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1. PRELIMINARIES

The g-analysis is a generalization of the ordinary analysis that does not employ limit notation.
Jackson described the use and application of the g-calculus in [24, 25]. The extension of the
g-calculus to the (p,q)-calculus was examined by the researchers. Around the same time, in
1991, Arik [5], Brod [10], Chakrabarti [11], Wach [45], and others conducted the first analysis of
the (p, ¢)-number. The (p, ¢)-number was introduced in [5] to investigate Fibonacci oscillators.
The (p, ¢)-number investigation in [10] allows for the construction of a (p, ¢)-Harmonic oscillator.
The (p,q)-number was utilized in [11] to unify various g-oscillator algebra types, and in [45],
the (p,q)-numbers are analyzed to determine the (p,q)-Stirling numbers. Since 1991, many
scholars have investigated the (p,q)-calculus in a range of scientific domains, building on the
publications previously mentioned. The findings in [26] gave a syntax for embedding g-series
into a (p, ¢)-series. Additionally, they found a few results that matched (p, ¢)-extensions of the
known g-identities. The (p,q)-series is a corresponding extension of the g-identities (see, for
example, [4]). We explain some of the fundamental ideas in (p, ¢)-calculus. The (p, ¢)-bracket
number is given by [jlpq =P + P 2q+ P3P + .+ pgd 2+ ¢ = % (p # q), which is
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an extension of g-number (see [25]), that is [j], = 11%%; (¢ #1). If p=1, then [j], ,=[j], and

note that [j], 4 is symmetric.
Let C be the set of complex numbers, and the open unit disk be represented by ©® = {¢ € C:

I(] < 1}. Let R:= (—00,00) and N := {1,2,3,--- }.
Definition 1.1. [37] Let 1 > p > q > 0 and consider a function ¢ defined on C. Then, the
definition of (p, q)-derivative of p is
p(p¢) — »(46)
Dpqp(Q) = —F——F—=
pa?(c) (r—q)¢
where ¢ # 0, and D, 4p(0) = ¢'(0), if ¢'(0) exists.

We note that D, (7 = [j]p.q¢? 71, DpyIn(¢) = l(r;(f’é;’g. Ifp = 1 and ¢ — 17, then i).
[lp.q = 7, and ii). D, ,p(C) — ¢'(¢). According to [33], the exponential functions are used to
define the (p, q)-analogues of trigonometric functions. If x and § are constants, it is clear that
Dy q(5p1(C) + 092(C)) = £Dpg1(C) + 6 Dpgp2(C)-

Assume that A denotes the set of functions ® that have the following form and are analytic

n?.

(1) 5O =+ A, (eD)

and if ® € A is of the form (1.1), then ”

(12 Dyg(() =1+ f;mp,qdjcﬂ‘-l, (Ceo).

We define S as the subset of A consisting of functions that are univalent in ®; that is,
S={® e A: P isunivalent in D}.

The Koebe theorem ([15]) states that for any function ® in S, the image of (D) contains the
disk with radius 1/4 and center at 0. Thus, ®(D) retains an inverse @1 : ®(D) — D satisfying
O HP() =¢ €D and (P (w)) = @, (10(®) > |w|; 70(®) > 1/4),w € D. In fact, &~!
has the expression

(1.3) N w) = w — dyw?® 4 (2d3 — d3)w® — (5d5 — 5dads + dy)w” + - = U(w).

If® € Sand &' €S, then & € A is bi-univalent in ©. The set of all bi-univalent functions
in ® is represented by the symbol ¢; that is,

o={®cA:® and ® ' areboth univalent in D}.

Examples of functions belonging to the class ¢ include %log (%) , —log(1—¢) and fcc

However, ¢ — %, ﬁ, and the Koebe function do not belong to ¢ family, even though they
are in S§. For a brief overview and to discover the fascinating characteristics of the family o,
see [8, 9, 27, 36] and the citation provided in these papers. Comparable to the established
subclasses of the S family, Srivastava et al. [34] have introduced a number of subclasses of the
family o. In reality, many authors have since investigated a variety of alternative subclasses
of o as follow-ups to the aforementioned subfamilies (see, for example, [14, 17, 18, 35]). The
majority of these publications focus on the analysis of the Fekete-Szeg6 problem of functions in

distinct o subclasses.
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Researches studied several subclasses of the class o using the (p,q)-calculus. The (p,q)-
derivative operator and the subordination principle, for instance, were used in [38] to introduce
the new generalized classes of (p,q)-convex and (p, q)-starlike functions. The (p,q)-Bernardi
integral operator for analytic functions is defined and the Fekete-Szego inequalities are also
studied. In ([1, 2, 12, 29, 43, 44]), new subclasses of the class o related to the (p, ¢)-differential
operator have also been presented and examined.

The current investigation in GFT is largely motivated by the rich structural and applied
properties of special polynomials. Examples include Bernoulli, Fibonacci, Gegenbauer, Ho-
radam, and Lucas-Lehmer polynomials, all of which have demonstrated utility in diverse areas
such as combinatorics, number theory, numerical analysis, physics, and computer science. Ow-
ing to their versatility, several generalizations have been proposed in the literature. Currently,
researchers are focusing on a specific class of functions within the ¢ family that are subordi-
nate to well-known polynomials (see [3, 19, 39, 41, 42]), with the Lucas-balancing polynomials
emerging as a particularly compelling subject of study.

The balancing numbers, denoted by C;,j > 0, satisfy the recurrence relation 6C; — Cj_1 =

Cjt1, (j > 1), with Cop = 1, and C; = 1) (see [6]). The sequence B; = 1/8C]2 +1,7 > 1is called
a Lucas-balancing numbers. It satisfies the recurrence relation

Bj—i-l = GBj — B]‘_h (] >1,By=1,B1 = 3).

These numbers have been thoroughly examined in the articles [13, 20, 30, 31, 32]. We now
discuss the natural extensions of balancing numbers and Lucas-balancing numbers. The recursive
definition of balancing polynomials, represented by C;(s),j > 0, is

65¢Cj1(5) = Cj-2(3) =Cj(5), (J = 2,Co(%) =0,C1() = 1),

where 3 € C. Tt is evident that Ca(3¢) = 62, C3(3¢) = 363¢> — 1, and Cy(5) = 2165 — 125, and
so forth. Lucas-balancing polynomials, denoted by B;(s), > € C, are recursively defined as

(1.4) Bj(s) = 6Bj_1(x) — Bj_2(5), (j € N\{1},Bo(2) =1, Bi(s) = 3x).

Ba(3¢) = 1852 — 1,B3(s) = 1083 — 9s¢,--- are evident from (1.4). To learn more about this
field, researchers can visit [7, 28, 32]. According to [21], the generating function (GF) of the
Lucas-balancing polynomials is represented by the following B( s, ().

o s ‘ ; 1—=3x(¢
(1.5) B(x,() = ]2:%6](%)@ = e

where s € (—%,1) and ( € D.

Remark 1.2. The generating function under consideration is analytic in ¢ inside the unit disk
D if and only if » € (—%,%) This analyticity condition is crucial for the convergence and
validity of the associated expansions. However, in [22, 23], the range of s is incorrectly stated as

11

(—%, 1], which does not ensure analyticity within ©. The correct range (—3, 5) follows directly

from the requirement that the singularities of the generating function lie outside the unit disk.
For functions 6,, 6, analytic in the unit disk ®, we say that 6, is subordinate to 6,, if
there is a Schwarz function £(¢) that is regular in ® with x(0) = 0,and |(¢)| < 1,such that
0.(¢) = 0,(k(C)),¢ € ®. This is indicated as 6, < 6, or 0,(¢) < 6,(¢). In particular, if 6, € S,
then
0.(¢) < 0.(¢) & 6.(0) =6,(0) and 0.(D) C 0,(D).
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Fekete and Szego [16] discovered an inequality for the coefficients of univalent analytic func-
tions, which is known as the Fekete-Szeg6 inequality in mathematics. It states that if a function
® of the form (1.1) € S, p € C, and 0 < k < 1, then |d3 — pd3| < 1+ 2exp(—2u/(1 — p)),
0 < p < 1. Finding comparable estimates for different subclasses of & is the Fekete-Szego
problem.

Motivated by the articles [22, 40], we present two new subfamilies A5° (v, 3¢) and D5° (v, ) of
o subordinate to B;(»),j > 0 as in (1.4) with the GF (1.5). B(3,() as in (1.5), @~ }(w) = ¥(w)
an inverse as in (1.3), ¢ € © and w € D are taken for granted throughout this work, unless
specified.

Definition 1.3. A function ® in o that has the series (1.1) is said to be in the set Ql;’fsp,q(u, x),
if

1] 1= v+ v[Dpqe(CDpqe®(0))]" 1 — v+ v[Dpq(CDp,a®(0))]" i
z{ Dy ®(() ( Dyq®(C) ) }<W%O,

and

1 ] 1= v+4v[Dpg(@Dpg¥(w))]" 1 — v+ v[Dpg(@Dp,g¥(w))]" 5
2{ Dy ¥ (=) + Dy ¥ (=) >}<m”m’

wherev>1,0<d <1, 7>1, and » € (— ’%)

The family Q[g;f,,q(l/, ) contains numerous subfamilies of o for particular choices of p, ¢, v,
and 7, as illustrated below:

1. Let 7= 1. Then, forv > 1,0<§ <1, and » € (—%, %), the class Ql(l,jqu(u, ) consists
of all functions ® € o satisfying

1 Lw+wmwa%@@m+<Lw+wawa%@@M)%
Dy ®(C) Dy ()

Lol

and

1 [ 1= v+ Dy (@D ¥(@))] | (1= v+v[Dpy(wDyg¥(w))]
2{ Dp,qll'(w) * < Dp,q‘l’(w) ) } A B(% W).

2. Suppose v = 1. Then, for0 < <1,7>1,and » € (—%, %), the class th;g,qu, ») consists
of all elements ® € o satisfying

1 [Dpg(CDp®(O)" | ( [Dpg(CDpe®(O)]7\ 7
{ D (P )}<BW‘”

2

and

1

1 [Dp,q(wDp,q¥(@))]"” T <[Dp7q(WDp,q\I’(w))]T> 0 < B(5, ).
2 Dyp,q¥ (@) Dyp,q¥ (@)

3. If p=1landg— 1". Then, for0 < d <1, 7> 1, v>1, and » € (—%,%), the class

7,0

op=1.q _1- (v, %) consists of all functions ® € o satisfying

Lf1—v vl | (1=vrlC@ QTN g,
2{ O G e >}<M’Q




ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE Issue x, Vol. xx (20xx)

and

=

1w+ @V @)) , (1-v+v](@¥(@)] @
2 { V() * < V() ) } < Bla=)

4. Let 6 = 1. Then, for 7 > 1, v > 1, and » € (—%, %), the class Ql;’,zlw(y, ) consists of
elements ® € o satisfying

1—v+v[Dpy, Cqu@
D

p.a®(C
and
1—-v+ V[qu(pr ¥ (w
D, ¥ (w
Definition 1.4. A function ® in o that has the series (1.1) is said to be in the set m;;;i,q(% x),
if
1
1} (Dpg®(O)" ( C(Dp,g®(C))" )5
= ’ + ’ < B(s,(),
2 { T=)¢+290) T\ T=2)¢ 120 b4 ¢)
and

1 w(Dp,q¥(w@)) @ (Dp gV (w))" 5 o
2 {(1_’7)?54"7‘1’( ) * ((1—7)w+'y\11(w)> } < B(»,w),

where 0 <y <1,0<6<1,7>1, and € (—3,3).

For particular selections of v and 7, the family mg’,épg(% ») includes many many subfamilies
of o, as shown below:

1. Let v = 0. Then, for 7 >1,0< 6 <1, and 5 € (—1,1), the class U7, 4(0, 5¢) consists

of elements ® € o satisfying

1 T .

5 ((Dpa®(Q) + (D)7 ) < B(.0),

and
% ((Dpﬁq‘p(w)y + Dp,q‘lj(wﬁ) < B(, ).

2. Let y=1. Then, for 7 >1,0< 0 <1, and s € (—%, %), the class m;:‘;ﬂ(l,%) consists
of elements ® € ¢ satisfying

1 {c(Dp,@(o)T N (<<Dp,q‘1><<>>7>§} < B(,¢)

2 2(¢) ®(¢)
and )
1) w(Dpq¥(w))” @(Dp,g¥(@))"\?
- . : B .
> { V(@) V() < B )
3. Letp=1land g — 17. Then, for7>1,0<6d<1,0<~v<1,and » € (—%,%),theclass
7,0

) consists of functions ® € o satisfying

L @) () \*
2 { - +72(0) ((1 —9)¢+ 7¢(<)> } <B(0),

o,p=1,q—1~ (7’
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and

1 @ (V(w))” (W (=) \°
2 { (1—7y)w+v¥(w) + ((1 — V@ —|—7\I/(w)> } < B(s, w).

4.Let § = 1. Then, for 0 <~y <1, 7> 1, and » € (—3, 3), the class U7 h.q(7, ) consists
of elements ® € o satisfying
((Dpg®(Q)" @(Dpqg¥(@))"
(1 =7)C+7®(0) (1 =)@ +7¥(w)

In Section 2, we find estimations for |dg|, |d3|, and the Fekete-Szegt functional |ds—ud3|, u € R,

< B(s,¢), and < B(s, w).

for functions in the class Ql;’f;p,q(y, ). The limits for |da|, |ds|, and the Fekete-Szeg6 functional

|ds —pd3|, 1 € R, are obtained in Section 3 for functions in the class ngigq(v, ). We also present
a number of outcomes of our results as special cases and draw attention to relevant connections
with earlier findings.

2. RESULTS OF THE CLASS A5 (v, %)

We first compute the coefficient estimates for members of the class ngj%q(y, 7).

Theorem 2.1. Let 7>1,v>1,0<6<1, and » € (—3,3). If ® € %gjdp,q(y, ), then
69| 5¢|+/ 3] 5|
(2.1) |da| < s =5 5 )
VIRSG+ 1)U+ V) + (1 —6)W2)932 — (6 + 1)2W2(1852 — 1)
66 10862 5|3
(22 |daf < 2 il ST
G+DU| |26 +1)(U+V)+ (1 —=0)W?2)9s2 — (§ + 1)2W2(18x2 — 1)|
and for p € R
1L 1—pl<J
(2.3) \ds — pd3| < { CHDIUP 2103 1 I-ul <
10862 5| |1—p| . ‘1_ ’>J
200+ 1) (U+V)+(1—0)2W2)952—(0+1)2W2(18:2—1) Kl = s
where
(2.4) S (26(6 + 1)U+ V) + (1 —=6)W?2)932 — (6 +1)2W2(185* — 1)
‘ N 185(1 + §)U 52 ’
(2.5) U = [3lpq(v7[3lpq — 1),
vr(r —1)[2)
(2.6) V=[2, (1 —vT[2]pg + qu :
and
(2.7) W = [2]pq(vr[2lpq — 1)

Proof. Let ® € ALY 4(v, »). Then, by Definition 1.3, it follows that

11— v+ Dy (CDp®O)" | (1= v+ v[Dyg(CDpe®())]7\?
28 2{ Dyy®(0) o Dy y®(0) )}

= B(>s,m(()),
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and
1| 1—-v+v|Dyg(wD, VY (w))|” 1—-v+v|D, (wD, Y (w))|" g
29) L { [D;’:Z& e @), ( [D::pr D (@))] ) } B (),
where
(2.10) m(¢) = m¢ +maC® +mzC® + -+, and n(w) = nyw + now? 4 nzw’ + - - -,
are analytic in ® satisfying [m({)| < 1, [n(w)| < 1, and m(0) = n(0) = 0. We known that
(2.11) |m;| <1, and |n;| <1, (i € N).
Substituting B(s¢, () from (1.5) into (2.8) and (2.9), and using (2.10), we obtain:
(2.12) B(s,m(()) = 1+ Bi(s)miC + [Bi(se)mz + Ba(se)mi] ¢ + - - -,
and
(2.13) B(s¢,n(w)) = 1 + By (3e)ny@ + [B1(30)na + Ba(s)nf]ww? + - -

It follows from (2.8) and (2.9) that
L { Lo DO (1=t DD O %}
2

Dp,g®(C) Dy4®(¢)
146 1446 9 —0. 99 2

(2.14) 1+< % )Wd2C+ [%(Udg—i-VdQ) 132 w d}(
and 1

1 J1—-v+v[Dpy(wDpg¥(w@))]" n <1 v+ I/[ng(pr,q\I/(w))]T) A

2 Dyp,q¥(w) Dyp,q¥(w)

1+0 1+0 -9

(2.15) 1—( ;5 )Wde [ ;} (U(2d3 — d3) + Vd3) + 5 W%z?]

where U, V and W are as mentioned in (2.5), (2.6) and (2.7), respectively.
Comparing (2.12) and (2.14), we have

1

(2.16) M dz = 81(%)1111,

20
o+1 1-9

Comparing (2.13) and (2.15), we have

(2.18) _@FDW dy = Bi(3)n1,
20

and

o+1 1-9

(2.19) (25> (U(Qd% — d3) + Vd%) + ( 152 ) W2d2 Bl( )n2 + BQ( )nl,

From (2.16) and (2.18), we easily obtain

(2.20) m; = —nyq,

7
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and also
6+ 1)2W?
(2.21) O I 8 = (md 4 03) (B ()"
The bound on |dz| is obtained by adding (2.17) and (2.19):
d+1 1-0
(2.22) [(5) U+V)+ ( 55 ) Wz] d3 = By (5)(mg + ng) + Ba(s¢)(m? + n?).

The value of m? 4+ n? from (2.21) is substituted in (2.22), yielding
(2.23) 2 = 20°5)(5¢) (mz + 12) .
(266 + 1)U+ V) + (1 —W2)B2(5) — (0 + 1)2W2By(5)
Applying (2.11) for the coefficients ms and ngy yields (2.1).
We deduct (2.19) from (2.17) to get the bound |d3|:
Bi(3¢)(mg — ng)
(55U

(2.24) ds = d3 +

This results in the inequality that follows:
1By (52)llma — o

(%54) U]
Applying (2.11) for my and ng, we obtain (2.2) from (2.1) and (2.25).

Finally, we compute the bound on |d3 — ud3| for u € R, using the values of d3 and ds from
(2.23) and (2.24), respectively. Consequently, we have

(2.25) |ds| < |daf* +

= ) = 181 (200 ) 4 5 ) e (20 = 55 ) |
where
e 2521 — p)Bi() |
)T 20+ DU+ V) + (1— 0)W2)B2(5¢) — (3 + 1)2W2Bs(52)
Clearly
ds — pd3] < {%gfbﬂ?' 0= 18(p, )| ﬁéW
2B ()| 180 5)| > e

which leads us to the conclusion (2.3), with J asin (2.4). This concludes Theorem 2.1’s proof.
Taking 7 =1 and v = 1 in the above theorem, respectively, yields the following results.

Corollary 2.2. LetT = 1. Then for ® € Qltl,’,épg(l/, ), the upper bounds of |da|, |d3| and |d3—pud3]|,
€ R, are given by (2.1), (2.2) and (2.3), respectively, with U = Uy = [3]pq(¥[3]pq — 1), V =
Vi =122 ,(1=v2lpg), and W = Wy = [2),4(v[2]pq —1). For J in (24), U, V, and W are to
be replaceded by Uy, Vi, and W1, respectively.

Corollary 2.3. Letv = 1. Then for ® € Q[;’g,q(l, ), the upper bounds of |da|, |d3| and |d3—pd3]|,
p € R, are given by (2.1), (2.2) and (2.3), respectively, with U = Uy = [3]p4(7[3]pq — 1), V =

Vo = [2]2 (1 (2] + T 2)2 ) and W =Wy = [20pq(r[2lpg — 1). For J in (2.4), U, V,

2] pa )’
and W are to be replaced by Us, Vo, and Wa, respectively.

With p=1 and ¢ — 17, we obtain from Theorem 2.1:

8



ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE Issue x, Vol. xx (20xx)

Corollary 2.4. Letv>1,0<5<1,7>1, and » € (—%, 3). If® e QlT ), then

o,p=1,g—1~ ( Vs
|da| <

30| /6]5<]
VIEG+ 1) (82 —Tvr + 1)+ 2(1 — 6)(2v7 — 1)2)952 — 2(5 + 1)2(2v7 — 1)2(1852 — 1)|
20| 7|
(0+1)(Bvr —1)
5462 |53
|(6(6+1)(8vr2 —TvT + 1) +2(1 — §)(2vT — 1)2)952 — 2(6 + 1)2(2v7 — 1)2(1852 — 1)|’
and for p € R

|d3| <

26|

BrDBor—1)° ‘1 - M’ <
|ds — pd3] < {(5+1)(3 8 546°|5* |1—p| | > J
[(6(6+1)(8vr2—ToT+1)+2(1—0) (207 —1)2)952 —2(6+1)2 (207—1)2 (1852 —1) * 1= pl = J1,
where
; ' (65 +1)(8vr? = Tvr + 1) +2(1 — 6)(2v7 — 1)2)9322 — 2(6 + 1)?(2v7 — 1)2(185% — 1)
1= .

275(0 4+ 1)(3vr — 1) 32

To better understand the implications of the corollary, we now examine several special cases.

Case 2.1. In the case § = 1, the class QIT; Lgs1- (v, ») denotes the set of functions ® € o
satisfying
v[(C2' ()] + (1 —v) v[(@V'(@))]" + (1 —v)
B d B
(I)/(C) (%7 C)a an \I"(w) < (%, w),
where v > 1, 7 > 1, and » € (-1, 3).
Case 2.2. In the special case v = 1 in Example 2.1, the class QlT p=lgsl- (1, ») denotes the set
of functions ® € o satisfying
(¢ [(@¥'(@))']"
= < B(sx,(), and < B(s,w),
() V(@)
11
where 7 > 1 and » € (—3, 3).

7,1
Corollary 2.5. Letv>1,7>1, and % € (—3,3). If ® € ™A, q_)l_(l/,
il < 3ol /312
= V]98vT2 = Tur + 1)52 — 4(2u7 — 1)2(1852 — 1)|

\%I 27| *

»), then

d
ds] < Sr—1 |9(8v72 — TvT + 1)32 — 4207 — 1)2(185%2 — 1)’
and for p € R
. 1—p| < J
’dg —,ud | < {31/7’17 27158 |1 ‘ ’1 M| ; J2
[9(8vT2—TrT+1)22—4(2v7—1)2(18%2—1)|’ ’ - M| = 72
where

9(8u7% — Tvr + 1)52 — 4(2vr — 1)%(1852 — 1)

J2 = ’ 273t — 1)52

9
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Corollary 2.6. Let € (—3,3) and 7> 1. If ® € Q(;’;:Lqﬂl_(l, x), then

3|x|\/ 3|
e il

VI =77 +872)952 — 427 — 1)2(1852 — 1)]

0l < 27 Ll
=191 =77 +872)s2 —4(2r — 1)2(18:2 — 1)] | 3r—1’
and for p € R
A, 11—l < J
2 3r—1 ul < Js
|d3 — pds| < { 2753 |1—p] >
[O(1—7r+872)2—4(27—1)2(18:2—1)] Kl =3,
where

9(1 — 77 +872)) 2% — 4(21 — 1)%(1852 — 1)
27(31 — 1)

Jy= ‘ .
Remark 2.7. i) The result stated in Corollary 2.6, when specialized to 8 = 1, matches Corollary
2 of [40], provided the parameter s lies in the interval (—%, %) ii) Likewise, setting T =1 in
Corollary 2.6 reproduces Corollary 2 of [23], under the same condition on .

Remark 2.8. The condition » € (—l l) ensures the analyticity of the generating function

3:3
within the unit disk ©, a requirement not fully met by the domain (—%, 1] as stated in [23, 40],

which should therefore be corrected.
Using 6 = 1 in the aforementioned theorem, we derive
Corollary 2.9. Let 7> 1,v>1, and » € (—%, %) If® ¢ ng’,}g,q(y, »), then

3|7 /3~]

|d2| é )
VU + V)92 — W2(182 — 1)

s < 3| x| N 27|53
=0T T U+ V)95 — W2(1832 — 1))
and for p € R
3l —pl<J
2 o> pl<Ja
|ds — pds| < { i >
[(U+V)9:2—W2(18:2—1)] Kl = Ja,
where

(U + V)95 — W2(1852 — 1)
9U 52 ’
and U, V, and W are as detailed in (2.5), (2.6), and (2.7), respectively.

Jy =

3. RESULTS OF THE CLASS U5 (7, %)

We first determine the coefficient estimates for function ® in the class ’,UCT,’,%Q (7, ) defined in
Definition 1.4.

10
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Theorem 3.1. Let 7>1,0<~v<1,0<6<1, and » € (—%, %) If® e ‘Bg’,g,q('y, »), then

60|5|+/ 3|
(3.1) da) < |3l

T V@250 +F DA+ S) + (1—06)B2)952 — (6 + 1)2B2(1852 — 1)|

(3.2) Ids| < 6] | 10862 |53
' =G+ DA] 2006+ 1)(A+S) + (1—6)B2)9s5% — (6 + 1)2B2(18:22 — 1)|’

and for p € R

60| 11— <
(33)  |ds—pd3| < { oM 108522 |1 e

(BETDATS) T8 B2 ot PBras2-n 11— H = @,
where
24 C(20(6 + 1)(A+ S) + (1 — 6)B?)95% — (6 4 1)2B?(185% — 1)
(3:4) ©= ‘ 186(6 + 1) Ase? ’
(3.5) A=1[3lpq—,
_ 2
(3.6) S = 7(721)[2]},(1 =7 [2pg + 77
and
(3.7) B=r1[2pq— .
Proof. Let ® € %gjép,q('y, ). Next, as a result of Definition 1.4, we obtain
L[ Dy ®©O) ( C(Dpg®(Q))" )é
3.8 - —B :
35 2 { -7+ \T—2)¢ 790 Gemic))
and
L[ @Dy ¥(=)) < %Dy ¥ (@))" )% _

@9) 2 { (1-v)w+Y(w) * (1 —=9)w+ ¥ (w) = B(e,n(@)),

where, as described in (2.10), m(¢) and n(w) are holomorphic functions.
It follows from (2.10), (3.8) and (3.9) that
1
2

C(Dpg®(Q)” ( (D 2(Q))" >§ _
(1 =)+ N\ =7)C+72(Q)

0—1 0+1 1-6
o (55 () o+ () e

and
;{ e )+<(ﬁ(f;gi(j§(;))é}=
(3.11) < ) Bdyw + [(5;51> (A(2d3 — ds) + Sd3) + (14;2‘5> Bng} e

11
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Comparing (2.12) and (3.10), we have

(3.12) ((;J;(;)B dy = B1(s)my,

and

(3.13) (‘5;51> (Ads + Sd3) + (1 1 52‘5> B%d3 = By (s0)my + By(5¢)m?
Comparing (2.13) and (3.11), we have

(3.14) —(5;51)3 dy = By (3)ny,

and

(3.15) (‘5;51> (A(2d3 — d3) + Sd3) + (14525> B%d3 = By(s)ng + By (se)n?
From (3.12) and (3.14), we easily obtain

(3.16) m; = —ny,

and also

3.17 O LB 2 — (mi 4 ) (B )

262
We add (3.13) and (3.15) to obtain the bound on |da|:

(3.18) <<5§ 1) (A+S)+ (12625) BQ> d3 = B1(5)(mg + ng) + Ba(3¢)(m} + n?).

Substituting the value of m? + n? from (3.17) in (3.18), we get
202B3(5¢)(mg + ny)
(26(6 + 1)(A+ S) + (1 — §)B%)Bf(3) — (6 + 1)2B?Bay ()

Applying (2.11) for the coefficients ms and ny, we obtain (3.1).
The bound on |ds| is now obtained by subtracting (3.15) from (3.13) and using (3.16):

B1(5)(mg — ng)
(5h) A

(3.19) d3 =

(3.20) d3 =d3 +

Then in view of (3.19), (3.20) becomes
581(%)(1112 — 1‘12) i 2528:{’(%)(1“02 -+ 112)
(6+1)|4] (26(6 + 1)(A+S) + (1 — 8)B2)B2(3) — (§ + 1)2B2B3y(x)

and applying (2.11) for the coefficients mg, and ny we get (3.2).
Finally, we compute the bound on |d3 — ud3| for u € R, using the values of d3 and ds from
(3.19) and (3.20), respectively. Consequently, we have

= ] = B (Sl ) 4 5 ) mat (Sal0) = 5 ) v

ds =

9

where

262(1 — u)B2(52)
2

Li(p, ) = (20064+1)(A+S)+ (1 —-96)B? )Bll(%) — (0+1)2B%By(»)’

12
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Clearly
20|B1 ()| . s
dy — 62 < { @FIA 0= 18101 G
2081 (92,06, 5| ¢ 1€1(59] > i
from which we conclude (3.3) with @ as in (3.4). O

Taking v = 0 and v = 1 in the above theorem, respectively, yields the following results.

Corollary 3.2. Let v = 0. Then, for ® € SZL,pq(O ), the upper bounds of |da|, |d3|, and
|ds — ud3|, p € R, are given by (3.1), (3.2), and (3.3), respectively, with A = Ay = 7[3],4, S =
51:7(751) [2]pq, and B = By = 7(2],4. For Q in (3.4), A, S, and B are to be replaced by Ay,
S1, and By, respectively.

Corollary 3.3. Let v = 1. Then, for ® € %qu(l x), the upper bounds of |da|, |ds|, and
\ds — pd3|, 1 € R, are given by (3.1), (3.2), and (3.3), respectively, with A = Ay = 7[3]pq — 1,
S =5 T(T L) 212, —T12lpg+1, and B = By = 7[2],4—1. For Q in (3.4), A, S, and B are
to be substztuted with As, Sa, and Bg, respectively.

Taking p =1 and ¢ — 17 in the Theorem 3.1, we get
Corollary 3.4. Let 7> 1,0<~v<1,0< 6 <1, and » € (—%,%) If @ e g7’

then
60| 3¢|+/ 3| 5|

o,p= 1 q%l (ry} %)}

|da| <

T V@G + D) ((T =) 27+ 1) +2) + (1= 0)(21 —7)2)952 — (0 + 1)2(27 — 7)2(1852 — 1)|
60| |
EDEDN
10862| 5[
[(2600 + 1)((T — )27 + 1) +92) + (1 = 8) (27 — 7)2)93¢2 — (6 + 1)2(27 — 7)2(18»2 — 1)|’
and for p € R

|d3| <

60|

DB ) [1—pl <
|ds — pd3| < {( e 10862 5|* [1—p| = pul>Q
[(26(6+1)((T—)(27+1)+72)+(1-8)(27—7)?) 952 —(6+1)2(27—7)2 (1852 —1) ]’ | pl =@,
where
01— ’ (2006 +1)((T =727+ 1) +92) + (1 = 6)(27 — 1)?)95% — (0 + 1)%(27 — 7)%(185* — 1)

180(8 + 1)(37 — )52

The following are specific instances derlved from the preceding corollary.
Instance 3.1. In the case § = 1, the class ‘II (7, 5¢) represents the collection of functions
® € o satisfying

o,p=1,g—1~

¢(@(Q)"
YR(C) + (1 =7)¢
where 7> 1,0 <~y <1, and » € (—3, 3).
Instance 3.2. In the special case v = 1 in Example 3.1, the class %2’1

p=1,q—=1~
the collection of functions ® € ¢ satisfying

B(%a C)? and

(1, ») represents

S N0 Co)
() < B(5,(), and () < B(s,w).

13
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where 7 > 1 and » € (—3, ).
Instance 3.3. Similarly, for v = 0 in Instance 3.1, the class 07" (0, ) consists of

o,p=1,q—1~
functions ® € o satisfying

()" < B(¢,¢), and (¥(w))" < B(s, ).
where 7 > 1 and » € (-3, ).
Corollary 3.5. Let 7>1,0<~vy <1, and » € (—%, %) If® e Dig

3|z|\/ 3|
0l < /305

~ VI =)@ 1) #2957 — (21 —7)2(185% — )|’

o=l gl (7, 5), then

3| 54|53
s < + — 210,22 _ — 2 2 _ 1\
3 —  (r = @7+ 1) T 7292 — (27 —7)2(18:2 — 1)
and for p € R
3| -
T—Y' pl < Q2
ds — pel3] < {3 ! 541 [1—p| >
e —er—ras2=n; 11— Hl = Q2
where
0 ‘((7—7)(27+1) +92)92% — (27 — 7)2(1852 — 1)
2 p—

(31 — )9%2 ’
Corollary 3.6. Let 7> 1 and » € (—3,%). If ® EQK op=t.gs1- (L

3|2¢]/3| |

do| ,
42l < = e =092 (2 — D182 = 1))

»), then

3|%y 54|53
|d3| < 2 2 2 ’
37 |7(27 — 1)95¢2 — (27 — 1)?(1852 — 1)|
and for p € R
3l . 1— <
ds — pd3| < {?ﬂ_l’ 54154 |1— ] . |1 . ;QS
[F2r—1)9:2—(2r—1)2(18:2—1)]’ 1 —pl > Qs,
where
Qs = 727 — 1)952 — (27 — 1)%(185% — 1)
5T (37 — 1)9522 '

Remark 3.7. i). The special case § =1 in C’omllary 1 [40] corresponds with Corollary 3.6,
provided the parameter s lies in the interval (— 3, 3 it). Likewise, setting 7 = 1 in Corollary
3.6 reproduces Corollary 2 of [23], under the same condztzon on .

Corollary 3.8. Let 7> 1 and » € (=4, %). f® €W, | (0,5), then

] < 3|22/ 3| 5|
= V1@ +1)9752 — 472(1852 — 1)]

dsl < 2 4 541|*
U= T +1)9752 — 472(18:2 — 1))

14
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and for p € R

I, 11— pl <
) ’ /‘L| = Q4
|d3 — pd3| < { ! 54/5|3 |1—p|

et 1142 Qs

where
(27 +1)97k% — 47%(1852 — 1)
97 3¢2 '

Q4=’

Remark 3.9. The special case B = 1 in Corollary 6 [40] corresponds with Corollary 3.8, provided
the parameter » lies in the interval (—1%, 1).

Corollary 3.10. Let 7>1,0<~y <1, and x € (—3,%). If ® € W7 h4(7, 5), then

] < 3|2¢|v/35¢
= VI]9(A + 8)s2 — B2(1852 — 1)|

s < +3\z\ N 27|52
U=TA] T 9(A + )2 — B2(18:2 — 1))
and for p € R
305 9(A + S)»? — B?(185% — 1)
gl < i SI_M’S‘ 9452
| 3T H 2‘ - 27|53 |1—y ) Q(A + S>%2 — 32(18%2 — 1)
[0(A+5)»2—BZ(18-2—1)] ° 1 —pl = 9A 2 ’

where A, S, and B are as mentioned in (3.5), (3.6), and (3.7), respectively.

4. CONCLUSION

Upper bounds on |dz| and |d3| for functions in two subfamilies of o associated with Lucas-
Balancing polynomials are established in this study. Furthermore, for functions in these
subfamilies, the Fekete-Szegd functional |d3 — ud3|, 1 € R has been estimated. A number of
implications have been revealed by varying the parameters in Theorem 2.1 and Theorem 3.1.
Additionally, pertinent links to the ongoing research are found. This paper’s examination of
subfamilies may motivate researchers to focus on the (p, g)-operator. Subsequent research en-
deavors may involve investigating the expansion of acquired outcomes to higher-order Toeplitz
determinants or Hankel determinants. The findings presented here demonstrate the importance
of facts in the study of geometric function theory and offer a strong foundation for these ad-
vancements.
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structive comments, which significantly contributed to improving the clarity and quality of the
paper. All suggestions have been carefully considered and incorporated into the revised version.
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