z) for a.e. = € R™, where M is the Hardy-Littlewood
maximal operator defined, for a locally integrable function f, by

1

M) = sup /Q 1F()ldy.

The supremum is taken over all cubes containing .

The classe A, was introduced by Muckenhoupt, B. [27] in order to characterize the boundedness of the
Hardy-Littlewodd maximal operator M on the weighted Lebesgue spaces, see also [8, 15l 33, B4]. The
pioneering work of Muckenhoupt, B. [27] showed that

M: Ly(w)— Ly(w)
if and only if w € A, when 1 < p < oo, and
M Ll('lU) — Ll,oo(w);

if and only if w € A;.
L, o (w) denotes the space of all measurable functions f such that
sup (w{z e R": f(z) > )\})% < 00.
A>0

Moreover, if 1 < p < o0, 1 < g < oo and w € Ay, then there exists a positive constant C such that for all
sequences { fx}rez of locally integrable functions on R™,

p/q p/q
(0.1) Il (Z[Mfk<x>1Q> wahde <C [ (me) w(w)da.

keZ kEZ

The inequality [0.1]is the well known Fefferman-Stein vector-valued inequality, see for instance [10] 15} 6],
33).
The following important properties of Muckenhoupt weights will be widely used in this work.

Lemma 0.1. Let w € A,. Then, there exist 6 > 0, C' > 0 s.t, every time we have a measurable subset A
of a cube @Q, the following "d-reverse doubling” inequality holds

(0.2) wid) _ ¢ <|A|)6

w(Q) Q|
and also the following "p- doubling” inequality holds

w(Q) (IQI)”
0.3 <C|(+——] .
(03 w@) =\

Remark 0.1. If w € A,, then wiT € A e and satisfies the same 5-reverse doubling” inequality.
T
2
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The reverse condition is known as A,, - condition and the class of the weights w satisfying A..-
condition is denoted by As. It is well known that A, = Up>14,, which motivates the notation A, see
for instance [I5, Corollary 2.13, pp.403-404].

Throughout this work, w will be a fixed weight in A, and we denote by 7y the number ry = inf{s >
0:w e As}. If we choose 0 < r < p/rg, 0 < p < oo, then, in particular w € Ap and wo T € A . We

, T p—r
also denote by § the same reverse doubling constant of w and w™ »-7. (See Lemma and Remark .
Let S(R™) to be the space of all Schwartz functions on R™ with the classical topology generated by the
family of semi-norms

V]|, N = supzernsupig<n (1 + 1z|)"|0%v(z)] k,N €Ny, veSR).
The topological dual space, S'(R™) of S(R™) is the set of all continuous linear functional S(R") — C

endowed with the weak x-topology. We denote by So(R™), the topological subspace of functions in S(R™)
having all vanishing moments :

Sw(®") = {v € SE): / Pu(e)de =0, VBEN'}.

S (R™) denotes the topological dual space of So(R™) , namely, the set of all continuous linear functional
on S8’ (R™). The space S._(R™) is also endowed with the weak *-topology. It is well known that S/_(R") =
S'(R™)/P(R™) as topological spaces, where P(R™) denotes the set of all polynomials on R", see for
example, [43 Proposition 8.1].
Similarly, for any R € N, the space Sg(R™) is defined to be the set of all Schwartz functions having
vanishing moments of order R and Si(R™) is its topological dual space. We write S_;(R™) = S(R").
The Fourier transform, Fv = 0, of Schwartz function v is defined by

v(€) = (27r)_”/ e STy (2)dx.

n

The convolution of two function v, € S(R™) is defined by

v p(x) = /n v(z —y)u(y)dy

and still belongs to S(R™).

The convolution operator can be extended to S(R™) x §'(R™) via v« f(z) = (f,u(z —.)). It makes
sense pointwise and is a C'*° function in R™ of at most polynomial growth. For simplifying notation, we
write often vf = v x f.

Throughout this paper, C denotes unspecified positive constant, possibly different at each occurrence;
the symbol A < B means that A < CB. If A < B and B =< A, then we write A ~ B. The symbol |s]
denotes the maximal integer no more than s and s* = s — |s].

For j € Z and k € Z™, we denote by Qi the dyadic cube 277 ([0,1]" + k), [(Q;x) = 277 is its side
length, g, =277k is its lower "left-corner” and c¢q,, is its center. We set Q = {Qyx : j € Z, k € Z"},
and jo = —log2l(Q) for all Q € Q.

When the dyadic cube @ appears as an index, such as ZQE o » it is understood that @ runs over all
dyadic cubes in R".

For a function v and dyadic cube @ = Q, set

vo(z) = QI ?u(2x — k) = Q' *v)(z — 2q),
for all z € R", where v;(z) = 2" v(27x).

Definition 0.1. A Schwartz function v : R* — C is a Littlewood-Paley function if U is a real-valued
function and satisfies:

(0.4) supp v C{£eR" : 1/2<|¢ <2}
(0.5) D) >C >0 i 3/5<g<5/3.
3
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The function ji(§) = v/n with n(§) = > ,ey 0(2796)D(277€), is a Littlewood-Paley dual function related
to v and it is itself a Littlewood-Paley function, satisfying moreover

(0.6) D aRIORTIE =1 for all £#0.
JEZ
Lemma 0.2 (Reproducing Calderén Formula).
(1) Let v € S(R™) be such that supp ¥ is compact, bounded away from the origin and satisfying

ez v(27€) =1 for all € # 0. Then, for any f € S (R"),
(0.7) F=Y 0t
JEZ
(2) Let pu, v € S(R™) such that supp [i, supp ¥ are compact and bounded away from the origin and
holds. Then for any f € S._(R™).

(0.8) F=Y"27"N w270k (= 277k) = > (fvg)ng

JEL kez QeQ
where and in what follows vj(x) = v(—1).

For any ¢ € S(R™), define

M
[Pllsas: = sup|gi<nrsuppern 0% ()| (1 + |a])" T

Then the following estimate holds (see [39]).

Lemma 0.3. For any M € N, there exists a positive constant C = C(M,n) such that for all ¢, €
Soc(R™), 0,5 € Z and © € R™ |

2—min(i,j)M

0.9 s x: ()] < Cllolls Gy, 27 [imIIM .
(0.9) i * ()] ol spr s 1801 (Q*mm(i’j)+|x|)n+M

0.2. Classical Triebel-Lizorkin spaces.

Definition 0.2. Let w € Apo, 0 < p,g < 00, v € R and v € S(R™) satisﬁes and . The homogeneous
Triebel-Lizorkin space F)1 is the set of all distribution f € S such that

q

llg = || | 227 Wsfl?] || <o 0<pa<oo
JEL ’

and

1 Ny 1
iz, =su{ g [ 3 27 bflruends} < 0.0 <q< oo
FX2, 0 w(Q) Qj;} j]

with the interpretation that when q = oo,

\|f||Fgovjﬁ = Sup sup

1
Q i>jow(Q)

Moreover, it is well known that the space F;g is independent of the choice of v (see, for example,
[4, ), 16 12}).

/ 297 v flw(z)dz < oo.
Q

It has long been known that many classical smoothness spaces are covered by the Triebel-Lizorkin
spaces. We recall some examples,
4
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(1) F92 =Hp., 0<p<oo,
where H), ., denotes the weighted Hardy spaces of f € S’ for which

AW ez,,0 = llsup [ * flllpaw < o0,
t>0

where p is a fixed function in S with fRn wu(x)dz # 0. By the fundamental work of Fefferman,
C. and Stein, E. [9] adapted to the weighted case, H) ., does not depend on the choices of p in
its definition. In particular

FO2 = Lpw, 1<p<oo,
see also [5] for a counter-part result related to the local version of weighted Hardy space hp .,
the space of f € S’ for which

Ay = I sUP |t % flllp,w < 00,
0<t<1

where p is as in definition of H,, ,,.

(2) F;‘u% =Ly, 1 <p<oo, where Ly denotes the weighted Bessel potential space defined by
1fllzg, = IFH A+ D> F Iz, .-

In particular, when the exponent is a natural number, say o = N € N, then the weighted Bessel
potential space can be identified with the classical Sobolev space

W ={f € Lyw : |l Y 9 fllz,. < oo},

[vI<N

where all identities have to be understood in the sense of equivalent quasi-norms.

0.3. Weighted Triebel-Lizorkin-type spaces. Triebel-Lizorkin spaces F;;IT were introduced and investi-
gated in [30, B9, 4T, [43] [42, [44]. These spaces unify and generalize many classical function spaces such as
classical Triebel-Lizorkin spaces, Triebel-Lizorkin Morrey spaces, () spaces, Hardy spaces . ...

We now define Weighted Triebel-Lizorkin-type spaces F);",, as follows.

Definition 0.3. Let w € Ay, 0 < pg <00, vy € Randv e S(R™) and satisfies and . The

homogeneous Triebel-Lizorkin space F)7, is the set of all distribution f € S., such that

1
P

1 >
g =Wl e = 590 oo /Q S 9 11| we)de| < oo

P,q,w P.q,w
J=JQ

Qs

We note that in his paper [36] Tang has defined Fg 40 as the space of f € S/ such that

p 1
q P

1 gy
ez = sunge | {2 2t ] wioae| <o
QeQ Q \j=jq

These spaces cannot be compared to ours except in the case where the weight w is identically equal to 1.

In this work, we extend some fundamental results obtained in the unweighted spaces such as the ¢-
transforms characterizations, the boundedness of the e-almost diagonal operators, molecular and atomic
decomposition in the weighted Triebel-Lizorkin-type spaces. See for instance [12, [30] BT, 32, [35], 39, [41].
This paper is organized as follows. In Section 1 we establish the @-transforms of the space F; w10
Section 2 we prove that e-almost diagonal operators are bounded on the Triebel-Lizorkin sequence spaces.

And in Section 3 we study the molecular and atomic decomposition of the space F;’} o
5
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1. THE ¢-TRANSFORM CHARACTERIZATIONS OF TRIEBEL-LIZORKIN-SEQUENCE SPACES

In this section, we establish the (-transform characterizations of the spaces Fg Lw- Lo this end, we
introduce their corresponding sequence spaces as follows.

Definition 1.1. The discrete Triebel-Lizorkin sequence space ‘;;;w is defined to be the collection of all
complex-valued sequences t = {tg}geo such that

p 1
- P

1 5
] = sup—o / QI Ftorolt | w@)dz| < oo
folaw ~ peolw(P)T | Jp QEC:P RXQ

Q

where x¢o = \Q|‘%XQ is the L2-normalized characteristic function of the dyadic cube Q.

Remark 1.1. Note that if P,Q € Q with [(Q) < I(P) then either @ C P or do not overlap(by which we
mean that their interiors are disjoint).

It follows that

P
q

1 _x -
Mz = s oy | (X 1@ asal") wia)da

Jje=ijpr

Definition 1.2. Suppose that o, € S(R™) are s.t suppgb,suppu; are compact and bounded away from

the origin. The @-transform S, is defined to be the map taking each f € S. (R™) to the sequence

Sof = {(Spf)otoca where (Syf)o = (f,vq) for all dyadic cubes Q; the inverse -transform Ty, is

defined to be the map taking a sequence t = {tg}oeco to Tyt = > toq; see, for example, [12) (13| [14].
QeEQ

The next result is a generalization of the fundamental result of Frazier and Jawerth saying that the
following diagram is commutative :

(1.1) Eyr, —=F)T

Theorem 1.1. Let 0 < p, ¢ < co,w € As and o, ¢ satisfying[0-4] and[0-6. Then
Sy : FrTY T

Pgyw Pgyw
and
. FT s T8
T<P CIpgw Fp,q,w
; ; ; YT YT
are bounded. Furthermore, Ty, o Sy is the identity on F)\ "8 = FIe.

Corollary 1.1. The space Fg;;w 1s independent of the particular choice of the function v. The quasi-norms

arising from different v are equivalent.
The proof of Theorem is based on some technical lemmas.

Lemma 1.1. [2, Lemma 2.11]. Let § € R and w € A,,. Then, there exist positive constant C such that
for all j € Z and all L > ro|d| + 1

1.2 501 _lzol™ N < O roldl+1)li|
(1.2) Qeg,l%_w[w(@] ( +max(|Q|,1)) <

To show that T3, is well defined for all ¢ € '; 7> We have the following conclusions.

6
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Lemma 1.2. Let y € R,0<p <00,0<g< o0 and ) € Sx . Then, for allt € f)7.,, Tp= > tQiq,
QeQ
converges in SL_(R™). Moreover, the operator

Tw: —)Sl( )

p q w
s continuous.

Proof. Note first, that for any ¢t € )27, we have for 0 < p < oo,

QI+ 2 [w(Q) 7.

On the other, hand for any L > 0 there exist constants N, C' > 0 s.t for all @, P € Q we have the
following well known estimate, see for instance [2.

lzq —zp|" Q| |P|
(a.or)| < Clullwllell (1+ min
¢ maz(|Q], [ P) [P 1@l
where the constant C' depends only on L and
1¢]ln = supeernsupigi<n (1+ )™ 1076 (x)|.
In particular, if P = [0,1]™ then ¢p = ¢ and

(1.3) Ll < Il

p q,w

(1.4)

n —L
(60001 < Cllollioll (14 — 22} min (1017

z(1Q 1
Combining the above estimates and the estimate to obtain
> ltalle, 6|
QEQ
= -1 |zQ|n -k : -1\ L
< Cllgl|n it QU A w(@)F (14 — 22—} min (1Q1,1Q
ol 3 (@) PRIy (1.1l ™)

< Cllglinlitlly,r
41 _1 " -L . _
<2 2 lern@r 0t i) min(@li@ly”
JEZ QeQ,l(Q)=2"7 ’

< 0\|¢||N||t|\fp o D 7V B Erolr /)
JEZ
< CliglIwlltl gy s

p,q,w

for sufficiently large L. It follows that Ty, = ) tgtg converges in S,  and
QeQ

(1.5) Ty, 0) = | D talva, d)| < ClldlIn|lt -
Qee

This shows the continuity of 1. O

For a sequence t = {tg}gecg, 0 <7 < oo and a fixed A > 0, set

o= 3wl (145
UR)=UQ)

1/r

7

31



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

Lemma1.3. Lety € R, 0<p, ¢, T < o0 andw € A,,. Then, for anyr > 0 and A\/n > max(1,7/q,170/D)
if T—1/p <0 or \/n > maz(1,r/q,rro/p,r(ro — 6)(r —1/p)) if T—1/p >0, then
WAl jyr, = el gy -

Proof. The inequality ||t ,|| Fre 2 [1¢]] 1o, is immediate from the definition of ¢ ;.

2q,w

To see the converse, fix a dyadic cube P. Let sg = tg if @ C 3P and sg = 0 otherwise, and let
ug = tg — sq@. Then, for any dyadic cube and r > 0 we have

(1.6) (tr)o = (5ra)0 + (ur)o-
Suppose r > 0 and A\/n > maxz(1,7/q,r79/p), then by Lemma 3.3 in [3] we have

e = i [ (3 ars

QCP

P
)
q

(st 1)oXal’) "wia)d

<C

1
< C—==|lsrall¢ < Cl|t)| 4
= [w(P)]THSr,)\”f;q’w = = H || “’

el
[w(P)]7 " fraw Ipqw
On the other hand, let Q@ C P be a dyadic cube with [(Q) = 27¢(P) for some i € N. Suppose R is any

dyadic cube with [(R) = I(Q) = 27U(P), R C P, = P+ kl(P) and R ¢ 3P for some k € Z", where
P+ kl(P)={z+kl(P):x € P} Then |k| > 2 and (14 I(R) '|zg — xr|) ~ 2%|k|. Set

A(i b, P) = {R € QI(R) = 1(Q) = 27"l(P), RC P+ kI(P), RN (3P) = 0}
and )\
()" = e e
' Ref%,:k,P) " I(R)

Then, we have the following results:
Suppose 0 < a < r < co. Then, for all z € Q

A7) e 2T/ = rne) | gy (R ural) | ()]
REA(i,k,P)

and for all x € P

1/a
18) e 22 (ST (R ungal)® | @+ RUP))

REA(i,k,P)

The proof of is given in [I2] while the estimate is a consequence of Remark A.3 in[I2]. See also
[40, p 461].

Proof of Lemma : continued. If 7—1/p < 0 then, using Lemmaand arguing as in |2, [12] to get
the result. To prove Lemmawhen 7—1/p > 0, we suppose r > 0 and A\/n > max(1,r/q,rro/p,r(ro—
0)(r —1/p)). If r < min(q,p/ro), then set a = r. Otherwise, if r > min(q,p/ro), then take a such that
nr/A < a < min(r,q,p/ro). It is possible to choose such an a, since A\/n > max(1,r/q,rro/p); implies
nr/A < a < min(r,q,p/ro). In both cases we have that

0<a<r<oo, A>max(nr/a,nr(ro—29)(t—1/p)), ¢/a>1, p/a>ro.

Then, by [.§ we have for all z € P
1/a

wigp 327 OO TVTAM Y (IR furXal)® | (@ + KU(P))
ReA(i,k,P)
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Rising this inequality to the power of p and integrating over the cube P with respect to w(z + kI(P))dz,

we get
1/p
Uik, P (/ w(x + kl(P))dx)
P

=< Q—i()\—nr/a)/rlk|—)\/r

p/a 1/p
y / M S (R urgal)® | @+ RP) | w(o+ k(P))dx
P REA(i,k,P)
p/a 1/p
<o (ST (R el | @) s

REA(i,k,P)

Since 0 < a < p/ro implies w € A,/,, then the boundedness of the maximal operator M on L,,/,(w) and
the Holder’s inequality for g/a > 1 leads to

e ([ w@dx)””

p/a /p
< 9O /@) 7| A/ / S (R Muntal)(@)|  wle)da
R™ | ReA(i,k,P)
j 2—i()\—nr/a)/r‘k|—>\/r
p/q p(1/a—1/q) 1/p
X / S (R ura)) (@) S k@) w(z)ds
R™ | ReA(i,k,P) REA(ik,P)
1/p

p/q
SR L / [ > <|R|V/"uR>zR|>Q<x>] w(x)dz
Py RCP;,
< 2O =N (POl
On the other hand, since P, = P + ki(P) C B (xp, c,|k|l(P)) = By, for some constant ¢,, > 1, we have

o
w(Py) < (é’;') w(By) = |k|" o= w(P).

The above estimates lead to
Uik p < 271'()\7117"/(1)/7“|k|f)\/r+n(r076)(771/p) [w(P)]\Tfl/pthf__w )
p,q,w
So that if —A/r +n(ro — J)(7 —1/p) < 0 then

QI (g 3 2O (P Pl S TS
T kezn k|>2

< Z,i()\fnr/a)/"’[w(P]T*l/ﬂ|t| ‘f,?Jw .
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It follows that

ﬁ /P( Z |Q|_%q|(“:,,\)Q5(Q(93)\q) w(z)dz

QcP
1/p

(1) eXo@)|") "w(w)de

2

jﬁ /P(Z QI

120 [(Q)=2""7l(P)

1/p
P
=< [w(P)] V7 [[t]| 4y.r / (X X g @) w)de
P rizou@=2-u(p)
=l g,
Using the identity [1.6] to finish the proof. O

Let ¢ to be a Schwartz and satisfy and . Since ¢(x) = ¢(—x) also satisfies and , we

may take @ in place of ¢ in the definition of Fggﬁ. For f € S/ (R") and Q € Q with I(Q) =277, define

the sequence sup(f) = {supq(f)}q by setting

supq(f) = |QI"*supyeql; * F();
and for any m € N, the sequence inf,,(f) = {infg . (f)}¢ by setting

inf (/) = QI maz{ inf |5+ £(y)] : UR) = 27"1(Q). R € Q).
Then, we have the following estimates.

Lemma 1.4. Let v € R,0 < p < 00,0 < ¢ < 00, w € Ay, and X as in Lemma[1.3 Then
W gyr, = lsup(P)ll g, = ik ()l g7 -

p,q,w p,q,w

Proof. We adapt here the the proof given in [12] [39]. The estimate
1l < lsup(F)ll

g
follows from the definition.
To prove the converse, define {tgr}r by

tr = |R|Y/? inf B * f(y)] for all R € Q € with I(R) = 271,
Yy

Then

(X < Ca2™ > (Ha)rXe:
RCQ
H(R)=27""1(Q)

Applying Lemma [1.3] to get
0f ), = NEiallrs = e = g

p,q,w fp,q,w p,q,w

Now, let j € Z and apply Lemma A.4 in [12] to the function @; x f(277z), to obtain for all dyadic cube
Q with 1(Q) =277,
(sup(f)1 x)q = (inf(f)] A)q-
Thus
lsup(iall g = NinfY Al
which together with Lemma [I.3] yield

lsup(F)ll gz = N

pP,q,w

10

34



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

Proof of Theorem[1.1 The boundedness of S, follows from Lemma [T.4} since, if Q = Qj,

(SeHal = (el = 1QI?13; % F(277%)] < supq(f).
To prove the boundedness of Ty, take any t = {tg}g. Then, by Lemma , f=Tyt = > tovo
QeQ

converges in S._. Therefore, the following estimate established in [12] holds: for any r > 0 and A > n,

6 % f(2)] < CIQITY2 ((tr ) + (trx)a + (B o) Xo+ (x)
for all x € Q* C Q C Q**, where Q*,Q and Q** are dyadic cubes with 1(Q*) = 27771 [(Q) = 277 and
1(Q**) = 279FL. Let ro = inf{# : w € A7} and using Lemma [L.3| with the same ), to obtain
Tptll gy e, = I leyr, S Helgr s

p,q,w p,q,w p,q,w

which shows the boundedness of T,.
Finally, if we assume additionally that ¢ and 1 satisfy[0.4 and then, by Lemma[0.2| T}, o S,, is the

identity on F));7,,. More precisely, F),:7 < F% is a bounded inclusion. Hence, by reversing the roles

of ¢ and ¢ we have

which completes the proof of Theorem [I.1] O
Proposition 1.1. The inclusion map 1 : F;;;w — S!_ is continuous. Moreover, F;;;w equipped with
||f||F;,qrw is a quasi-Banach space, i.e., Fg;;w is a complete quasi-normed space.

Proof. Suppose that ¢ and v satisfy and By Lemma the map T : .;;;w — S is
continuous and by Theorem the map S, : Fg, w ;{ 1w 18 also continuous. Hence, by Lemma

. . - ’Y T ! e . . =
i=TyoS,: Fl, — S, is a continuous inclusion. d

Theorem 1.2. Let w € Aw, 0 < p <00, 0 < g <00, 79 =inf{s > 1:w € A} and 6 > 0 is as in
Lemma . If f € FJ;[.,, then, there exists a canonical way to find a representation of f s.t f € ST,
where L = maz (=1, |y +ron(t —1/p)]) if 7 —1/p > 0 and L = max (=1, |y + n(ro — §)(t — 1/p)]) if
T—1/p<0.

More precisely, assume for instance that T —1/p > 0 and let ¢ = o1, Y =1 € S(R™) satisfymg
and . Then, there exists a sequence of polynomials { P }3_,, with degree of each P}, mo more than

L=|y+ron(r —1/p)] and g1 € S'(R™) s.t

(1.9) g1 = lim Y dixeixf+Py ]| in S'(RY).
> \J=—N<j<N

Moreover, if g is the corresponding limit in[1.9 for some other 9,12 satisfying the same conditions as
¥1, ’(/}17 then,

(1.10) g1—92 € P and deg(gi—g2) < L.

We can take g1 as a representation of the equivalent class f + P(R™) and we identify f with its represen-
tative g1. In the sense, f € Sy, with

L = max(—1, |y +ron(t — 1/p)]).
Similar conclusion holds whenever T — 1/p < 0 by taking
L = max(—1, v+ (ro — 0)n(r — 1/p)]).

The proof of Theorem is based on some several technical lemma’s.
11
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Lemma 1.5. Let v € S(R™) with supp 0 C {& : 1/2 < |£] < 2}. Suppose [ € F]],;;w, then, for any
0 <7 <p/ro and for any multi-indices 3

sup=equel0” (v £ ()" < C22I

rT 1-r/p
X / w(z)dzx / w P dr .
B(2-9k,2-7) B(2-ik,2-3)

Proof. Notice that supp v; f C {€: [£] < 29F1}. Tt follows from the proof of the Lemma 2.4 in [I3] p.782]
that for any r > 0, for any multi-indices 8 and N > 0 sufficiently large there exists C' = C; yr 3,8 > 0 s.t,

(1.11) supzeq;,|0° (v f ()" < O 2PN (1 4 \ll)*N/ vj f(x)]"dz.

JEZ Qi k+1

Let r > 0 be s.t w € A,/,. Holder’s inequality implies

supseq |07 (v f (2))]" < €22 Y 7 (14 )~
lezm

< ( /Q @) Pudr) " /Q )

< Cm Pl f[n, Y (L)Y
Pq,w
lezm

(1.12) X (/Q w(sr:)dx)TT(/Q w*pirdx)lﬂ/p.
Jk+ Jk+

Noting that Q; ;41 C B(277k,/n277(1 +l|)). It follows that

(/Q W(x)dﬂs)”(/Q wfp;dx)lfr/p
P J.k+1

rT - 1-r/
< C(l + |l|)n6(r7+1—r/p)(/ w(a:)dx) (/ w7 dl‘) P.
B(2-7k,277) B(2-7k,277)

Choose N > nd(rr+1—r/p) + n+ 1 and using to finish the proof. O

1—r/p

Remark 1.2. Lemma corresponds to unweighted version of Lemma 2.4 in [41].
Corollary 1.2. Under the same assumptions in the lemma[I.5, there exists N > 0 s.t for all j and k

(1'13) SUP-eQ,, |ij(z)|r < C2jn2*]“/7“2777”'71(J}0)N|‘f”rl';ﬂ,T é%f (1 + |:17|)N
P xEQ 1
Consequently, there exist C;N > 0 s.t
v f(z)] i
. L E A N L S A
(1.14) suprer o AL < A g,

Proof. Fix x € Q. Then, we have the following elementary inclusions

B(277k,v/n277) € B(0,v/n277 (1 + |k|)) € B(0,c,277 (1 + 27|x)))
(1.15) C B(0,¢,27 ™00 (1 4 |z))),
for some constant ¢, > 1. Applying Lemma [0.1] and [[.15 we obtain

[ s fo
B(2-7k,2-7) B(0,cn 2= ™in(5:0) (14]z]))
j2—min(j,0)np/r(1+|$|)np/r/ w(y)dy

B(0,1)

12
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and similarly

/ w5 dy < 2GR/ (=) (1 4 | )e o) / W T dy,
B(2-9k,2-7) B(0,1)

Thus, by Lemma 1.5
(1.16) supzerk|1/jf(z)|T < Can2*j’Y?”27min(j,0)n(PT+1)(1 + \x|)”(pr+1)||f‘|;~,,r .
Taking N = n(pr + 1) to finish the proof. |

Remark 1.3. It is interesting to note that Corollary implies in a direct way that the inclusion i :

F)lw = Seo(R") is continuous and this can be very useful in other circumstances.

In fact. Recall first that Soo(R™) can be defined as a collection of v € S(R™) such that semi-norms
(1.17) [v|[ar = supgj<arsupecrn|0°D)|(|€IM + €] ™) < 0o for any M € N.
Moreover, semi-norms ||ar.are v generate a topology of a locally convex space on S, (R™) which coincides

with the topology of S.(R™) as a subspace of a locally convex space S(R™). Thus, the proof of the
continuity of inclusion 7 is equivalent to prove

(1.18) [, o) < Cllfll gy N@lar-

p,q,w

As a consequence of Corollary there exist ¢, N > 0 s.t for any j € Z and ¢ € Soo(R™), we have
[Wif &) < AT f | 1L+ [2) N @l loo

P,q,w

(1.19) < Y fl o sUPaj <t p1< N[Ol ]a,s-

Let p € S(R™) be such that i(§) =1 for all £ € supp ¥ and supp i C {£:1/2 < |€| < 2} and replace the
semi-norms ||¢||ps in by [|1(277.)¢||a,5 to get

(i, ) = i o] < SN g subtar<nsi<n 18277 ) s

p,q,w

On the other hand, we have, for any A > 0 there exists M > 0 such that
12277 )Bllas < C271|@)|ar.

For more details of these kinds of estimates, see the proof of [3, Lemma 2.6.]. Combining the last two
estimates we deduce the existence of M > 0 and \; > 0 such that

(1.20) i £, )] < 1C1279 ] £l e l16lar-

Now, the estimate [1.20] implies

(1.21) S, 0) < C S 2N s 116l1ar < Cll Lol 19lar = 111 gz l1611ar.
JEZ JEZ

Let ¢ € S(R™) and 9, p € Soo(R™) satisfying and Then, using with v = ¢ x ¢ and
Lemma [0.2] to get

(1.22) [0 =1 vif, &) < CllFll e NSl ar-
JEL
O
Proof of Theorem[1.3 Let ¥ = 91, ¢ = ¢1 € S(R™) satisfying and We claim that for

fe FJ;;M, the series ) 1; * ¢; * f converges in S’(R™). To see this, we need the following estimate, see
j20

[39], there exists M € N, s.t for all ¢ € S(R"), j € N and = € R",

|1/Jj *(/j)(x)l = ||¢H$M+1Hw||3M+12_jM
13
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which together with [[.14] imply that there exists some constant M; > 0 s.t,

S x5 % F.8)] 2 0llsunlbllsnn 32 [ L2 I@L g,

3>0 7>0 R (1 + |z[)
< llseall@llsaren D27 1 fll s,
>0
(1.23) 2 @llsa 1l su 1l gr s

p,q,w

hence Zz/;] * pj * f converges in S’'(R™). Now, let j € Z_ and = € Qj, using again the inclusion
j=0
and the A, -condition, to obtain

/ gy < (L4 ) / C w(y)dy
B(2-7k,2-7) B(0,277(1+]=|)

<2 (L el [ty 271 ]
B(0,1)

On the other hand, since j € Z_ we have B(0,1) C B(0,277(1 + |z|). Then,

/ w(y)dy < 275 (1 + [2])~ / w(y)dy

B(0,1) B(0,279 (1+]|z|))

<1 4 Jof 00 [ w(y)dy,
B(2-7k,2-7)

It follows from the last inequalities and A,, properties that

rT o 1-r/p . r(t—1/p)
(/ w(x)dx) (/ w p—rdx) <2 J”(/ w(x)dx)
B(2-7k,2-7) B(2-7k,2-7) B(2-7k,2-7)

< 97 Inginror(T=1/p) (1 4 || )nror(T=1/P)

if 7—1/p >0 and

rT _r 1-r/p
(/ w(x)dx) (/ w” T dac)
B(2-7k,2-7) B(2-ik,2-9)

< 97Ing=nr(3=ro)(T=1/P)(1 4 |g|)~r(ro=d)(T=1/p)

if 7 —1/p < 0. Using Corollary to conclude that
(1) if 7 —1/p >0, then

(124)  sup |0P (W % oy % F(@))|(1+ [a]) 0T TIR) < 938l =nro Ao |
reR™ g, w

(2) and if 7 —1/p < 0, then

(1.25) sup |85(z/;j * ;% Fl@)](1+ |x‘>n(ro—6)(7—1/p) < Qj(lﬁ\—'v—n(ro—é)(T—l/p))||fHFW ]

TER™ P,q,w

Therefore, by [1.24] and [1.25 3> 97 (¢); % ¢; * f(x)) converges in S’(R™) whenever

§<0
(1) 7—1/p>0and 8>~ +nro(r —1/p) >0
or
(2) T—1/p<0and 8 >~v+n(ro—0)(r—1/p) > 0.

14
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Consequently, for 7 — 1/p > 0, Proposition 2.7 in [3] (see also [12] pp. 153-155) yields a sequence of
polynomials {P%}%°_,, with degree no more than L = |y + ron(r — 1/p)] and g € S'(R") s.t

(1.26) g1 = lim S whixeixf 4Py in S®RM).
> \J=—N<j<N

Similar conclusion holds whenever 7 — 1/p < 0 by taking
L =mazx(-1, |y + (ro — &)n(r — 1/p)]),

The proof of is very similar to the proof of [3, Proposition 3.8]. We deduce that there exists a
sequence { Py }%_; of polynomials, with degree no more than L same as above such that

g= Jlim_ > dixeixf+Py| in S(RY)
i=—N<j<N

and ¢ is a representation of the equivalent class f + P(R™). We identify f with its representative g. In
this sense, f € S7, which completes the proof of Theorem [1.2 O

Remark 1.4. If we assume that w € A; then, we can take § =0 and ro = 1 so that L = maz(—1, |y +
n(t —1/p)]) in both case. This corresponds to the result in [23] when w = 1.

Corollary 1.3. Let w € Ay and f € F):7. with 0 < p < 00, 0 < ¢ < 0. Let 1, T and L as in Theorem

P.qw

1.2 Then, there exists a sequence {Pn}3%_, of polynomials with degPy < L and g1 € S’'(R™) s.t such
that

(1.27) g1 = lim Y. (fe@e+Pe| in SR

k—o0
2-nk <I(Q) <2k
Moreover, if g2 is the corresponding limit in[1.27 for some other @o,19 satisfying the same conditions as
P1, ’(/}17 th@'ﬂ,

(1.28) g1—92 € P and deg(gr —g2) < L.

2. ALMOST DIAGONAL OPERATORS

In this section, we study the class of almost diagonal operators on I’] 4w Which was introduced by Fra-

zier and Jawerth [I2]. The interest of these operators on .; w arises from their close connection to many

operators in analysis. For a quasi-Banach space X, let £(X) be the space of bounded linear operators on
X with the operator norm. Define the maps S, : L(F)[,,) — L(f):7.,) and T : L(f)7 ) — L))

p,q,w p,q,w p,q,w p,q,w
by
Sy =S,0B0Ty, for BeLEF)T,)
T, =TyoAoS,, for A€L(f]r,)

Repeating verbatim the arguments in [I2, Section 3] and using Theorem to obtain the following
commutative diagram:

(2.1) L(E)T ) — == L(E)T) -
s;l
T;
L(faw)
15
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Moreover, if 0 < ¢ < oo, then any A € L( .;;;w) is represented by a matrix {agp}g,peg Where agp =
(Ae?)q. Here, e denotes the standard unit vector in f:7, defined by (eF)g = 1if Q = P and (e”’)g = 0

¢ p,q,w
otherwise.

Definition 2.1. Let vy € R, 0 < p < 00, 0 < ¢ < 00, w € Ay and J = n x max(1l,re/p,1/q). We say
that an operator A with an associated matriz {agp}tq peco where agp = (Ael’)q is an e-almost diagonal

operator on gfqiw’ if there exists an € > 0 such that

sup lapql|/kqp(€) < o0,
P,QEQ

where
e n+e)/2+J—n
(@)@

~ We note that an almost diagonal in our case is also an almost diagonal operator on the classical space
., introduced by Frazier and Jawerth [I2] and is an almost diagonal operator on the general space

X min

;Y’ , introduced by Yang and Yuan[39]. Moreover, Frazier and Jawerth proved that all almost diagonal

operators are bounded on fg - This result is extended by Yang and Yuan [39] to the space .; o » see also
[3, 0L 2]. In the weighted spaces, we have the following conclusion.

Theorem 2.1. Let e >0,y € R, 0 < p,q < oo,w € Ay, and 7 € [0,1/p + ¢/(2nro)[. Then, all e-almost

] oy, Fy,T
diagonal operators on fJ 7., are bounded on f)7,,.

The proof of Theorem is partially based on the following Lemma, which is simple consequence of
Lemma 4.1 in [I] and the estimate D.1 in [12].

Lemma 2.1. Leti, j € Z and Q € Q with [(Q) = 277. Then, for any L > n,

Z (1+ ‘$R*$Q‘ >_L < C2n(ifj)+
maz(l(R),1(Q)) -

I(R)=2—"
where the constant C depends only on L and n, here (i — j)41 = maz(i — 7,0).

Proof of Theorem[2.1, We consider only the case 7 —1/p > 0. If 7 — 1/p < 0 then, Theorem and
similar argument in [I2] leads to the result. Without loss of generality, we may assume 7 = 0 and
min(p/ro,q) > 1 (see for instance [3, 23, 40]). Let t = {tqo}q € [ ., and A is an e-almost diagonal

.’Y)T . . .
operator on f):7  with an associated matrix {agp}q reco-

Since min(p/ro,q) > 1, we have J = n in Definition Write A = Ay + Ay, with

(.Aot)Q = Z agrtr and (.Alt)Q = Z aQRtR.
(R)>2UQ) I(R)<UQ)

By definition [2.I] we see that for all Q € Q

(n+e)/2 zp—xol\ " C
el = S () (e )

(R)>1(Q)
16
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Therefore

||.AotHf'o,T

P,q,w

< s | L Z | X )(ﬁ%ynh)/ﬂmxcz(um)“ w(z)da

PeQ QcP \I(R)>I(Q

Q
2
=

= Jl
and

Ao

Qs

1
= P (P /p >

- Qcr \ur)<i(Q)

() g (1 ) )

= Js.
Let Q,P,R € Q be such that Q C P, I(Q) = 277, I(P) = jp, I(R) = 27% and assume i < j. Then, by
RCcB=B (mQ7cn2_i (1 + |ZR_$Q‘)) =B (mQ,cn2_j2j_i (1 + ‘IR_le)) with ¢, > 1, we have using

1(R) I(R)
the ro-doubling condition , the d-reverse doubling condition of w and the assumption 7 — 1/p > 0,

,w(R)-rfl/p < w(B)T*l/p < 2((j7i)(7'71/p)nr0 <1 + |$R — (EQ|

(t—1/p)nro
I(R) >

w(B(zg,277)7" 1/

< 9(G=D(r=1/p)nro (1 L lzr =gl w(@)7-VP

(r—1/p)nro
I(R) )

< 9(G=D(=1/pnro (1 L lzr— 2] o =i) (7 =1/p)nby(p)yT=1/p,

l(R)
Since |tg| < |R\1/2w(R)T_1/p\|t\|j19,q7.w (see , we have,
|)(71/P)nro

) (t—1/p)nro

lzr — 2q
I(R)

P (ﬁﬁ%)w/?um@(m) (HW>

(R)>1(Q)
and using 2.2] to get
I < XQ(x)Q(jP—j)(T—l/P)”‘Sw(P)T—l/p||t|| o

p,q,w

(2.2) Itr| < 9—ni/29((j—i)(T—1/p)nro (1 + 2(jpfj)(rq/p)naw(P)Tfl/p.

Put

j—1
" T gt/ 1/p) (1 L |zr = 20l
i=—o0 I(R)=2~ ()

By L =n+¢€— (1 — 1/p)nro > n, Lemma [2.1] implies

) —n—e+(T—1/p)nro

j—1
I < XQ(x)Q(JP*j)(Tfl/p)n(Sw(P)T*l/P‘|t‘|f_g;;w Z 9(i=j)(e/2=nro(T—1/p))
(Gp=3)(r=1/p)ns 1/ .
< Xo(@)20r =TIy (YA p ] o
since by assumption, €/2 — nro(7 — 1/p) > 0. It follows that
Motll oz, = T = el g7,
17
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Some similar estimates to I; also yield that

itllag, =72 = Nl

3. ATOMIC AND MOLECULAR DECOMPOSITION

3.1. Smooth molecules. We establish in this section, smooth atomic and molecular decomposition char-

acterizations of F;;;w. As in the introduction we set s* = s — [s] for s € R.
Definition 3.1. Let vy € R, 7 € [0,00[, 0 < p <00, 0 < g <00, w € Ay, J =n x mazx(1l,79/p,1/q) and
N =maz(|J —n—~],—1).

(1) A function mg is called a smooth synthesis molecule for F7 supported near dyadic cube Q if

P.q,w
there exist o € lmax(v*, (v + n7)*),1] and M € |J, 00| such that
(3.1) / z*mo(z) =0; ifla] <N
Q
1/2 |z — zq| e A=)
3.2 mo(z)| < - 1+ ———
(3.2 ma(a)l < Q12 (1+ =]}
w2\ ™"
(3.3) 9% m(x)| < Q|2 le/n (1 + Z@)Q) A e
and

|z — 2 — xg] M

B4 10%male) ~ Fma(n)] < QI ey sup (14 el
|2l<|z—y] HQ)

if ol =|y+nr).

We say that a collection {mqg}q is a family of smooth synthesis molecules, if each mq is a
smooth synthesis molecule supported near Q.

(2) A function by is called a smooth analysis molecule for F;;;w supported near dyadic cube Q if

there exist an M € ]J,00[ and p €](J —v)*, 1] such that

(3.5) /x%mm:m if lof < |y +nr)
Q
—mazx(M,M+n+~y+nt—J)
—1/2 [z — zq|
36 o) < jo (14 5 5el)
—M
(3.7) W%mm<mrwﬂm0+“&$0 . ifla] <N
and
M
(38)  10%o() — 9bo(y)] < Q"2 Vn0/nz _ylo  sup (1+”Z%9> :
lz|<|—y] UQ)
if o] = N.

We say that a collection {mq}q is a family of smooth analysis molecules, if each mq is a smooth
analysis molecule supported near Q.

Note that when N = —1 then, and [3.8) are void.
18
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Lemma 3.1. Let~,p,q,J, M and N as in Definition[3.4, (J—v)* < 0 <1 and o € Jmaz(v*, (v + n1)*), 1].
Assume T € {O,min(% 4 Mo Ly p=Umy) )} if N >0 and 7 € [O,min(1 + M= %—l— 7+"7‘])} if

2nro ’ p nro D 2nro ’ nro

N < 0. Suppose {bg}q and {mq}q are families of smooth analysis and synthesis molecules for F),T,,

respectively. Then, there exists, € > 2nrg (T - %) s.t the matriz agp, given by agp = (mg, bp), is almost

diagonal. More precisely, there exist C > 0 and € > 2nrg (7’ — %), such that
(3.9) lagp| < Crgp(e).

As an immediate consequence, we obtain the following two corollaries, see also [3, Corollaries 5.2 and
5.3].

Corollary 3.1. Let v,p, q, T and € be as in Lemma . Suppose {mq}q is a family of smooth synthesis
molecules for F)):;7, and b € S(R™) with 0 ¢ suppb. Then, the matriz {agpr}, given by agp = (mq,bp),
is e-almost diagonal.
Corollary 3.2. Let ~,p, q, T and € be as in Lemma . Suppose {bg}q is a family of smooth analysis
molecules for )7, and m € S(R™) with 0 ¢ suppa. Then, the matriz {aqp}, given by agp = (bq,ar),
18 18 e-almost diagonal.

We will also need the following result, which provides an approximation of smooth molecules by

elements of the Schwartz class S(R™). See [3], Section 5.

Lemma 3.2. Suppose that ¢ is a smooth analysis (or synthesis) molecule supported near Q € Q. Then,
there exists a sequence {¢r}ren C S(R™) and ¢ > 0 such that coy, is a smooth analysis (or synthesis)
molecule supported near Q for every k, and ¢ —> ¢ uniformly on R™ as k — oo.

To prove Lemma we need the following additional results. See [I2], Appendix B, Lemma B1].

Lemma 3.3. Let Le N, R>n, 0<60<1, S>n+L+0,i,j€Z,i>j and xg € R". Suppose that
g, h; € CE(R™) satisfy

(3.10) 9%g(a)| <2 (14 2]al) 5 if fa] <L,
(3.11) 0%g(x) — 0%g(y)| < 22Dz y|9\z\iﬁcp y (1+2|z—2) "
if la| =L,

(3.12) Ih(z)] < 272 (1 + 21w — ao]) "
(3.13) and
(3.14) / x*h(x)dz =0; if |o| < L.
Then, there exists a constant C > 0, which is independent of g, h,i,j,x and xg, such that
(3.15) g* h(z) < C2G=DEA0T/2) (1 4 i — )71

A special case of Lemma formally corresponding to L = —1, where no vanishing moments on h

are assumed, is the following.

Lemma 3.4. Let R > n, i,j € Z,i > j, and o € R™. Suppose g, h € L*(R") satisfy

(3.16) lg(a)] < 272 (14 27]a]) "

(3.17) h(x)] < 2772 (14 2] — o) "

Then,

(3.18) g h(z) < C270=IM/2 (1 4 2| — )"
19
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for some constant C > 0.

Proof of Lemma[3.1. We adapt here the proof of Lemma B.3 in [12] and the proof of Lemma 5.1 in [3] .
Case 1. Reducing, o, p, or M if necessary, we may assume that
M-J (J—7)*
2 T2
Suppose ((Q) < I(P) and v+ nt > 0. Let i , j € Z be such that {(Q) = 27% < [(P) = 279. Then, it
easy to check that g(x) = mp(zp — ) and h(z) = bg(z) satisfy the hypotheses of Lemma |3.3[ with with
R=M,L=|y+n7|, S=M+n+~v+nr—Jand zg = zg. Therefore, by Lemmawith 0= p, we
have

o—(y+nr)" =

[(mp,bg)| = |g* h(zp)| < C2~ENEA0TN/2) (1 4 9|3 — 26]) ™

Set ¢/2 =L+ 6 — (y+nt). Then, nro(r — %) < & < M=d and

[(mp,bo)| < C2~G=DOHERT+e/20n/2) (1 4 91 jap — 26]) ¢

Case 2. Suppose [(Q) < [(P) and v+ n7t < 0. Let i, j € Z be such that [(Q) = 27* < [(P) = 277. For
the same choice of g and h as in Case 1, we have by Lemma 3.4 with R = M

[(mp, bo)| < C276=Dm/2 (1 4 2|zp — g|) ™
< Co-(=Dmote/Zn/Dg(i=i)rote/2) (1 4 9 |gp — z0]) ™

< 02 (i=9)(v+e/24n/2) (1 +2|zp — xQDfJfE
where €/2 = min(—vyro, 25L) satisfying nro(r — %) < g Mo . _

Case 3. Suppose [(Q) > I(P) and N > 0. Let 4, j € Z be such that I(Q) = 277 > I(P) = 27". Then,
it is easy to check that g(z) = bg(zg — x) and h(z) = mp(z) satisfy the hypotheses of Lemma 3.3 with
R=M,L=N=|J—~v—n], S=M —~ and x9g = xp. Therefore, by Lemmawith 0 = p, we have

[(mp, bo)| = lg * h(wg)| < C2~0=DNHOH/2) (1 4 9d|p — )™M

Set €/2= N +0 = (J = —n). Then, nro(r — ) <

< M—J

5 and

3
[{mp,bg)| < O (i=9)(J=v+e/2-n/2) (1 F Y ep— :EQDfJ—e'

Case 4. Finally, Suppose I[(Q) > I(P), and N = —1. Let i, j € Z be such that
(Q)=277 >1(P)=2"" By Lemmawith R = M for the same choice of g and h as in Case 3, we
have
[(mp,bg)| < €272 (1 4 20|2p — 2|) "

< 02 =D =rke/2n/2) (1 9 |ap — ag|) T

€
9

where €/2 = min(—(J — v — n), 2=2) satisfying nro(r — %) << Mo
Combining Cases 1-4, we conclude that
[(mp,bo)| < Crgp(e)
which completes the proof of Lemma 3.1 (]

3.2. Smooth molecular decompositions. At this stage, we are able to show generalizations of Theorem
in the situation when the usual wavelet families are replaced by families of smooth analysis and synthesis
molecules. More precisely, we have

Theorem 3.1 (Smooth molecular synthesis). Suppose w € A,. There exists a constant C' > 0, such that
if f= ZQ towg where {1g}geo is a family of smooth synthesis molecules for F),7 . then

p,q,w’
WAl 7

< C”t”f';;;w’ forallt e F;;;w.
20
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Proof. By Lemma we can write Yp = Y (¥p,vg)po with the convergence in S, (R™). Let A given
QeQ

€
by the matrix {agp}to,reo = {{(¢¥pr,vq)}q,Pco then, By Theorem and Corollary [3.2[ A is a bounded
operator on f):7 . Since

p,q,w*
Tt =33 eartenq =3 tr D agrlbr va)ua = 3 trtr
Q P P Q r

then, by Theorem [1.1]
U pyr, = 1TuA g r < CHAE gy < ClJtl g7 -
(I

Theorem 3.2. (Smooth molecular analysis). Suppose w € An,. There exists a constant C > 0, such that

if {¢q}toco is a family of smooth analysis molecules for FJ};T,w then,

(@) telliyr, < Clllle ;.

The proof of the theorem is easy once the significance of the pairing (f, ¢¢) is justified, see [3|
Lemma 5.7]. We omit the details of the proof. To justify the meaningfulness of the pairing (f, ¢q), we
need the following Lemma.

Lemma 3.5. Let v,p,q, 7 and € be as in Lemma fe Fggw and {pg}toeco be a smooth analysis

molecule for F;;;w supported near Q. Then, (f,pq) is well defined.

More exactly, we have for any p,v € S(R™) satisfying and the serie
(3.19) (£,0Q) =Y (7 *njx f,0q) =Y _(f,vp)(nr, 6q)

JEL P
converges absolutely and its value is independent of the choices of p and v.

Proof. The proof of the Lemma is very similar to the proof of [3| Lemma 5.7]. For the clarity, we give
some few details.

We consider only the case 7 — 1/p > 0. The proof of Lemma when 7 — 1/p < 0 is similar.
Assume 7 — 1/p > 0, we claim that there exists a matrix {agpr}g, peo such that

(3.20) [(f,ve)|(ve, d)| < agp and Y agp < oo.
P

In fact, by Lemma there exists a positive constant C' such that

[{1p, )| < Crgp(e).

So we can take agp = C|{f,vp)|kgp(€). Furthermore, by Theoremu the sequence {{(up,®)}p € ';;;w,

and hence by Corollary and Theoerem Y- agp < co. This shows the absolute convergence of the
P

series
To show independence of the choice of p and v, let {¢;}°, be the sequence of (constant multiples
of) smooth analysis molecules supported near @) and converging uniformly to ¢¢ guaranteed by Lemma
By Theorem there exists a sequence of polynomials {Py}%_;, with degree no more than L =
|y + nro(t —1/p)] such that Y~ U x pj « f + Py converges in S'(R™). Therefore, for each I, we can
j=—N

define

(f, du) =<Nh§100 > Vj*uj*f+PN,¢z> = Jlim D Ty x frd)

j>—N j=2—N
ZA}i_{HOO Z (frvp){pp, ¢1) = Z<f7 vp){pp, ¢1),
PcQ,l(P)>2-N P
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45



Romanian Journal of Mathematics and Computer Science Issue 1 (Special Issue), Vol. 11 (2021)

since the above series converges absolutely by Using the similar argument given in [3, Lemma 5.7]

to obtain
> (fove)up, ¢1) — > (fve)up,d¢q) as 1 — oo,
P P
and this limit is independent of x and v. This shows that (f, ¢¢) is well defined by and completes
the proof of Lemma O

Proof of Theorem[3.3 By lemma [3.5] we have
(f.6Q) = D (f.ve)(up.dq) = Y _(fivp)agr

P P

with agp = {(up, #g). By Lemma [2.1| and Corollary [3.1] the operator A given by the matrix {agp}p,o is
bounded on f):7 . It follows from Theorem ! that,

p,q,w*
15 00Ml 7 = MAS 70 < 1l

p,q,w

3.3. Smooth atomic decompositions.

Definition 3.2. Let v, 7,p,q,w and J and as in Definition . A function ag is called a smooth atom for
Fr  supported near dyadic cube Q if satisfies

P,q,w
(3.21) supp ag C 3Q,
(3.22) / %ag(z) =0; if |a] <N,
Q
(3.23) 0%aq ()| < Q72711 if o] < K,

where N > maz(|J —n —v],—1) and K > maz(|y +n7r 4+ 1],0). We say that a collection {aq}q is a
family of smooth synthesis atoms, if each aq is a smooth atom supported near Q.

Remark 3.1. Note that every smooth atom for Fg’;;w is a multiple of a smooth synthesis molecule for

Fg’ L Supported near Q.

Theorem 3.3 (Smooth atomic decomposition). Let v, 7,p,q,w and J as in Lemma . Then, for each
f € FJ.., there exist smooth atoms {aq}q and a sequence of coefficients {tq}q € f7., , such that
F=tqaq and llalljr. < Cllfllser..
Q

p,q,w

where C'is a positive constant independent of f and t. Conversely, there exists a positive constant C such
that for all families of smooth atoms {ag}q,

I %: tQagllpyr, < Clltll sy -

The proof of Theorem uses Theorem Theorem and Remark and is a verbatim copy of
the corresponding result in [12] Theorem 4.1] or in [3, Theorem 5.8]. Hence, we omit the details.

Remark 3.2. Results in the previous sections can be extended, in the natural way, to a more general
Lizorkin-space defined by replacing in the definition 27 by det(A)j/”, where A is an expansive ma-
triz,i.e, A is real n x n matriz such that minyc,(a)|A| > 1 where o(A) is the spectrum of A (the set of
all eigenvalues of A), and the Euclidean metric on R™ can be replaced by a quasi-norm associated with
the matriz A, for details see for instance [3].
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4. APPENDIX

Let 0 <p, g <00 ,0<7<oo0andw € Ay. The space 14 (L;w) is defined to be the set of all
sequences g = {g;};ez of measurable functions on R” s.t

1 > ds
lollagss = 200 e | ([ lstarutaan) | <o
1) T geolw(QI _Z o
Similarly, the space L7, (1) with 0 < p < oo is defined to be the set of all sequences g = {g;} ez of
measurable functions on R” s.t

D

1 o0
lollig .o = 300 o /Q S lgi@)7 | wia)ds| < oo

J=jQ

=

where jo = —log2l(Q) and I(Q) is the side length of the dyadic cube Q. We need the following lemma
which is a generalization of Lemma 2 in [28].

Lemma 4.1. Letrg > 1, we A, 0<q, p<oo, 0 <7 <00, d>nrrg and g ={g;}jez is a collection
of measurable functions and a sequence of complex numbers a = {a;};jez satisfying

20, if jEZ_
la;| <C{ f.‘j .
2797 if j€Np.
Then, there exists a positive constant C, independent of g s.t
||G|‘lq([‘;w) < O||g||lq([,;w)
and
Gz a0 < Cllgllzr a9
where Gj(z) = Y. ajmgm(T) .

mEZ

The following corollary that generalizes the result of Rychkov,V. S. [28, Lemma 2] is a direct conse-
quence of Lemma |4.1

Corollary 4.1. Let o> 1, we A, 0<q, p<oo, 0<7 <00, §d>n7rg and g ={g;},cz is sequences

of measurable functions. Define Gj(z) = 2-Im=ildg (2). Then, there exists a positive constant C,
meZ
independent of g s.t

||G|‘zq(L;Yw) < CHQHM(L;,M)
and
IGllLz a0y < Cllglles , qo)-

Lemma 4.2. Let 0 <7 <00, 1 <p, g <00 and w € A,. Define

<3
kel

1 oo
||M9||L;m,(lq) = sgpm /Q Z |Mg;(z)|? | w(x)de

J=iQ
If m— % < 0 then, we have the following general weighted Fefferman-Stein inequality

1Mglly ae) < CllgllLy , q9)-
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Proor

Proof of Lemma[{.1. By similarity, we only prove the first inequality.
First we note that if k > jg then,

[w@](/@ |gk<x>|%<x>dm>és[w (/ 9,(0) o)

Jj=iQ

Q=

< Hg”lq(L;’w)

and

=

q
P

612)]T (/Q |gk(x)|pw(m)dx>; < m /Q i ;17| w(x)dz

J=JQ

<llgllrz a9

Through the proof we take into the account that a € I"(Z), V r > 0. We begin by considering the case
O0<p<1.
Fix a dyadic cube @ and use the Young’s inequality

(4.1) V 0<e<l, V Zi€C1<Z|Zm|> §Z|zm\€
meZ meZ

to obtain

1
e =i > </Q

LJ=JQ

Z aj— mgm

meZ

=
S
—~
&
U
8
N———
S
Q=

1
S[w(Q)]T Z <Z|a] m‘ /|gm

| J=iQ \m€Z

RS
Q=

Assume 0 < ¢ < p . Then, [I.1] implies

Q=

Ig < ZZlg ml? (/ |gm (2 )Z =Jo+Hq

Jj=Jjq@ mEZL

with

Q=

\/
SIS

o =i PPt ([ lonte

J JjQ m=jq

Q=

\/
S

:[wéz)r 5 3 fsenl?( [t

L= JjQi=iq
gC’HQHN(L;w)
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and

1

q

Ho =g DT ( / () ()

| J=iqQ m=—00

Q=

q

gc[w(;)r > Z g Im—sloa ( /Q |gm<x>Pw<x>dx)"

| J=jq m=—0

1

=C i jQZ_:l glm=a)% (wtifg;))w [w(le)]qT </Qm |9m(m)pw($)dm) ! ,

J=jq m=—00

where @, is a dyadic cube containing @ with side length I(Q.,) = 27, m < jo — 1. From the A,

property, we have

w(Qm))QT (|Qm|>q7—mw nqrro(jg—m)
(w(@) =er) ~=? '

It follows that

i oo J-Qfl %
Ho<C Z Z 9(m—j)éqgngrro(iq—m) ||9Hl4(LT )
_j:jQ m=—oo P

q

[~ je—1
<C Z 9(ie—7)dq Z 9a(6—n7ro)(m—jq) ||g||l‘1(LT )
li=ie m=—o00 o

< CHngq(L;’w)

Now assume that ¢ > p and write

L1
Q=

1 o0
_ Am—j|? m ()P w(z)dx
T Z<Z| JECIE )

j=jq \mEZ

g 1
K

1 > (5-e)p ep
= [ I [ m ()| w(z)dx
o Z(Z 195 /Q|g<>| (x) )

J=jQ \mEgZ

Choose 0 < € < § — n71r(, arguing as before and using the following Holder’s inequality

> [mym| < (Z xmr“)l/r (Z |ym|’”’>1/r/

meZ mEZ mEeEZ
25
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where % + % =1, &, Ym are in C and r = %, we obtain

I
Q=

J=JjqQ mEZ

IQS[wé;)r > 3 o </ lgm (@) wlw)d )
1

Q=

JQ M=JQ J=jqQ m=—00

o) Jjo—1
(b—€e)a é)q
am] m m= ..
[ZZ| | (/|g dx) +3 Y a9,

< C||g||zq

If 1 < p < oo, we use Minkowski’s inequality to get

o < oo > <mD |(/ (g (@)IP w(z)d )) |

J=jQ

Applying Holder’s inequality if 1 < g < oo or[4.1]if 0 < ¢ < 1 to conclude. (]

Proof of Lemmal[{.2 We adapt here the proof of [35, Lemma 2.5]. Assume 7 —1/p = —e < 0 and denote
by & > 0 the reverse-doubling constant of the weight w € A,. Pick any zy € R”, and let ) be cube
containing o with side lenght I(Q) = r. Write

g; = goj + Z 9ij
i=1
with

90j = XB(z0,2r)9j ANd  gij = XB(xp,2i+1r)\B(xo,2ir)9; Jor =1

The Stein-Fefferman inequality implies

=

1
P

/Q S Mooy @) wde | < / SCARE

— n i
JI=JQ R J=JQ

< Cllglley . ( /B -
Zo,T

3

On the other hand for ¢ > 1 and x € B(xo,r), we have

95 ()l < C(2ir) ™" / 1955 (9) .

Mg’L('I) = Supi/
’ r>0|B(z, R)| JB(a,R)n{2ir<|y—mo|<2i+1r}
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Now, the generalized Minkowski’s inequality leads to

S gt | <cen (3 ([ lostolar)

J=jQ J=iQ
1
q

< C@”‘)‘"/ _ > gl | dy
B(zg,2tt1r)

Jj=iqQ

00 \ P’
<C@2r)™ / _ > lgplt | wy)dy </ w 5)
B(zg,2¢t1r) s i B(xo,2¢t1r)

Jj=jo—i—1

—_p! v’ T

4. ( [ ) ( / w(y)dy)

B(zo,2¢t1r) B(zo,2¢t1r)
< C‘|9|‘L;y,w(l7)(2i7’)7n (/ W ) (/ w(y)dy>

B(xo,2t1r) B(xo,27t1r)
< Cllgllzy , am ( [ w(y)dy>
B(zg,2¢t1r)
- fB( (y)dy ‘

<Cllglzom | [ wiy =22

P (1) B(xo,r) fB(’I‘g gi+1p) W (y)dy

< 027" |gl|L; o) y)dy
' B :L’O,'r‘)

< C@2'r)"lgllz;

Hence
v w /oo a\ @
> (Yu) o] <o X (2 MW)
J=iQ Jj=jq@ \i=1
<CY | D Migya
=1 \Jj=jq
e’} T—3
< CZTWQHQHL;M(M) (/ w(y)dy>
i—1 B(zo,r)
Sl
< Cllgllz;, ao) (/ w(y)dy> :
B(zo,m)
It follows that
» 1
/ > IMgj(@)|” ] w(z)dz | < CllgllLy a0 (/ w(y)dy> :
Q ji=jq B(Ioﬂ“)

We conclude that
IMgllLs a0 < Cllglles a9
27
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WEIGHTED NORM INEQUALITIES ON ORLICZ-MORREY SPACES
FOR THE MULTILINEAR FRACTIONAL INTEGRAL AND
ORLICZ-FRACTIONAL MAXIMAL OPERATOR

TAKESHI IIDA

ABSTRACT. We generalize Orlicz-Morrey spaces and Orlicz-fractional maximal oper-
ators to treat vector-valued functions, which extend to the multi-Morrey spaces and
multilinear fractional maximal operators to the scale of the Orlicz spaces, respectively.
In this article, we investigate the weighted norm inequalities for linear and multilinear
fractional integrals and maximal operators and Orlicz-fractional maximal operators in
Orlicz-Morrey spaces for multilinear version. One of the main results generalizes and
improves the weighted estimate of the Adams inequality in multi-Morrey spaces. More-
over, we extend the weighted estimates to endpoint cases.
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1. INTRODUCTION

This paper describes the weighted norm inequalities of multilinear operators Mg m, Ia,m and Mg
of Morrey and Orlicz-Morrey spaces for linear and multilinear version (we state the definitions of these
operators and function spaces below). We use the following notation: Let R™ be the n-dimensional Eu-
clidean space. For a set E C R", the symbols |E| and x g denote the Lebesgue measure and characteristic
function of E, respectively. Given a weight w and a measurable set F, let w(E) := [, w(x)dz. In this
paper, we suppose that the sides of all cubes are parallel to the coordinate axes. For all cube @ and all
a > 0, a@ denotes {az : x € Q}. D(R™) denotes the set of all dyadic cubes on R™ and for one dyadic
cube Qo € D (R™), let D(Qo) :={Q € D(R™): Q C Qo}.

Operators M, M, and I, are fundamental tools to study Harmonic analysis and potential theory (see
[5, 7, 8, 25, 29]). Recall these operators.

Definition 1.1. Given 0 < a < n, define

_ fy)
(1.1) I f(z) := /Rn T dy.
Given 0 < a < n, define
(12) Mof(@) = sw £Q)" F |Fwldy-xala),
Q:cube Q
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where

][F Vo = |Q|/ 2)de = mg(F).

In particular, we define M f(x) := My f(x), which is the Hardy-Littlewood mazximal operator. Here and
below a tacit understanding is that f is measurable.

In this paper, we need the multilinear versions. The symbol f = (f1,--., fm) denotes the collection

of m measurable functions. For every cube @, and a vector valued function f = (f1,---,fm), mg ( f)
m

writes H][ fi(x)dx
i=17@

Definition 1.2. Given 0 < a < mn, f, we define

(1.3) Lom (f) (z) := /n . f1(y1)...fm(yn;|)mn_a i

T—=Yiy---»T = Ym

Given 0 < a < mn, f, we define

(1.4) Ma.m (f) (x) :== sup 4(Q)*mg (f) xo(z).
Q:cube

The operator M denotes Mg .

We know that many authors have investigated the boundedness of the linear and multilinear fractional
integrals I, on some Morrey type spaces; for example, [1, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 28, 30]
et al. In particular, we are interested in theorem due to [1], which recovers the Hardy-Littlewood-Sobolev
inequality and is the origin of many papers. Firstly, we invoke the result in [1].

Proposition 1.3. Let 0 <a <n, 1 <p<py < ¢ and 0 < q < go < <. Ifq%:p%*% andq%:p%,
then
Mol < C 1z

here, we define the Morrey norm || - || \izo below.

Remark 1.4. Showing Proposition 1.3 in [1, 2], we can verify

(1.5) Lo f(x )|<||f||Mp°Mf( z)%
Estimate (1.5) and M : Mbo — MEo (This result is due to [2]) give the sharp result as follows:
(1.6) Mo fll pzo < ||f||Mpo ||fHMpo-

Considering the weighted norm estimate by straightly using estimate (1.5), we obtain mix type norm
inequalities as follows:

(1.7) (L follagss < 17yt |2 30

However, (1.7) fails to recover the result in [21]. This paper shows that under the appropriate condition
of weights, some the product of weighted norms controls the following inequality

pO

M”U ’

1— k0 Po
(1.8) Lo f)oll pgzo < Cllfwllx ™ - [ fwlly
here, the symbols X andY are some Morrey type spaces, which the norms of X andY satisfy ||| x S ||lly -
The following is one emmple of problem setting in this paper for one linear version. Under the condition
L_1_a, dq: L we show that
q0 Po n 90 Po
(1.9) [Taf)vll gz S 1M a,a(fw)l] pgao -
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Here, M4 denotes the Orlicz-fractional maximal operator which is below. Under the appropriate con-
dition of a Young function which we define and describe in detail below, since estimate of |Ma, o fl| \ 00
q

has similar construction of (1.6) (see Corollary 2.5), we can show that weighted norm of estimate (1.9)
controls (1.8).

Secondly, we invoke the following inequality (see [21, 26]).

Proposition 1.5. Let v be a weight on R™", 0 < a<n, 1 <p <pyg <00, 0<qg<qo <ro < oo and
a>1. ]fqiozpio—i—%—%,qiozp%and||v||MZ%<oothen,

(1.10) I(Zaf )0l pqz0 S N0l g 1l agzo -

Remark 1.6. By a condition of weights and the index of fractional mazximal type operator, we can unify

the conditions ~ = + — 2 gnd L = L 4+ L _ 2 4y Propositions 1.3 and 1.5, respectively. In this case,
q0 Po n q0 Po T0 n

if [v,w] denotes one quantity of weights, we show the following type inequality.

(111) |l S o, w0l || M,z (o)

'56 "0 Mo ’

This paper recovers and improves the results due to [18, 21], which also generalize Propositions 1.3
and 1.5.

Next, we introduce the multilinear operators. The multilinear maximal operator M acts on m Lebesgue
spaces’ product and is smaller than the m-fold product of the Hardy-Littlewood maximal function. This
operator is used to obtain precise control of the multilinear singular integral operators of the Calderén-
Zygmund type and to build a theory of weights adapted to the multilinear setting (see [24]). In [24,
p.1225], there is the prototype of Orlicz maximal operators for multilinear version, and we introduce
the generalized operators. Papers [13, 14] showed that the boundedness of rough multilinear fractional
integrals and maximal operators; In [13], in product LP and weighed LP spaces, on the other hand,
n [14], weighted estimates in multi-Morrey spaces. Besides, papers [9, 10, 11, 12, 15, 16] showed that
the boundedness of the commutators generated by linear and multilinear fractional integrals and b=
(b1,...,bm) in Morrey type spaces.

To consider the boundedness of multilinear fractional maximal and integrals, we introduce Morrey and
multi-Morrey spaces (see [22]).

Definition 1.7.

(1) Let 0 <p < pg < oco. One says that f € Mbo (R™) for f € ?
18 finite:

1oc Uf the following norm or quasi-norm

(1.12) Ifllago += s Q| (][ 1z |”da:>p < .

:cube

L 4.4 L Moreover, let
pP1 Pm

(f1,- - fm) € M%O (R™) for

(2) Let 0 < p1,...,pm < 00 and 0 < pg < oo. Assume that p% <
P := (p1,p2,...,pm) be the collection m indices. One says that f
fie LY (i=1,...,m) if the following quantity is finite:

(113) 7] = o 100 T (£, 10

To state the main results precisely, we will describe the Young functions, By-condition, operators Mp
and Mp o. As usual, one says that a function B : [0,00) — [0, 00) is a Young function if it is continuous,
convex and increasing satisfying B(0) = 0 and B(t) — oo as t — 0o. Define the B-average of a function
f over a cube @ employing the Luxemburg norm.

1
pj
pida:) < 0.
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Definition 1.8. Given a Young function B and a cube Q, define

(1.14) ||f||BQ:_inf{)\>O:][B('f(x)>dz§1}.
; 0 2\
A Young function B satisfies that
(1.15) B(t) 2 tB'(t) (t>0)
and
t B(t
(1.16) aB(t) < B(at) and B () < (t) (a>1).
a a
Estimates (1.16) entail
B(t B
(1.17) # < is) 0<t<s).
Given a Young function B, we define the complementary Young function B as follows:
(1.18) B(t) :=sup (st — B(s)) (t>0).
s>0

Remark 1.9. The functions B and B satisfy the following inequalities:
(1.19) t<B7Yt)-B7Mt) <2t (t>0).
(1.19) shows that L
(B)(t) = B(t).
We know the following as the generalized Holder inequality to the scale of Orlicz spaces:

(1.20) ]{2 F@9@ldy <20 fllpo 9.0

More generally, if A, B and C are Young functions such that for allt > 0, A=Y (t)B~1(t) < C~1(t), then
(1.21) ||fg||c,Q <2 ||fHA,Q llg] B,Q"

Definition 1.10. Given p, 1 < p < 0o, one says that a Young function B satisfies the By-condition if
there exists a constant ¢ > 0 such that

[0
The following occurs.
Remark 1.11. If1 < p < q, then,
(1.22) B, & B,.

By (1.14), we can define the Orlicz-fractional maximal operator.

Definition 1.12. Given 0 < a < n and a Young function B, define the Orlicz-fractional mazximal
operators

(1.23) Mp.o(f)(x) := sup LQ)* flp,q - Xxal®).

:cube

Operator Mp denotes Mp .
Remark 1.13. Let 0 < a < n. Given a Young function B, the following inequality holds (see [3, p.108]):
(1.24) Mo f(z) S Mp,a(f)(2).

There is the following characterization in [27, Theorem 1.7 in pp.138-139].

Proposition 1.14. Let 1 < p < oco. Given a Young function B, the following statements are equivalent:
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(1) B € BP7
(2) Mg : LP — LP.

There is the weak-type version for Proposition 1.14 in [4, Proposition 5.6 in p.100].

Proposition 1.15. Let 1 < p < co. Given a Young function B, the following statements are equivalent:

(1) B(t) Str (t>1),
(2) Mp : LP — [P,

We introduce Orlicz-Morrey spaces and their multilinear version.

Definition 1.16. Let 0 < ry < co and B be a Young function. One says that f € M3 for all measurable
functions f if the quasi-norm is finite:

1
"o ”fHB,Q :

1l = sup 1Q
QCR™

Remark 1.17. Definition 1.16 corresponds to p(t) = t% and ® = B in [6, (2) in Definition 1.1]. Let
® be a Young function. Moreover, lets 1 < rq < co. Then MP(R™) # {0} if and only if ®(t) S ™ for
t>1.

We introduce the multilinear version for Orlicz-Morrey spaces.

Definition 1.18. Let 0 < rg < 0o. Let A= (A1, A, ..., Ap) be a collection of m Young functions. One
says that f = (f1, fa,- -, fm) € M}’(R”) for all m measurable functions f if the quasi-norm is finite:

m
1
= su 7o ; .
Hﬂ]w sup 1@ TSl
To evaluate the estimates for the multilinear fractional integrals and maximal operators, we introduce

the Orlicz-fractional maximal operator for the multilinear version.

Definition 1.19. Given 0 < a < mn and A; (i = 1,...,m) be Young functions, symbol A =
(A1,...,An) denotes a collection of m Young functions. For f = (f1,..., fm), we define

(1.25) Mo (F) @)= sup 4Q) TLIfilla, @ xo (@)

:cube

Operator M 3 (f) (z) denotes Mz, <f) (x).

m

Remark 1.20. For every cube Qo, if © € Qo, then Mz (f) () > £(Qo)™ H | fill a, g, This implies
i=1

that the following inequalities hold: Let 0 < a <mn, 0 < q< gy <oo and 0 <pg <oo. If L =L -2,
then,
(1.26) HMM (f) HMgo = Hﬂ‘MA '

For each 1 < p < oo, p’ will denote the dual exponent of p, i.e., p’ = % with the usual modifications
1" =00 and oo’ = 1.

We organize the rest of this paper as follows: In Section 2, we formulate the main results, in Section
3, we list some lemmas, and in Section 4, we prove the main results.
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2. MAIN RESULTS

We establish the boundedness of the Orlicz-fractional maximal operator for the multilinear version for
unweighted version.

Theorem 2.1. Let 0 < a < mn, 1<p1,...,pm<oo,0<p§po<oo,()<q§qo<ooand

A; (1=1,2,...,m) be Young functions. If plo — < and % = %, then,
1—P0 NN
a0

1) |45 (7 )HW S 25 ()]

Remark 2.2. The proof of Theorem 2.1 originates from [3]. By Theorem 2.1 and Lemma 3.3 below, we
obtain the following inequalities:

Theorem 2.3. Under the condition of Theorem 2.1, we have the followings:

(1) Ifpi >1, 3= -+ L4+ and A, € By, (i=1,2,..., ) then,
22 M (D 10 WA
(2) If pr = p2 = -+ = pm = 1, then,

2 L=% || A7
23 M0 ()] o = 17T s 7150

Here, D(t) := (Ay(t)logt (), ..., Am(t)log™ (t)).
(3) If p< L, then,

2 [ ()] = [

Remark 2.4. Under the condition of (1) in Theorem 2.8, by Propositions 1.1 and 1.15,

oy =

Hﬂ’/um holds. Theorem 2.3 partially extend the result in [18, Theorem 3] to multilinear version.
B

Corollary 2.5. Let0 <a<n, 0<p<py<2,0<qg<gq <o 1_-1_a i:p%andAbe Young

’ qo Po n’ qo

function.
(1) If p>1 and A € B, then,
1-20
(2.5) 1Maaflppzo S I HfIIMpo -
(2) If p=1, then,
(2.6) 1Mo fll peo S IIfHMPO HfIIMpo -

Here, D(t) = A(t)log™ t.
(3) If p < 1, then,

(2.7) [Ma,ofll pgzo S [ 1agzo -

Secondly, we investigate the weighted estimates for the multilinear fractional integrals and maximal
operators in multi-Morrey spaces. To simplify the notation, we introduce multiple weights constants: Let

v be a weight and @ = (wy, ..., w.,) be a collection of m weights. Let A; (i =1,...,m) and B be Young
functions. Let 0 < a <mn, 0 < pg < gg < oo and 0 < ry < co. We define the following quantity
1
. ,_ QI | (2o Lge .
(2.8) AT R ngg, <|Q'| Q[0 w0 HUHB,Q};[1 s
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In particular, quantity [v, ]
index in (2.8)).

7 denotes [v, W]

000,700, A 7 for the case of B(t) = t7 (see the 5th

Po0,q0,70,%,B,A

Remark 2.6. In this paper, for a > 1, we choose v € {qo,aqo}. Quantity (2.8) generalizes several
quantities in [21, pp.152-153]. For example, we consider the following case:

1

150,90 |Q| % "= q % 5 —p! P;
(2.9) [uw}q,ﬁ :ngg, (Q’) Q|0 <fQU(x) dx) H (][lwz(x) 1dx> .

i=1

Taking ro = qo, q% = p% + i — 2, o(t) =t and Ai(t) =" (i=1,2,...,m), (2.8) corresponds to (2.9).

Theorem 2.7. Let0 < a <mn, 0 <py<oo,0<qg<qgyp<00,pg<qoanda>1. Let A; (i=1,...,m)
and B be Young functions.

(1) 1f [U’u_j]pwzo,qo,a,q,z‘Y < 00, then,

(2'10) HMO"m (f) UHMgO ’S [U’ w]Po’qo,qO,a,q,fY HM/Y n_n (f“’) HMZO ’

’Po 40

Here, fT’:D = (f1w13f2w27"'7fmwm)'
(2) Ifa>0,0<¢q<1 and [v,d

]pOaQOalMJ(h

o (91

(3) Ifa>0,1<g< o0, B€ By and [U’w]po,qO,aqo,a,B,fT < oo, then,

- < . ) ) -
Ia,m (f) UHMgo ~ [,Uﬂw]p07q0)CLQO:OC7B;A HMA I _n (fw) HMZO '

g A < 00, then,

(2.11) ‘

’po D)

< [v. & - - 7
Mo ™ [0, w]quoyatIovOu%A HMA 6 " a0 (fw) HMZO ’

(2.12) ‘

’Po 40

Remark 2.8. Theorems 2.3 and 2.7 improve the results in [21, Theorem 3.3 in p.152]: For a > 1
sufficiently small, p; > 1 (i =1,2,...,m) and ¢ > 1, if A;(t) = t*/* and B(t) = 19, then A(t) = t®i/®)’
and B(t) € By hold, respectively. Theorem 2.7 implies that under the appropriate condition of weights,
Orlicz-fractional mazximal operator controls weighted norms of fractional integrals and maximal operators.

We invoke the results in [21, Theorem 3.3 in p.152] which Theorems 2.3 and 2.7 enhance.
Corollary 2.9. Let v be a weight on R™ and @ = (wy, ..., wy,) be a collection of m weights on R™. Let

0<a<mn, 0<p<py<o0,0<qg<qo<rg< o0 and1<a<min{2—g,p1,...,pm}. Suppose that

1 _ 1,1 o 49 _p ing A(t) = (2 rm — ta e
o =0 T o — % and L == Taking At) = (t N ) and B(t) = t*, we have the followings:
(1) If [0, %], g,0,0,0,4 < O them,

[ (7)1
(2) Let >0 and 0 < ¢ < 1. If [v, W

]:007610,(1(107
F <
’ I%m (f) UHMZO ~ [U’w}po,qoyaqo,a,q,g

(8) For >0 and ¢ > 1, if [v, W

]POa(IO#IQ(h

Ioym (f) v

Thirdly, we can generalize (1) in Theorem 2.7.

—

fuw

< o @ ;
Mo ™~ [ ’ ]Po,qowqoya,qﬁA MI;BO ’
ag A < 00, then

—

fw

po
M
0B, A <00, then

—

fw

< U o
0 ~~ [U’w]PoytImaqo,a,ByA

M Mo
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Theorem 2.10. Let 0 < o < mn, 0 < py < 00, 0 < g < qg < 00 and pg < qo. Let A;, B; and C;
(i =1,2,...,m) be Young functions. For each A;, B; and C;, we assume that AT OB ) <O (i =
1,2,...,m). Let A= (A1,...,An), B= (Bi,...,Bm) and C = (Cy,...,Cyp). If [v,17]
then we have

(2.13) HMC‘@ (f) vHMgO < v, ] 3 HMglfﬂ (fw)”Mgo :

P0,490,90,,9,B ’Po 40

< 00,

po,qo,qo,a,q,g

Theorems 2.1 and 2.10 give the following estimates:

Corollary 2.11. Under the condition of Theorem 2.10, add the assumption qio = pio — > and qio = p%.
(1) p; > 1, % = p%++1% and A; € By, (i=1,2,...,m), then
1—Po Po
= _ g a0 7 || 20
(2.14) HMGO‘ (f) vHMgo S [U’w}po,qo,qo,a,q,g Fu MPO Fu MPO
A P
(2) If pr =p2=---=py =1, then,
1—Po Po
- _ = a0 || 90
(2.15) ”Mé,a (f) UHMZ" Sl o aad H wHMpP Ful| o
A D
(8) If p < %, then,
. (f < [v.10 £
(2.16) HMC’O‘ (f) vHMgo ~ [v’w]po,qo,qo,oc’q,B Fu MPP '

3. SOME LEMMAS

In Sections 3 and 4, we assume that f;(z) > 0 a.e. © € R™ (i = 1,...,m). Firstly, to show (3) in
Lemma 3.3 and (4) in Lemma 3.12 below, we invoke the next lemma (see [27, Lemma 4.1 in p.146]):

Lemma 3.1. Suppose that B is a Young function and that f is a non-negative bounded function with

compact support. For each X\ > 0,
r €R"™: Mpf(x) > A}H < Cy B @ dzx.
{
{zER™:2f(z)>A} A

Remark 3.2. We use constant Cy in Lemma 3.1 below.

Lemma 3.3. Let 1 <pj,...,pm <00, 0<p<py<ooand A; (i=1,2,...,m) be Young functions.
(1) If p; > 1, ;l)zp%—&—nwi—p% and A; € By, (i =1,2,...,m), then,

(3.1) Mg () o S e
(2) If p= L, then P
(3.2) Mg (7) o S 7l e
(3) If p < L, then )
(33) M (F) | = 1L

Proof. (1) Fix Qo C R™ a cube. f; = fjx3q, + fiX@3qoe = f]@ + fj (j

]: g Ly .
M;(f) (x)SMg(fé) (a:)—i—ZMg(ﬁ) (z),

740

1,2,...,m). Then,
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where fo = (f2,.., f2), fo = ( Lo, fhm ) and £ = (6,...,0y) € {0,00}". We take a cube
Q@ C R™ that the cube Q satisfies Q N Qg # () and assume that z € Q N Qp. In the case 177& 0, there
exists at least i € {1,2,...,m} such that £; = co. If Q N (3Qy)¢ = 0, for this index 1, ffi no " =
holds. This shows that H;nzl H ffj oo = 0 holds. Therefore, we may assume that Q N (3Qo)¢ #

In this situation, note that Qg C 3Q.
Keeping this in mind, we obtain

m m
Mz (F) @ s s TTIllasq = sw TT1fillaq -
Q0C3Qi1;[1 ' QOCQ’il;[l e
Since A; € By, (i=1,2,...,m), Proposition 1.15 gives the inequality:

(34) HfZHA ,Q ~ <][ |f’L yz d:’h) i

Therefore, we have

m m P%‘,
sup TTIAla o S sup (f fi<yi>|’"dyi) .
QUCQIE A0 QOCQ/i:Hl Q'
By (1.13),
- _1 _1
Mg (F) @ S ||, sup 1Q17F = Q|7
Mﬁ QoCQ’

Therefore, we get the following inequality:

ot (f we(7) wras)” <),

On the other hand, we evaluate M (ﬁ)) (z). Changing the order of ‘sup’ and ‘H’, we obtain

ﬂ‘M‘;O'

m

Mg (f) (@) < H Ma, (f°) (2).

1
Pm’

By Holder’s inequality for % = p% +

(f (HMA x>pd$>l<H(][ (Ma, fo)())pidxyl.

Since A; € By, (i =1,2,...,m), Proposition 1.14 implies that

1

H(f, oo e)” <TT({, wore)”

Therefore, we obtain )
@l (f, Ma () @ras) 5],

Hence, we get the desired result.

(2) Changing the order ‘sup’ and ‘H’ again, we obtain

m

(3.5) M (F) (@) < TTMa (59 (@)
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Moreover, since m = 1+ --- + 1, by Holder’s inequality, we obtain for every cube Qq,
—_——

Qo Qo 4
In [23, p. 371 in Theorem 1.5], we showed the follovvlng mequalitiesz For every cube Qg,
(37) f Mat@ie S 15lq,
0
Estimates (3.6) and (3.7) imply that

(3:8) Qole (]goMg(f) dx) 710

(3) Note that

| M (5) wras

0

o [Tt e @i M (7) > 2|

(3.9)
[Tl fill 4, 00 0 R
—p / +/ AP*erQO:MA(f)(x)>AHdA
0 [T Fill 4,
= p(I +II).
We evaluate I:
H;mzlllfll‘AL,Qo )\p H’Tll‘lﬁHAon 1 m
N ol = 1ol | 5] — 1@l T 1Al o,
i=1

Next, we evaluate I1. By (3.5),

(3.11) II< / APl {x €Qo: [ Ma, (f)(z) > /\} dA.
H;Zﬂ‘fiHAi,Qo =1
For A > 0, we take \; (i =1,2,...,m) as follows:
\ ™
(3~12) A=l mm e ’ Hfz
T

Then, arithmetic shows H:’;l A; = X holds. Hence, we have

(313) [IS/ )\pil {xEQ(]HMAl (fz) (SC)>H)\,} d\.
H;ll”fiHAi,Qo i=1 =1
Moreover, considering the contraposition,
(3.14) {l’EQo HMA (fi) () > H)‘z} C | J{z € Qo: My, (fi) (z) > A}
i=1 i=1 i=1
By (3.14),
m 00
(3.15) II< Z/ N € Qo Ma, (f;) (z) > Aj}| dA.
=17 ITZa il 4, 0
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By Lemma 3.1 and the definition of A,

II<C’OZ/ e Pl (/QOAj (fjfj))dx> dX

_(JOZ/ /)\p_lAj fiz) -(H’H”J;““QO> dwd).
Qo ]

1 1HftHA ,Qo HfJ”Aj”QU

(3.16)

Since [T~ I fi < A, (1.16) gives

1

II1<C 1 Frlla, T Ap—l—idx>
: (H || k||Ak,QO> ( /H|f
- fi(x)
3.17 d
( ) X Zl (]éﬂ <||fj|A QO> 1’) |QO|

Co _ RS L@\,
25 (Mne) 5 (4, () =)o

Jj=1
By (1.14),
m2 i P
(3.18) 11 < Cop——1Ql ([[1 1] ) .
(3.10) and (3.18) imply that
, 5 5 2, \ 7
(3.19) 1Qo| 70 (][OME (f) (g;)pdx) < (1+001”_1:;p> Hﬂ]M/}O.

To analyze I, (f) (x), the following is an essential lemma (see [21, p.157]).
Lemma 3.4. For a dyadic cube Qq, fix x € Qo. Let vo = maq, (f) and Ag = (2"+132"m)m. Set, for
k=1,2,...,
D =J{@ € D(@0).Q 5 2.msq () > 04}
Considering the maximal cubes concerning inclusion, we can write

Dy = UQk,j-
J

Here, the cubes {Qg,;} has the following properties:

(1) Qk; € D(Qo) are nonoverlapping.
(2) The following inequalities hold:

(320) ’V()A'IS < m3Q,.; <f_'> < 2mn’YoA§

Moreover, let Ey = Qo\D1 and Ej j = Qi j\Dy+t1. Then, the following properties hold:

(3) {Eo} and {Ejy ;} are a disjoint family of sets which decomposes Q.
(4) The sets Ey and Ey ; satisfy

(3.21) [Eo| < |Qol < 2[Eo| and |Ej ;| <|Qk;| < 2|Ej;|.
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(5) Let
Dy(Qo) == {Q € D(Qo) : m3q (f) > 70140} ,

(3.22) ) R .
Dii(Q0) = {Q € D(Qo) 5 @ € Quji 04l < maq (F) <2048}

Then, D(Qo) = Do(Qo) U UDM’ (Qo) | holds and we have
k7j

/QO Tom (ﬁ;) (z)v(x)g(x)dx

(3.23) 5 A
< UQo) maq, () may (v9) 1Qol + 3 Q) msa, (F) maw, v9) 1@kl
k,j

Next, in the proof of Theorem 2.7, we use the following principal lemma (see [21, p.156]). To simplify
the notation, let I,,(t) := (¢,¢t,...,1t).
——

m

Lemma 3.5. Let v be a weight on R™. For a dyadic cube Qq, fix ]% = (f1X3Q0: - - -» fmX3Q,). Adding t?
to I, (), let fm’q(t) = (fm(t),tq> be the collection m + 1 Young functions. Then, there exists a constant

C independent of v, f and Qo such that the following inequalities hold:
(1) Let 0 < a <mn. If0 < g < oo, then

(3.24) HMQ,m (ﬁ;) v’

=0 o (0)

L(Qo L(Qo)

Here (f:v) =(f1,.-+, fm,v) and

1

Mfm,q,a (f, v) (z) := sup £(Q)%msg (f) (72 U(y)qdy) ! xo(x).

Q:cube
(2) Let 0 <« <mn. If 0 < q <1, then

3.25 1o (o ‘ <C H 1. o, ’ .
( ) o (fo) ! La(Qo) — Mlm’q’a (fo 11) L4(Qo)
(3) Let 0 < a <mn. If ¢ > 1, then

3.26 Lo (Fo ’ <CH 1 fo, .
(3.26) ’ <f°) Neago = Mo <f° U) L4(Qo)

Remark 3.6. Lemma 3.5 implies that the norm of m+ 1-fold multilinear type operator controls weighted
norm of m-fold multilinear fractional integrals and mazimal operator. Even one linear case, we need to
consider the estimate of bilinear type mazximal operator. To show (3) of Theorem 2.7, we need to modify
(3.26) to Orlicz-fractional type mazimal operator.

Lemma 3.7. Let v be a weight on R™ and B be a Young function. Adding B(t) to I,(t), let

I, () = <fm(t),B(t)) be the collection of m + 1 Young functions. For a dyadic cube Qq, fix
fo = (F1X3Q0»- - -+ fmX30,)- If ¢ > 1 and B € By, then,
4z o () = 0 ()

L1(Qo L49(Qo)

Here,
Mi o (F0) @)= sup Q) msq () Ioll5.0 xa ().

Q:cube
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Proof. Let g € Lq'(Qo) such that ||9||Lq’(Q0) =1, supp (9) C Qo, g(x) > 0 a.e. = € Qp. By duality
argument, we analyze

/ Iom (ﬁ]) (x)v(z)g(z)dx.
By (3.23), ’

| T () @v()g(a)ds

(3.28) . 5
< UQo) msq, () may (v9) 1Qol + 3 UQks) msa, (F) maw, (v9) 1@kl

k7j
By (1.20) and (3.21),

(3:29)  UQu) M, (F) maw, (v9) 1Qusl < 4Qu) msau, (F) I0lls.q, , 19130, , 1Bril:
Since |E ;| = fE}c]’ dx
UQus)maqu, (£) lp.q,, 9150, 1Bkl

(3.30 -/ Q) i, () g, 95 0., do

< | Mo (forv) @Mpg(a)de,

Ek,j

A similar argument to (3.29) and (3.30) gives

(H fily: dyl> ]é o(2)g(x)da| Qo

S JAN (fOu ) g(x)da.

Eo

(3.31)

Estimates (3.28)-(3.31) imply that

(3:32) | T () @r(@)gta)de 5
Qo

By the Holder inequality for g > 1,

fome (J0,0) (@) Mpg(w)de

M5 o (Fo0) @Myl

(3.33) Q°

1
ra

5( o Mo . (%o )(:@W)q ( 5 Mgg(x)q’dx>

Since B € By, by Proposition 1.14,

Q

1
a

(3.:34) ( ) M) dz) " % Nl =1
0

Estimates (3.32)-(3.34) imply that

Q

(3.35) / Lo (Fo) (@0(@)g(@)dz (/ 4, e (Fo )(x)qu>q

0

By [4, Remark 5.12 in p.102], Lemma 3.8 holds:
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Lemma 3.8. If 1 < q < oo and B(t) St4 (t > 1), then, t* < B(t).

Lemma 3.9. Given 0 < o < n, the followings hold:
(1) For all x € R™,

(336) Moz,m (.}F) (l‘) = Ma,m,3D (.F) (.13)
Here, Moo () () = sup  €3Q)" f |f(0)ldy
z€Q€ED(R") 3Q
(2) Let A= (Ay,...,Ap) be collection of m Young functions. For all x € R™,
(3.37) Mg, (F) @ =Mz (F) @)

Ai,3Q°

Here, ./\/11&%3D (f) (r):= sup £(3Q)" H [l i1
i=1

z€Q€EeD(R™)

The proof of Lemma 3.9 originates from [23] (see also [27, proof of Lemma 4.1]).

Proof. Fix a point x € R". It suffices to verify M ; (f) (r) SMyz ,ap (f) (z). For every cube Q C R"™
such that Q > x, there exists a unique integer k € Z such that 2-(*+hn < |Q| < 27*". Then, we can
choose dyadic cubes J; (i = 1,2,...,2") such that |.J;| = 27*" and the dyadic cubes J; (i = 1,2,...,2")
cover (. That is,

on
(3.38) QclJJ
i=1
and
(3.39) Q < [Ji] <27(Q].
Hence,
(3.40) Q) TT 0, 0 = 4@ TT x4,
Jj=1 Jj=1
2"’1/
where J := U J;. Obviously, for ¢ =1,2,...,2",
i=1
(3.41) [J] = 2"|J;].
By (3.38),
m m 2"
(3.42) U TTIfixsll, o < €@ TI D Ifixalla, o
j=1 j=1i=1

By (3.39), for j =1,2,...,m,

(3.43) I1f5x

Since J; C 3Jq,

: o2r fi(@)
Aj’lenf{)\j>O.|Ji|/JiAj( y de <153.

[0 2 [, (5 o)
(3.44) ' 65"’ ! £ @)
<infi); >0: Az(jx>dx§1}.
{ ! 13J1] Jag, 7\ N
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By (1.16),
. . 6" fi(z)
(345) inf {)\J >0: |3J1| - Aj < )\j de <1p<6” HfjHAj,?)Jl .
Estimates (3.40)—(3.45) give
(3.46) Q) TT Il 4, 0 < 6™ €I TTIfilla, 5, -
j=1 j=1
Since the cube J; 3 z is one dyadic cube, we obtain the desired equivalent. (I

Similarly to the proof of Lemma 3.9, we can show that the ordinary Morrey spaces are the equivalence
of the dyadic Morrey spaces:
Lemma 3.10. For 0 <p <py < oo and F € L} , we have

(3.47) 1Fl gz 2 IF L, -

where,

1

1 P
Plugs, = sw 10 (f [FG@las)

P QeD(R™) Q
Lemma 3.11. For z € Qg and f: (f1,--s fm),
(3.48) L (7o) @S> 6@ maq (7) xal).
QED(Qo)
To analyze Mg , s (f1X3Qo: - - fmX3Q,) () for Qo € D(R™), the following is an essential Lemma.

Lemma 3.12. For a dyadic cube Qq, fit © € Q. Let v = E(?’QO)QH”J[Z'”Q,?,QO and A1 >
i=1

max {(2 - 3"Com)™,2™"}. Here, the constant Cy is in Lemma 3.1. Set, for k :71, 2,...,

Dk = U {Q € D(QO)?Q > z7£(3Q)a H HfZHC'“:iQ > ’YlAlf} .

i=1

Considering the maximal cubes concerning inclusion, we can write

Dk = U de'.
J

Then, the cubes {Qy,;} has the following properties:

(1) Qr,; € D(Qo) are nonoverlapping.
(2) The following inequalities hold:

(3.49) NAF < 03Qr ;) [] 114l

i=1
Let Ey := Qo\D1 and Eij = Qi j\Di+1. Then, the sets Ey and Ey ; have the following properties:
(3) {Eo} and {Ey ;} are a disjoint family of sets which decomposes Q.
(4) The sets Ey and Ey ; satisfy that

(3.50) [Eo| < |Qol < 2[Eo| and |Ej ;| <|Qk; | < 2|Ej;.

mn k
Ci,3Qk,; <2 ’ylAl'

Lemma 3.1 gives the proof of Lemma 3.12, which originates from [21, p.158].
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Proof of Lemma 3.12. Note that
Qk,j N D41

C {x € Qkj:Q>,Q € D(Qo)
(3.51)

=1

Q€ Qe 3 T[ 1 iloy g > 71A’f+1}
las
c {l‘ € Qk’,j : MC_" (flx?)Qk,j?' sy meSQk'j) (l’) > 6711}

(3Qk.;)*
Changing the order of ‘sup’ and ‘H’, we obtain
k+1
. . 7147
{$ € Qk?,j : Mc (leSQk,ja .. wmeSQk,j) (l‘) > €(3Qk,j)a }
(3.52)
- 7114];“
C € T Me (f; . >-_—1 %
z Qk,] Z:]‘—[1 C; (f X3Qk,,_7) (1’) é(ng,j)a

Ci,3Qk,;

1
k41 \ ™ . m k41
. ’71141 ||fz| ’71141
Letting T'; := —, we have | I r;, =
(5(3Qk,j)°‘> palen

—————. Consider-
iy s, - 1l v (@)
1 CI;SQk,j m C'm73Qk,j
ing the contraposition of (3.52), we can show that

i=1 ((3Qk.5)*
C U {.’ﬁ S Qk,j : MCi (fZXBQ)\,]) (x) > ].—‘1} .

i=1
By Lemma 3.1, fori=1,2,...,m,

m k+1
{x €Qryj: HMC (fixsqn,) (z) > 7147 }
(3.53)

(3.54)

[{z € Qi : Mo, (fixsar,) (z) > Ti}| < Co /Q G (fi(x)> -

3 L
By the definition of T';,

/ LG (fr(”> da

3.55 a ™
(3.55) [ 2 (03Qe) Ifilerson,  Wmlloy son @)
= Ci T mn 7 k ) ’ dx
3Qu,j AP 2mny A ||fi||c,,,3Qk,j
Since A7 > 2™" and (3.49), applying (1.16),
1
27 (L(3Qk;)™ [ /1]l o Ll A\ ;
/ ;| = J 1I1Cy,3Qu,; . MIC,3Qk,; ) f (17) d
3Qk,j AT 2mnayy A7 | fil
(3.56)

Ci,3Qk,j

< 2 <£(3Qk,j)a ”fl”Cl,?,QkJ- ||fm||cm,3QM

" i)
Ci| ————— | dx.
gmnny AR ) /Q (m ) ’
By (1.14),

Ci,3Qk,j
(3.57) / Ci & dz < 3"|Qu.j1-
o, S\ Tl s
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Estimates (3.51)-(3.57) give

1

(3.58) |Qk,j N Diy1]| < (W)m Q.-

Since A1 > (2-3"Com)™,

(3.59) |Qk,j N Diy1]| < %|Qky|

A similar argument to (3.51)-(3.59) gives

(3.60) |Qo N D1f < 1|Qo|~

By (3.59) and (3.60), we obtain the desired result. O

Remark 3.13. In Lemmas 3.4 and 3.12, the sets Dy, Qi ; and Ey ; are different, respectively. In the
context of this paper, we can distinguish these sets explicitly. So, we use these symbols without distinction,
respectively.

(2) in Lemma 3.9 and Lemma 3.12 give the following inequality:

Lemma 3.14. Let0 < a <mn, 0 < g < 00, C= (C1,Cs,...,Cn) be a collection of m Young functions.
Adding a function t? to C_", we let C_"q = (6, tq) be a collection of m + 1 Young functions. For a dyadic

cube Qq, fix fo = (fiX3Qos - - -» fmX3Q,)- Then,

(3.61) Mg, (o) (@)iv(e)ide S

Qo Méq,a (J%’ 71) (x)%dx,

Qo

Here,
1

a0 <]é w)'dy) ol

Méq,a (f, v) (z)%dx.

Mo (Fi2) @) = sup (@) LA

Proof. By Lemma 3.9, we may verify

(3.62) /QO Mg o5 (ﬁ)) ()% (x)lde < o

Using Ey and Ej ; in Lemma 3.12, we can decompose Qg = £y U U Ey ;|- Then,
k.j

Mg 030 (ﬁ)) (z)?v(z)dx

Qo
N /Eo i % /Ek,j M@,a,SD (ﬁ;) (x)qv(x)qu - IO + Z IIk’j'

k,j

(3.63)

By definitions of sets Fj, ; and Qy,,

m q
(3.64) I 5 («@w)aﬂ ||fi||ci,3Q,€,j> ~ /E v(w)tdz,
i=1 k.
By (3.50),
(3.65) 11} ; 5/ MC~ o (fo,v) (x)%dx.
Ey ; o
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By the definition of set Ep, a similar argument to (3.64) and (3.50) gives
(3.66) Io 5/ Mg (ﬂ;,v) (2)%dz.
Eq o
Estimates (3.63)-(3.66) give (3.62). O

4. PROOFS OF THE MAIN THEOREMS

Proof of Theorem 2.1. Note that

m 1_% m %)
(4.1) Mg, (F) @) = sup (Qﬁ'qo—% I1 ||fi||Ai,Q> (H |fiAi,Q> :
r i=1 i=1
Since q% = pio -
m LZO(;P() m 57()
(4.2) Mg, () (@) = sup (IQ”O 11 ||fi||A,i,Q> (H ||fi||Ai,Q> :
® i=1 i=1

By (1.18) and (1.25),

) m CIO;’PO m 2’78 d0—p R "
4. o ill 4, ill 4, < " 7 @0 .
(43) up (IQI It ||A1,Q) ([[ £ w) 17 Ma () @)%

Estimates (4.1)-(4.3) give

(4.4) Mz () (”’>HM30 <71 /\:000 H(M"Y (f))gHMU
Since qio = p%,

i) [ ()], - I DIE,
Estimates (4.4) and (4.5) imply that

o bt Ol = W Pie DI,

O

Proof of Theorem 2.7. By Lemma 3.10, we may analyze the weighted estimate of the operator M, ,, ( f) (x)

in M. For a dyadic cube Qo, fix x € Qo. then, let f; = fixaq, +fiX@aqye = f{+° (G =1,2,...,m).

Then, we decompose f: ﬁ; + Zﬁ, where ﬁ = ( fl,...,ffn’") and ({1,...,4,) € {0,00}™. Since
0£0

f = fO + Z ffa

740

and
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(1) Firstly, we evaluate Mg m (ﬁ) (z). By a similar argument in the proof of Lemma 3.3, if x € Qy,

then
(47) Mo (£2) @) S sup £@)"mq (f).
QoCQ
By (1.20),
S 4Q)™ma () S swp Q)" [Lsewilla 0 .o
(4.8) = Ssup |Q|% <€(Q)’%_;€’ H l| fiwi Ai,Q> |Q|%_% H le_ll T.0"
QoCQ i=1 i=1

1

m q q
= sup QI (f; <€(Q)p0 «oi[[lfiwinAi,Q) dr) Q

By (1.25), we have

QI (72 (mv’”&q’% TT 17wl
=1

m
a1 —1
mr e g
iy
i=1

N\ m

o 1 _1

AisQ> dw) |Q|n " IIHwZ ‘
=1

T.Q
(4.9) 1
1 - NP L _
<10 (f Mag g () @) 101 T or g
By (1.12),
1 m
o (f Ma g () ) 00 A T
(4.10) N . =t
— a1 _
< [Ma g (7o)l 10F 5 T 0 e
Estimates (4.7)-(4.10) imply that
1
1 — q
1Qol70 (][ Mam ( fg) (m)qv(x)qd:c>
Qo
(4.11) S Mapos (72)]
< sup ('Q"');“czﬁo = (f v(x)qu)éﬁﬂw*!
Qocao \ Q| Qo S e

—

By using [v, @], . . o, 1 We obtain

Q=

Q0>;0 i_iia < )
4.12 a9 po ' n Qd
(4.12) Sup, ( Q) @ 720“”) .

Hence, we have

m
;g < [o@ ]
H le A;Q — [’U7w]p01q07q0701(b*’4.

i=1

Q=

Qo7 ( - Mo (%) (x)qv(x)qu>

< [0, @y 40,00,000,4 HMX a_n (fw) H a0
Mg

’po 0)

(4.13)
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Secondly, we evaluate Mg (ﬁ;) (x). By (1) in Lemma 3.9, we may replace Mg ,, with Mg, 3p.
By Lemma 3.5, we have
(4.14) Mam.sp ( fo) (@) () de < | My ( fo,v) (x)?dz.
Qo Qo fm.a;
By (1.20),

o (fov) @

m 1
S swp U | [T fwilla, sq ) llw; -mgq (v9)
z€QED(Qo) i=1
(4.15) le] e O
= sup — |3Q|407P0+"m (v9)a w;
z€EQED(Qo) <|3Q|) © };[1 H

< (@) w0 [ I fawill o, -

i=1

By using [v, ] for every x € Qo,

P0,40,40,c0,q, A7

(4.16) M7 o (F00) @ S 0T g 005 Mt (7) (@)
Estimates (4.14)-(4.16) give the following:

1

(4.17) |Qol ( o Ma,m (fé) (x)qv(w)qdw) < [”aw]po,qo,qo,a,q,fYHMA k) (ﬁ”)HM

Po

Therefore, estimates (4.13) and (4.17) give the desired result.
(2) Firstly, we evaluate I, (ﬁ) (x). By a geometric observation, for x € Qo, {y; : |z —y,| <

250(Qo)} C 3-28Qp. Then,
. Ia ,m : % 1 i i d 1 .
(4 18) (fe) kz::l |3 0 j];[l <7§2on f] (yj) yj)

By (1.20),

o0 ' k %m
Sl T (4,

i 2kQq

fj(yj)dyj)

e m
S Z |3 2kQqo|™ H ”fjwj”Aj#S.szo ij_leTj’g,,ngU
(4.19) o . }
=3 2@l * 7 T o5 e,
k=1 i
¢\
L n
3- Qk a0 f 2]€ T) q() J
x | Qo . £(3-2°Qo) j]:[l ||f]w]||A 3250, .

By (1.12) and (1.25),

420) o (7)) @ gg 2Qol 7 My, (fw)HM%HH Tl
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Estimate (4.20) entails

1

Quf#s (f toon (7) (0ot

’m a0
(4.21) S n .
Q) g vguf 5 (f ) Tl
X _ 3.2 Q a0 PO ’U.’L‘)qdl' w; .
> (i) B2 vtete) T
1
2 (

Qo] (%)
. <|3-2kc20|> '

—

B in »
y using [U’w]po,qo,a%,a,q,f\’

Quf# (f 1w () <ac><fv<ac>qczﬂc)é
Qo] |>qlo(1—é)

o
< 0 et M (2] S (1

q
0 k=1

(4.22)

= 1Qol W)
Since the series Z <|32"?Q|) is convergent,
: 0
k=1

Quf# (f 1w (1) <m>qv<x>qu)‘l‘

<

(4.23)

v, W i 1 .
[0, ]p07f107a(I07@7f17A HMA%—% ( w) HMQO
q

Secondly, we evaluate I, p, (ﬁ)) (z). By Lemma 3.5,

(4.24) / Ja,m(g) (2)to(x)tde <C | My (fo,v) (2)de.

Qo
By Lemma 1.20,
Mf (ﬁJ’U) (x)

m,q,&

m

< sup £(Q)° [ Il firws]
Q3 i1

a0l 50 me (09

(4.25) < sup (M) aa |3Q|%+%7im (Uq)i ﬁ walf -
™ Qreube \ [3Q)] @ LI liiaa
x (f(Q)”%_;’ ﬁ ||fiwi||Ai,3Q> xq(z).
i=1
By using (1.25) and [v, W], . 40 0440 We have
(4.26) Mz, o (Forv) @) S 108 a0, A Mt (fu) ().
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Estimates (4.24)-(4.26) give the following.

@l (f T () <z>qv<z>qu>3

(4.27)
w]poylm,a%,a,q,g HMA 26 74% (fw) H/\/{ZO '

< [,
PO

Therefore, estimates (4.23) and (4.27) give the desired result.

1
(3) Firstly, we evaluate Iy m, (ﬁ) (z). By Lemma 3.8, (fQ qu) < [vll g q, occurs. Hence, by
[U’w}Poﬂo,aqo,a}B’g’

1 m

Qo > o ;0+z—;0( o) )

< [v, @

~

]po,qo,aqo,a,B,ff'

> q (1711)
Since Z (W) ’ is convergent, (4.21) and (4.28) imply that

Quf# (f 1o (1) <as>qv<sc>%zac)é

(4.29)
S v, w]pmfImGQm%Bﬁ HMA% — (fw) HMQO ’
q

Secondly, we evaluate Iy, ( ) (z). By Lemma 3.7,

fo
(4.30) / ( *) 2)dz < P (fo, ) (x)7dz.

Qo
On the other hand, by using [v, u_)']po do.aqo., 3. A0 We have
(1.31) Mo (7o) @) S 08, g gy, M o (Fu) (@)

Estimates (4.30) and (4.31) imply that

Q% (f T (7) <x>%<x>wx)3’

N [v’w]PmQO@QD,%B,A HMA 610 (fw) HMQO ’
q

> Po

(4.32)

Therefore, estimates (4.29) and (4.32) give the desired result.
O

Proof of Theorem 2.10. By the same as the proof of Theorem 2.7, for every dyadic cube Qq, let fix30, =
fZO and fiX(SQo)C = .](‘ZOO 'ThCH7

Mgz, (JF) () < Mg, (ﬁ)) () + ZMC‘,a (ﬁ) (),

740
Wheref(;:(f?,...,fo) fg ( Lo, fhm )and[:(ﬁl,...,fm)e{(),oo}m
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Firstly, we evaluate M (ﬁ) (z). For x € Qq, note that

m

(4.33) Me, (F) @) S Jup 4Q H||fl

Ci,Q -

By (1.21),

S (Q HHfz

N 0Q)” iWill 4., i_l
(4.34) S Jup, (@) il:[l||fw|‘A1,,Q||w 5

= sup £(Q)* 7 |Q| (f (acz)%‘%ﬂllfiwilui,@) dw) L1 i
Q i=1 i=1

QoCQ
q im
) dx) Hsz
i=1

By (1.12) and (1.25),

5{}1ch€( )|l (72( ’T**HIIL

a_ 1
s (B gm0 T
H ’POqu Jo MO QonQ|Q| gH ’

Estimates (4.33)-(4.35) give

@il (f Me.. () (x)qv(x)quf

(1.36) SMas (ﬁ”>HMgo

|QO|> Tt < q )q -
< gom, () 1008787 (i, toras) T

P0,40,q0,2,¢,B’

(4.35)

By [v, @

@il (f Me. (1) <x>qv<w>qdw)é
0
Sl o uE HMA 2 _= (f)

Secondly, we evaluate M (ﬁ}) (). By Lemma 3.14,

(4.37)

‘ qo'
My

(4.38) o Meé (fg)) (z)%v(x)ldx < Méq,a (fé,v) (x)?dx.

By using (1.21), (1.25) and [U,w]p waoag B W have
0,40,90,X,4q,

5 (fo7 )()

Qo

% o no_
(4.39) < sup <@|) \SQFJWIO romg (v?)e H Hw £(3Q) 7o 2 H Il fiwil 4,30
Q>3z ‘3Q‘ i=1
< 0 = n n w .
- [U’ w]pO,EIo,lIo’a,q,B MA’P() T a0 (f ) (CE)
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Estimates (4.38) and (4.39) give

(4.40) Mg, (ﬁ)) (2)%(z)ldz < [v, @) j/ Mioa (fw) (z)%dz.
Qo ’ P0,40,90,2,9,8 J g, "Po a0
Estimates (4.37) and (4.40) give the desired result. O
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NORM INEQUALITIES ON MORREY SPACES FOR THE
OSCILLATION AND VARIATION OPERATORS

FERIT GURBUZ

ABSTRACT. This paper is devoted to investigating the bounded behaviors of the oscilla-
tion and variation operators for the family of multilinear singular integrals with Lipschitz
functions on the Morrey spaces. We establish several criterions of boundedness, which
are applied to obtain the corresponding bounds for the oscillation and variation operators
on Morrey spaces when the m-th derivative of b belongs to the homogenous Lipschitz
space.
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1. INTRODUCTION

Given m is a positive integer, and b is a function on R. Let R, 11 (b;x,y) be the m + 1-th order Taylor
series remainder of b at x about y, that is,

R (b,9) = b () = 3 260 () (w — )"

y<m

In this paper, we consider the family of operators 7% := {T?} _ given by [4], where T? are the multilinear
singular integral operators of T, as follows

by R (bi2,y) o
(1.1) T!f () = /| O LI K (o) f ()

Thus, if m = 0, then T? is just the commutator of 7, and b, which is given by
Taf@ = [ (@) -b@)K @01 6y
lz—y|>e

where K is said to be a Calderén-Zygmund standard kernel such that

C
1.2 K(z,y)| < , for x
(12) K ()| < #y
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and for all z, xg, y € R with |z —y| > 2|z — x¢]
K (z,y) — K (20, y)| + |K (y,2) — K (y,z0)|

C |x—x0>5
1.3 < s
(13) —um(mm

where 1 > § > 0. But, if m > 0, then T? are non-trivial generation of the commutators.

The theory of multilinear analysis was received extensive studies in the last 3 decades (see [3, 4, 6]
for example). Hu and Wang [4] proved that the weighted (LP, L?)-boundedness of the oscillation and
variation operators for T when the m-th derivative of b belongs to the homogenous Lipschitz space Ag.
In this sense, we recall the definitions of homogenous Lipschitz space Ag and bounded mean oscillation
space BMO as follows:

Definition 1.1. (Homogenous Lipschitz space) Let 0 < 8 < 1. The homogeneous Lipschitz space

Ag is defined by
A b(x+h)—0b(x
hs®) =iy, = swp LEEW D@L L
o, heR, h#0 |h

Obviously, if 8 > 1, then AB (R) only includes constant. So we restrict 0 < 8 < 1.

Definition 1.2. (Bounded Mean Oscillation (BMO)) Let |I| denote the Lebesgue measure of the
interval I. We denote the mean value of b on the interval I = I(z,y) C R by

br =M (b,I)=M (b,z,y) = |I|/ )dy,

and the mean oscillation of b on the interval I = I(x,y) by

1
MO@DZMOw%w=m/Ww—M@
I

We also define for a non-negative function ¢ on R
MO, (b.1) = MO, (b2.y) = S |]|/|b ~ by|dy.

Now, we define
BMOy (R) = {b € LY (R) : sup MOy (b, I) < oo}
I

and
1l 5ar0, = SI}pMQb (0,1).

The real importance comes when ¢ =1, in which case BMOy4 (R) = BMO (R).

Now, we recall the definition of basic space such as Morrey space. The Morrey space is a generalization
of Lebesgue space. It was introduced by Morrey in [5] to study the solutions of some quasi-linear elliptic
partial differential equations. A number of results from Lebesgue spaces had been extended to Morrey
spaces [1].

The Morrey space M,! (R) is defined as follows:

Definition 1.3. (Morrey space) For 1 < p < q < oo, the Morrey space M} (R) is the collection of all
measurable functions f whose Morrey space norm is

1
Ifllgwy = sup — 1 I Xl o (my < 00
P ICR | |p q
I:Interval
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Remark 1.4. [3] - If p =g, then
1 lazg ey = IfllLoqw)-
-~ if ¢ < p, then MJ(R) is strictly larger than L? (R). For evample, f(z) := \m|_% € M7 (R) but
f@) = |25 ¢ L9 (R).

In 2016, Zhang and Wu [6] gave the boundedness of the oscillation and variation operators for Calderén-
Zygmund singular integrals and the corresponding commutators on the weighted Morrey spaces. In 2017,
Hu and Wang [4] established the weighted (L?, L?)-inequalities of the variation and oscillation operators
for the multilinear Calderén-Zygmund singular integral with a Lipschitz function in R. In 2020, Giirbiiz
[3] has proved the boundedness of the oscillation and variation operators for the multilinear singular
integrals with Lipschitz functions on weighted Morrey spaces.

Inspired of these results [3, 4, 6], we study the boundedness of the oscillation and variation operators
for the family of the multilinear singular integral defined by (1.1) on Morrey spaces M} (R) when the
m-~th derivative of b belongs to the homogenous Lipschitz space AB in this work.

Suppose that K satisfies (1.2) and (1.3). Then, Zhang and Wu [6] considered the family of operators
T := {Te}e>0 and a related the family of commutator operators T; := {Tevb}e>0 generated by T, and b
which are given by

(1.4) T.f (x) = / K (2.) f (4) dy
|lz—y|>e
and
(1.5) T.of (x) = / (b(x) ~ b)) K (2.9) f () dy.
|lz—y|>e

In this sense, following [6], the definition of the oscillation operator of T is given by

o0 2

O(Tf) (x) := <Z sup |Tepn f () = Teif($)|2> ;

i—1 tir1<€ip1<ei<t;

where {t;} is a decreasing fixed sequence of positive numbers converging to 0 and a related p-variation
operator is defined by

Vo (Tf) (x) = sup, (Z | Tecsn f (2) —ﬂ,-f(ar)!”) . P>
€ i=1

where the supremum is taken over all sequences of real number {¢;} decreasing to 0. We also take into
account the operator

N

o’ (Tf) (SC) = (Z sup |Tt1+1f (.’E) - TTsz (LU)|2>
i—1 tip1<n;<t;

On the other hand, it is obvious that
O'(Tf) =~ O(Tf).
That is,
O'(Tf) <O(Tf) <20'(Tf).

Recently, Campbell et al. in [2] proved the oscillation and variation inequalities for the Hilbert transform
in LP(1 < p < o0) and then following [2], we denote by E the mixed norm Banach space of two-variable
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function h defined on R x N such that

2 172
Il = (Z (sup 5.1 ) <.

Given T := {T.} ., is a family operators such that lin% T.f (x) = Tf (x) exists almost everywhere for
e—

certain class of functions f, where T, defined as (1.4). For a fixed decreasing sequence {t;} with ¢; \, 0,
let J; = (tit1,t;] and define the E-valued operator U (T') : f — U (T') f given by

UM @) = {1 @) - Tf @) sepuen = [ K@) i@y
{tiva<|z—y|<s} s€J; i€N

Then

O'(T1) (@) = U (1) £ @)l = [{Toesad ) = Tof )} e e

= / K (x,y) f (y) dy

{ti+1<|z—y|<s} seJ;ieNll g

Let ® = {8 : 8 ={e},e; € R, e \,0}. We denote by F, the mixed norm space of two variable functions
g (i, 8) such that

1/p
lolls, = sup (Z Ig(i,6)|p> .

We also take into account the F),-valued operator V (T') : f — V (T) f such that
V(T) f((E) = {T€i+1f(x) - T€if (x)}ﬂ={ei}e<1> .
Thus,
Vo (D) f () = [V(T) f (@)l g, -

Throughout this paper, C always means a positive constant independent of the main parameters
involved, and may change from one occurrence to another. We also use the notation F' < G to mean
F < CG for an appropriate constant C > 0, and F ~ G to mean F < G and G < F.

2. MAIN RESULT

We are now ready to present and establish the main result of this paper.

Theorem 2.1. Let K (z,y) satisfies (1.2) and (1.3), p > 2, and T :={T.} .., and T® := {Teb}€>0 be given
by (1.1) and (1.4), respectively. If O (T) and V, (T) are bounded on LP° (R,dz) for some 1 < py < oo,
and b™ € Ag (R) with m € N for 0 < f < 1, then O (T°) and V, (T®) are bounded from M (R) to
BMO(R) for any 1 <p<gq= %
Corollary 2.2. [6] Let K (z,y) satisfies (1.2) and (1.3), p > 2, and T := {T.} o and Ty, := {Tcp} .-
be given by (1.4) and (1.5), respectively. If O(T) and V,(T) are bounded on L*° (R,dx) for some
1 <py < oo, and b€ Ag for 0 < B <1, then O(Ty) and V, (Ty) are bounded from Mg (R) to BMO(R)
forany1<p§q:%.
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2.1. The Proof of Theorem 2.1.

Proof. We consider the proof related to O (T b) firstly. Fix an interval I = (z¢ —l,x0 + 1) satisfying
|I| = 2l, and we write as f = f1 + fa, where f1 = fxar, xar denotes the characteristic function of 41.
Let

Cr= |}|/ / Bt 0 209) g, 1) 1, () dy dz.

|z —y|™

I {tit1<|z—y|<s} s€J;,ieEN

Thus, it is sufficient to show that the conclusion
1 1
71 107 @) (9 @) = Crlda = 1 [ 4 (7%) (1) @) = Cull o S bl 1
T T
holds for every interval I C R. Then

%MWMWMﬂ@—@Mm
1 b ,
S [ @) (1) @)+ () () ) = |

. b O (T (e — Gl i
SII/HU(T)(fl)(x)HdeJr II/HU(T)(fQ)( )= Ci| pd
= F1+F2.

First, we choose 1 < p; < min{%,p} and ¢; with q% = p% — /8 and to estimate F, and use (9) in [3]

(by taking w = 1 there), also following [6], we obtain

1 !/
Fy = m/o (T°f1) (z) dx

1

1 ) T
gm /|c9’ (T°f1) ()" da | |I|'
I

1

P1

1 _L
A AT B
R

A

1
P1

1 _ 1
o Gl N WA TR I
iy

1 1_1 1 1 _ 1
_ b(m) o /|f($)|pdl' |4I|111 é|4]‘,}1 117|I| qll
Ao jarpps \J

S 0la, 11 agg -

Thus,

(2.1) ﬁ/waﬂmmmumswmwmﬁ
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Second, we have

_i b ) —
P = 'I'I/”u (T%) (f>) (z) - Ci |,

_i b x —i b z)az X
—m/ U(T) () (2) |I|I/U(T)(fz)()d K

< L [ ) ) () (5 2y e

IxI

Thus, following [6], we write

et (T7) (f2) (2) = U (T*) (f2) (2) d2|],
Rt G20 K (2,) fa (y) dy

{tit+1<]z—y|<s}

- Bunslbiz) ¢ (2, y) fo (y) dy

[z—y[™

{ti1<lz—y[<s} seJsieN|l g

Ry (b x,y Rya1 (b 2,y
< (BB i ) - Bt O ke ()
|z —yl |z =yl
{tit1<|z—y|<s} se€J;,ieNll g
R 1 (b,Z,y)

+ / (X{ti+1<\zfy|<s} (y) = X{tit1<|z—y|<s} (y)) WK (Z’ y) f2 (y) dy

R seJiieN|| g
=: G + Go.

For k=0,1,2,... let B, = {y: 24l < |y — 2| < 2T 41}, Dy = {y : |y — 2| < 2*.41}, and

be (2) = b (2) — % (b)), =

By Lemma 2 in [3], for any y € Ey, it is obvious that

Rm+1 <b7 xZ, y) = Rm+1 (bk7 z, y) .
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Note that for z,z € I, y € Eji, we have

Boa Gi2y) g oy Bntn Bi29) gy
|z =y |z vl
_ Bwn(biwy) o B (29) e
|z -y |z =l
|z —yl
1 1
Rm bk;;Z,:U ( m m>K Y

- L w) ((x —y" _(e- y>:> K (o.1)

lz—y|™  |z—y
n Rypy1 (brs 2,y)

(2.2) P

(K (z,y) = K (2,9)).

By Minkowski’s inequality,

{X{ti+1<|z—y\<s}}(QGJMENHE <1, and (2.2) we get

Gl /‘ 7rL+1 b X y K(.]j, )_ Rm—i—l (ba Zay)

|x—y| |Z_y|m K(Z7y)’ |f2 (y)| H{X{ti+1<|x7y\<s}}SEJ“ieNHEdy

/' erl b'T y K(x, )7Rm+1(b,Z,y)

K d
S LSk )12 ()

<Z/|R bk,:v|y) Ry (bk’zy)||K(xy)||f()\dy

= yl™
1 1
+;%/'R (b =,y |'|xy|m - |Zy|m‘lK(I,y)||f(y)|dy
m) ( )" -y .
+Z/ o ] [12= 2~ 20 1 el )l

/ Bt 20 ¢ (0,) = K Gl 1 )l
=: H1+H2+H3+H4-
For Hy, from mean value theorem, there exists o € I such that
(2:3) R (br; @, y) — R (i3 2,9) = (¥ = 2) R (b3 0, y) -
Then, for z,0 € I, y € By, u € I¥, since b™) € Ag (R) with m € N for 0 < 8 < 1, then we have
o ) = 0 0 (1)

(2.4) < o] @0 e -y
Ag

Dy,

~
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Hence, by |y — z| =~ |y — x| = |y — 0|, Lemma 2 in [3] and (2.4) we get

0 =

mo1 [ 1 T
Rin1 (ths0,9) S lo =y W/‘b,ﬁ )(u)’ dy
(2.5) 5 |.7J . y|m—1 Hb(m)H- (le)ﬁ.
Ap
Later, by (2.3) and (2.5)
R, (bi; z, — R,, (by; z, <|p—2z x—y m 1 b(m) 2kl
| Y S

Since, for z,z € I, y € (4[) S =z <2< 22—yl and |K (z,y)| S then

Tz—yl yl’

/'R bkvx y R (bk,Z,y)
=, |z —y[™

(m) k)P
b ABZ(? ) /<2k41) 1F ()] dy

k=0

LK (@) 1 ()] dy

A

2k7)”

=1
bt As 227 (2k.4l / |f (y)| dy

N

|z—y|<2k+1 41

S =

0o B —=
o) Zi(m) |2k.41)"

< 4 P g
~ Ag —02k ok 4] ‘Qk.ﬁlll%_% / |f(y)‘ Y
a k+1T
=1
S [ Mg D5
k= 0
< b(m) q .
S [ I g

Second, for Hs, from [4], we know that

w |-

S RSN
R sz) S o =" | o [ ) s

(2.6) < Hb(m)’ @)y
A[—}
and
1 1 -
lz —y |z =yl |z — y]
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Hence, by (2.6), (2.7) and the same estimate (for Hy) as above (here we omit the details)

Nt 1 1
k=05,
<o), e [t wla
As 1 0 2 (2F.41)
< b<m>H .
<[ 1ol
As for Hs, from [4], we know that
le—yl™ 2 —yl™ |~ -yl
and
(m) _ |p(m) _ (pm)
o ] =[pm o - (6,
(2.9) < o] J2kr)”
~ Aﬁ

Hence, by (2.8), (2.9), ly — 2| = |y — |, | K (z,y)| S |ziy| and Holder’s inequality we get

oo 1 m (Z‘ _ y)'rn (Z _ y)nb
He = 7‘1)( ) ‘ _ K (z, d
N Z/m! P W) iz —y” ‘Z_y|m| (2, 9)|1f ()| dy
k=0,
> xr—z
<SPy — (6) | =2 ay
Bi| |z —y|
k=05,
=1 1
<N (m) 7(<m>>
Sogwn | pmw- (™), el
k=0 |z—y|<2k.41
1 1
Solon [ vwre| s b @) - (o) [y
~ Lk | 2k.4] ok 4] B
k=0 |z—y|<2k.41 |z—y|<2k.4l
1
oo B P
1 [2*1|
< b(m) _ Py
k=0 k417
=1
< b(m) . L
< |[p(m) ..
o L Y
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Finally, we consider the term Hy. From [4], we know that
B (k3 29| < 1R (b1 2,9)] + 5 [ () 2 = )"

<o, 071 =l o - ()

m
e |z —yl

(2.10) < o], 12
Ag
and
5
xr—z
(2.11) K (z,y) — K (2,9)| < Z|_y|1|+5

Thus, by (2.10), (2.11) and the same estimates (for H; and Hs) as above (here we omit the details)

[ B bk,zy o —2°
<Z/ reriaed AL

=0, |
‘b(m)( )(Z—y)m’ |x |
+2/ L “L1f ()l dy
= |z -yl B
%
1
2k 1| ’
< b(m) 7‘ / P4
< ABZ2’“5 2] If ()P dy
k=0 k+1p
=1
< ||p(m) A N
SN Moy 3 55
< || .
S i, 11 az

By the estimates of Hy, Hy, H3 and H, above, we know that

(m)” .
is (FAIDYY:

Now we turn to estimate GGo. Notice that the integral

R (b 2,y
/ (X{ti+1<‘$—y|<5} (y) = X{tiy1<|z—y|<s} (y)) MK (Zv y) f2 (y) dy

R

|z —y|™

will be non-zero if either (x(t,,,<s—y|<s} (U ) =1, X{t;s1<|z—y|<s} (y) = 0) or

(X{ti+1<‘z,y|<s} (y) =0, X{t;r1<|s—y|<s} () =1). That means this integral will only be non-zero in
the following cases:

(1) tig1 <]z —y| <sand |z —y| < tit1;

(2) tiy1 < |z —y| <sand |z —y| > s;

(3) tigr < |z —y| <sand [z —y| < tiy;

4 tiy1<|z—yl<sand |z —y| >s.

In (1), we know that

tipn <lz—yl<|z -2+ [z -yl <l+tina
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as |x — z| < I. Similarly, in case (3), we have
tiv1 <|z—y| <+t
as | — z| <. In (2), we have
s<lzg—y|<|z—z|+|lzr—y|l<l+s
and in (4), we have
s<l|lz—y|<l+s.

By (1.2) and using Hoélder’s inequality, it follows that

|z —y|™

Rerl (

/ (X{ti+1<‘$7y|<5} (y) = X{tip1<|z—y|<s} (y))
R

Rm+1 (b7 2

Issue 1 (Special Issue), Vol. 11 (2021)

W) (z,y) f2 (y) dy

S

X{ti+1<|m—y\<s} (y) X{ti+1<|m—y\<l+t,,+1} (y) ‘ |Z _

—

Ryt (b 2,y

m
Y| |z —y|

+

X{tip1<lo—yl<s} (Y) X{s<|z—yl<i+s} (¥) ‘ EE

Rm+1 (b’ 2, y)

)| |f2 (y)ldy
|z =y

20,

+ [ Xftipr<lz—yl<st (W) X{tisr <lz—yl<i+tiii} (V) ‘

|z —y|™

Rerl (b7 Z, y)

|z =yl
| f2 (y)|dy

+ ™
|z =y

B B P ®

X{tit1<|z—y|<s} (y) X{s<|z—y|<l+s} (y) ‘

Ry (b2, y)

"W,
|z —y|™

|z —yl?

S /X{ti+1<|xfy\<s} (y> ‘
R

Rm+1 (b7 Z,y)
|z —y|™

W,

|z —yl?

+ /X{ti+1<\zfy|<s} (v) ’
R

Now for G, we decompose it into two parts as follows:

G / (X{tisr<lo—yl<st U) = X{tirr<lz—yl<s} (1))

R

|z —y|™

Rm+1 (b7 Zvy)
|z —yl™

AL

|z —yl?

A

/X{ti+1<|w—y\<s} (y) ‘

R

Plf2 (y)

Rerl (ba Z, y)
z—y”

|z —y|™

/X{ti+1<|zfy|<s} (y) ‘
R

ZJ1+J2.
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Rm+1 (b7 2, y)

se€J;,ieN

|z — vl

-

P

(20)

1
Y

(20)

K (2,y) fa (y) dy

seJ;,ieN E

seJ;,ieN
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First, by (2.10), it follows that

Bt (052,9)[" 112 )P

1
7

Jy = /X{ti+1<‘1*y|<8} (y) ’ B y|m 2 — y‘P Y (2l>
seJ;,ieNll g
243
R7n+1 (b7 Zvy) b |f2 (y)|p 2
< su . s—yl<s — d 20) 7’
~ ZSG? HZ\X{t1+1<| yl< }(y) ’ |Z—y‘ 3 ‘Z_y|p Yy ( )

1
Roir G 2,0) P 1o @), |7
S Z/X{ti+1<|m—y\<s} (y) ‘ ‘Z — y|m |Z — y|p dy (QZ)p
iENR
1
o Gz ) P L@ s
< +1 y 2 d 27)»”
< y
{/‘ |z —y[™ |z —yl? (@7
1
~ m P
z— z—
= |12l 2 =l

o p
As | 220 |z =y
— B,
1
S P [1rwray e
S s By
0o 1
m o Bp—pH1— " on
<™ {ZP’VI - Hfll } (20)»
As ko
SN gy § D280
As k=0
< b(m) ..
< [ 1ol

Similarly, J> has the same estimate above. Here we omit the details, thus the inequality

=

LGP
o=y e

seJ;,ieNll g

Ryt (b;2,y)
|z —y|™

1
'Y

J2 = I /X{ti+1<‘27y|<8} (y) ’
R

<o)
<[ 1

is valid.
Putting estimates J; and J together, we get the desired conclusion

< (m)
Ga % o] 171
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Similarly, V, (Tb) has the same estimate as above (here we omit the details), thus the inequality

Vo (T°F) @)l paso S 1814, 1 1asg
is valid.
Therefore, Theorem 2.1 is completely proved. Il

3. CONCLUSION

The oscillation and variation for martingales and some families of operators have been studied in
many recent papers on probability, ergodic theory, and harmonic analysis. Thus, in this paper, we
have established several criterions of boundedness for the oscillation and variation operators related to
multilinear singular integrals with Lipschitz functions. The Morrey spaces play important roles both
in harmonic analysis and partial differential equation. In particular, the mapping properties of the
Calderén-Zygmund singular integral with a Lipschitz function in R had been obtained for Morrey spaces.
Therefore, it motivates us to investigate the extension of these inequalities to the oscillation and variation
operators on Morrey spaces. Indeed, the results obtained in this paper are extensions of some known
results. So this research is meaningful.
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1. INTRODUCTION

Let D be the unit disk in the complex plane C and H(ID) be the class of analytic functions in
D. The Bloch space B is the class of all f € H(ID) for which

Ifllz:=1£ (0] + zlélg(l — 1zI)If"(2)] < 0.
The little Bloch space B,, consists of all f € H(ID) satisfying
Jim (1~ 121 @) =0,
The Hardy space HP (D) (0 < p < o) is the sets of f € H(ID) with
If 5 = [ f(re®)[Pdo < oo,

1
a 02251 2m
Assume that K:[0,0) — [0,) is a continuous and nondecreasing weighted function. Let
weighted Dirichlet type space Dy ,, be the spaces of function f € H(ID) satisfying

2
1By, = IFOF + [, 1f' PS8 da () < o
where dA,(z) = (1 —|z|*)*dA(z) and @ = 0. When K(t) =tPand a =0, 0 <p < 1, it
gives classic Dirichlet space D,. Especially, when K(t) = tP and p = a, it gives the Hardy
space H?; when K(t) = tP and @« = p + 1, we have the Bergman spaces A%. We refer the
paper [11] for studying small Hankel operator acting on D,,, and the paper [13] and [14] for
studying multipliers on D, spaces. When a = 0, under Dirichlet conditions on weighted
function K, Kerman and Sawyer [5] have characterized Carleson measures and multipliers of
Dy  In terms of a maximal operator. Aleman has given some basic properties of Dy , in [1].
For more results on Dy , spaces, we refer to [2], [7] and [8].
Let I be an arc of dD and |I| be the normalized Lebesgue arc length of I. The Carleson square
based on I, denoted by S(I), is defined by
SD:={z=reed:1-|l|<r<1e?el}

Let u be a positive Borel measure on D. For 0 < s < oo, u is called an s —Carleson measure
if
#(sm)

<
[1®

IcoD

u(s) < clifs

That is,

for all interval I c 9.
If u is an s —Carleson measure, we set
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luall: = sup X502
IcoD 111

For a nonnegative Borel measure u on the unit disk D, we define 7;°(u) as the space of all
1 —measurable functions f on D satisfying
2 - 1 2

When K(t) =tP and 0 <p <1, it gives the well known tent spaces, which was first
introduced by Xiao in [15]. For more information related to tent space, we refer to [[6], [9],
[101].
Given f, g € H(ID). The Volterra integral operator T, and its companion operator I, are
defined by

Tof (2):= [ g’ W)f (w)dw
and

Iof @):= [ gw)f'(w)aw,
z € D, respectively. Both operators have been studied extensively (see [12]).
Recently, the authors [16] have studied the boundedness and essential norm of Volterra type
integral operators T, and I, from Dirichlet type spaces Dy , to Morrey type spaces Hg , such
that g € B. As a continuation to their work, we consider the Carleson embedding from Dy ,
to 7x°(u). We prove that I: Dy , — Ti°(u) if and only if p is a (e + 1) —Carleson measure,

when 0 < a < 3.
Throughout the paper, we assume that the weighted function K satisfies:

1
) fy 22 g5 < o0 )
an
o Px(s)
h [ HEEds < o, ?)
whnere

pr(s) = sup K(st)/K(t),0 < s < oo.
0<t<1

Note that K satisfies (2), by [[4], Lemma_2._2], there exists a small ¢ > 0 such that
px) < Ctr 5t > 1. (3)

Finally, in the rest of this paper, C expresses unspecified positive constant, possibly different
at each occurrence; the symbol f < g meansthat f < Cg. If f < g and g < f, then we write

f=g.
2. MAIN RESULTS

We are now ready to present and establish the main results of this paper.
Theorem 2.1. Suppose that K satisfies (1) and (2). Let 0 < a < 3 and u is a positive Borel
measure on D. Then the inclusion mapping i: Dy , — Tx° (1) is bounded < pisa (a +
1) —Carleson measure. That is,
#(sm)

|I|a+1

sup < 0

IcoD
Theorem 2.2. Suppose that K satisfies (1) and (2). Let 0 < a < 3 and u is a positive Borel

measure on ID. Then the inclusion mapping i: Dy , — Tx° (1) is compact < p is a vanishing

(a + 1) —Carleson measure. That is,
u(sm) _

|7|a+1 -

|1]-0
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2.1 The Proof of Theorem 2.1.

Proof.

Necessity:

Assume that i: Dy , — T° (1) is bounded. Let

fa(z): = BHEEGRED

(1-az) 2z
By Lemma 2 in [16], we get f, € Dy .. Fixed an arc I < dD. Let e*® be the center of I and
a=(1-1I]e®. Then

11—azl~1—lal = |1l 1,@)? ~ L 2 e s@).

|1|1+a v Z
Therefore,
pism) 1 2
o~ i Js Va@Pdu() < oo,
That is, uis a (o + 1) —Carleson measure.
Sufficiency:

Assume that u is a (a + 1) —Carleson measure. Fixed f € Dy ,. Let I be any arc on 0D and

a = (1—|I]e', where e is the midpoint of I. From Lemma 1 in [16],
Ifllpg KD
If (@] =< “1717
Since
1
K(I)

fs 1f @ 12du(z)

< mfs(,) If (@)|2du(z) + mfsa) If (2) — F()|2du(z)

=F+G.
It is obvious that

u(s)
PSS es <,

By Lemma 3 in [16], we have A%_; c L?(du). Note that

IfI%z_ = [p If' @I =121 dA@) < 113,
Thus, Dg , € AZ_,. Based on these facts, we turn to estimate G. The estimate will be divided
into two cases.

Casel:1<a<3.
Let z = ¢, (w). Note that

lpaW) (1 = [w|?) =1 — |p,(W)|2
Then, we obtain

G~ 1(<1(I|—a|5|)22 foo [ Cdu()
< (e [ v
1(<1(1|a|f|)2)f L@ (1 |p2)e1dA(2)
< G | Vo s
,EL"{L@)I I(F o W) = (F o 9O (L = [oaW)2)E1dAW)
ff(l'TLRz)f 1(F o ) WL = W12 — lpa W) dAwW)
= ,({1(1'_1')2) Lo 1 (@a)[ 106 W) 12 = w22 (1 ~ | W)I2)*1dA(w)
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= 8B 1| ()P (1 = g (W) [2)e+ 1 dA(w)

K(1- Ialz)

= Lo p 1 - iyt S8 gy )
_ (1-121%)*"" k(1-121?) (1- |a|2)
= I "D 5 21?) K(-laP) 1-a
< f, If (@[ ) (iiaapy (1o lam dA@)

K(I—IZIZ) K(1-lal®)/ |1-az

dA(z)

, 1-|z?)" " (j1-az])'~¢ (1-lal
= If (Z)|2(K(1—|z)|2) (1-lal?)™- C(|1 ) dA()
< fl3y .
where the last second and fourth inequalities are deduced by (3) and Lemma 2.1 in [3],
respectively.
Case2: 0 <a<1.
Checking the proof of above, we have

< WA 1k o )W) — (F © 9 (O — lgu W)™ 1dAW)

K(l lal2) ' D
= %ﬁm I(f © )W) = (f © 9 ) (0)12(1 — [w|?)*1dA(w)
= %ﬁm 1(f o 9) W)I>(1 — [w|>)**1dA(w)

< B 1 )P = lpaw)I)2(1 - A )

K(1-|al?)
Cel) | 1 @I - 1212021~ L @I 2 g )

K(1-lal?)

=[ If'(z )|2(1 1212)“ k(1-122) (1-1af2)*H*?
) K(1-1z|2) K(1-|al?) |1-az|2(+®)

< 1fll3.-
Combining the estimates F and G, we conclude that i: Dy , — Ti° (@) is bounded. o

dA(w)

2.2 The Proof of Theorem 2.2.

Proof.

Necessity:

Assume that i: Dy , — T°(u) is compact. Given a sequence of arcs {I,,} with 7lli_r>r010|1n| = 0.

Denote the center of I, by e~ and a,, = (1 — |I,,|)en. Let

fu(2): = (olenlENKCdanl®)

(1-anpz) 2
It is clear that {f,} is bounded in Dy, and {f,,} converges to zero uniformly on any compact
subset of D. Then lim ”fn”TKw(u) = 0. Since
n—-oo

K(lIn,
@I ~ [tz € S,

we obtain

M(S(In)) 1 2
e = k(LD fS(l ) |fn(@)]°du(z) = “fn”g"“’( y ™ 0,(n > ).

By the arbitrariness of {I,,}, we deduce that u is a vanishing (a« + 1) —Carleson measure.
Sufficiency:

Assume that u is a vanishing (a + 1) —Carleson measure, then p is also a (a + 1) —Carleson
measure and r“l?—”” — Urllg+1 = 0 by Lemma 2.2 in [6]. It follows from the boundedness
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above, i: Dk , = Ti°(u) is bounded. Let {f,,} be a bounded sequence in Dy , such that {f;}
converges to zero uniformly on each compact subset of D. We have

mfsm |fo(2)|2du(2)

_1 1
= k(1)) fs(l) |fn(z)|2dﬂr(z) + 0D fS(I) |fn(Z)|2d(/,L — 1) (2)
1
< i Jsy Ve @Pdir (@ + i = trllasallfallB,

1 2 _
=< MIS(I) |fn(z)| d”r(z) + ||li - ,ur”a+1 - O(T -»17,n- oo)

Thus, we get lim ”fn||7"1?°(u) = 0. That is, i: D , — Ti° (@) is compact. o
n—-oo
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