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Abstract. The aim of this work is to examine Ricci solitons, which are among the popular
research topics of differential geometry nowadays, by focusing on the 4-dimensional case. In
this respect, 4-dimensional manifolds admitting different metric signatures are considered by
expanding the studies in the literature. Several examples of Ricci solitons are given for 4-
dimensional manifolds with Lorentz or neutral metric signatures. In the case of the manifold
containing a parallel vector field, its relationship with the potential field is investigated and
steady Ricci solitons are obtained under certain conditions. A similar analysis is made for
recurrent vector fields. More explicitly, an example of a Ricci soliton whose potential field is
recurrent is found and the Segre type of the Ricci tensor is determined. The results in question
are interpreted by associating them with concepts such as holonomy theory and other types of
vector fields on the relevant manifolds.
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1. Introduction

Ricci solitons have become one of the most remarkable research topics in the field of differential
geometry, and their features have been investigated in different structures. In essence, they are
self-similar solutions to the Ricci flow equation introduced by R. S. Hamilton [13] and their
definition is applicable to semi-Riemannian manifolds that also have physical applications, such
as the study of general relativity theory. On this theme, a considerable amount of work has been
done in the field; see, for instance, [2–7], [14], [17], and the references therein, and others, while
an exhaustive list of references is beyond the scope of this paper. Let M be a semi-Riemannian
manifold with a smooth metric g of arbitrary signature. A Ricci soliton is characterized by the
following equation

(1.1)
1

2
Lξg +Ric = λg
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where Lξ symbolizes the Lie derivative along ξ referred to as a potential field, Ric is the Ricci
tensor and λ denotes a constant. This structure will be indicated by (M, g, ξ, λ), and it is named
as shrinking, steady and expanding, respectively, if λ > 0, λ = 0 and λ < 0.

In this study, we will deal with 4-dimensional Ricci solitons and examine the cases where the
metric in such a structure need not be positive definite. More specifically, the situation where
g has neutral or Lorentz signature will be taken into account. The fact that 4-dimensional
manifolds serve as a bridge between mathematics and physics raises the problem of studying Ricci
solitons for different metric signatures. For example, since applications of symmetries, curvature,
and tensor fields find effective use in 4-dimensional Lorentzian manifolds called space-times (for
which g is of signature (+,+,+,−)), they are also naturally related to Ricci solitons. On the
other hand, it is also significant to understand the geometry of 4-dimensional manifolds having
signature (+,+,−,−) (i.e., neutral metric or signature (2, 2)). In particular, the classification
of tensor fields on such manifolds is much more complicated. A comprehensive study of the
relevant manifolds is available, for example, in [8] and [9].

This work also consists of investigating the connections of some special vector fields with
Ricci solitons in the relevant metric signatures. Among these, parallel and recurrent vector
fields are discussed, which have an essential position in the holonomy structure. The rest of the
paper is arranged as follows: Section 2 briefly outlines some special vector fields examined in
the study and subsequently focuses on certain basic information about 4-dimensional manifolds.
In Section 3, the algebraic classification of the Weyl and Ricci tensors is briefly summarized
for 4-dimensional manifolds with different metric signatures. The main results of the study,
together with some supporting examples, are presented in Section 4.

2. Preliminary information

This section includes a brief overview of some special vector fields taken into account in
our work, and then presents essential information about 4-dimensional manifolds with different
metric signatures. Vector fields are one of the main objects of differential geometry, arising
naturally in the study of Ricci solitons. Among them, torse-forming vector fields, introduced by
K. Yano [20], are deeply involved in the study of geometric structure of manifolds, being defined
as follows:

Definition 2.1. Consider a smooth n-dimensional manifold M . A vector field φ on M is called
torse-forming if there exists a smooth function ρ and a 1-form µ such that the relation

(2.1) ∇V φ = ρ V + µ(V )φ,

holds for all V ∈ χ(M) with ∇ denoting the Levi-Civita connection of g, [20].

Well-known subclasses of torse-forming vector fields are also formed depending on certain
cases of ρ and µ. One of the most important of these is the recurrent vector field that occurs
when ρ = 0 in equation (2.1). The local coordinate form of such a vector field is expressed as

(2.2) ∇iφj = µiφj ,

with φj and µi denoting the components of φ and µ. When µ = 0 in (2.2), the vector field
φ is said to be parallel. Recurrent and parallel vector fields are fundamental objects that have
an important position in the holonomy theory of 4-dimensional manifolds (see, e.g., [8, 9]), and
they are particularly relevant to our study. On the other hand, a torse-forming vector field φ is
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named as concircular if µ is a gradient. It can be deduced from (2.1) that if φ is concircular,
one gets the property

(2.3) ∇iφj = ρgij .

Additionally, φ is referred to as convergent if ρ is constant in (2.3).
Now, consider the case where M is 4-dimensional having a smooth metric g. In this case, g is

either positive definite, i.e., it is of signature (+,+,+,+), or has Lorentz signature (+,+,+,−),
or has neutral signature (+,+,−,−). One can set up a basis for TpM (that is, the tangent space
at p ∈ M) concerning each signature, see, e.g., [8, 10, 19], and we will adopt these notations
accordingly. A non-zero vector v ∈ TpM is called spacelike if g(v, v) > 0, timelike if g(v, v) < 0
and null if g(v, v) = 0 at p. A 2-dimensional subspace of TpM (called a 2-space) is categorized as
follows: spacelike, if all non-zero elements are of the same (timelike or spacelike) type; timelike,
if it has exactly two, null directions that are distinct; null, if it has exactly one null direction;
or totally null, if all its non-zero vectors are null and mutually orthogonal.

For the positive definite signature, all 2-dimensional subspaces are spacelike, whereas totally
null 2-spaces are only possible in neutral metric. Let ΛpM denote the space of all bivectors
(i.e., 2-forms). If the rank of a non-zero F ∈ ΛpM is 2 (or 4), F is referred to as simple (or
non-simple). When the rank of F is 2, it can be expressed as F ij = uiwj −wiuj for u,w ∈ TpM
where the 2-space generated by u and w is named as the blade of F , denoted by u ∧ w. More
information about the classification of bivectors can be found in [8, 9].

3. Classifications of some tensor fields on 4-dimensional manifolds

When Ricci solitons are investigated on 4-dimensional manifolds with different metric signa-
tures, it is useful to consider the classification of Ric. The Weyl conformal curvature tensor,
denoted by C, also plays a central role in such manifolds. Understanding the classification of
Ric and C is crucial when examining space-times, especially within the scope of general rel-
ativity theory. This section briefly reviews the classification of the relevant tensor fields on
4-dimensional manifolds with different metric signatures.

A symmetric tensor field of second-order, say T , can be classified algebraically according to
the structure of its eigenvalues and eigenspaces, which is known in the literature as the Jordan-
Segre classification. More clearly, this classification relies on solving the eigenvalue problem
T i

ju
j = αui (or equivalently, Tijuj = αgiju

j), where T i
j (or Tij) denotes the components of

T , α are the eigenvalues, and ui are the corresponding eigenvectors. In other words, taking
into account real or complex eigenvectors with their eigenvalues, one gets the canonical forms
of T . The complete list of Segre types, valid for neutral, Lorentz and positive definite metric
signatures respectively, is presented below.

• For (+,+,−,−): {1111}, {11zz̄}, {zz̄ww̄}, {211}, {2zz̄}, {22} (eigenvalues complex),
{22} (eigenvalues real), {31} and {4} (for details, see, e.g., [9, 11]),

• For (+,+,+,−): {1, 111}, {211}, {31} and {zz̄11} (where the comma in type {1, 111}
separates the eigenvalue associated with the timelike eigenvector from those related to
spacelike ones) (for details, see, e.g., [8, 9]),

• For (+,+,+,+): {1111} (i.e., T is diagonalizable over R) (for details, see, e.g., [8, 9]),
together with their possible degeneracies that may occur for each case. Given that Ric is a
second-order symmetric tensor, it is classified according to one of the Segre types expressed
above and some of these will be identified in the examples presented in Section 4.
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Regardless of the metric signature, the Weyl tensor classification is also a fundamental concept
in the study of various geometric structures on 4-dimensional manifolds. For space-times, it is
famously known as the Petrov classification which categorizes the Weyl tensor into six algebraic
types denoted by I, II, III, D, N and O (see [8, 18]). On the other hand, a comprehensive
classification scheme for the neutral signature was provided in [12], which we adopt in this
study. The Weyl tensor can be regarded as a linear map acting on the bivector space ΛpM ,
and in a 4-dimensional manifold equipped with signature (+,+,−,−), one has the following
(unique) decomposition:

Chijk =
+
W hijk +

−
W hijk,(3.1)

where
+
W and

−
W are known as the self-dual and anti-self-dual components of C, which are

defined by
+
W = 1

2(C +∗ C) =
+∗
W ,

−
W = 1

2(C −∗ C) = −
−∗
W , and ∗C = C∗ with ∗C and C∗

denoting the left and right duals of C, respectively. The classification of C at p ∈ M can then

be achieved by analyzing the types of
+
W and

−
W individually. The canonical representations for

+
W and

−
W in this case are labelled as I, II, III, D1, D2, N and O, [12]. The canonical form

of C then arises as a consequence of (3.1) such that its algebraic type at p ∈ M can be written

as label tuples (X,Y), where X (respectively, Y) denotes the type of
+
W (respectively,

−
W ) (for

details, see [12]).
Finally, when g is positive definite, C splits into self-dual and anti-self-dual parts as in the

neutral case given by (3.1). But due to diagonalizability, its classification simplifies considerably,

where
+
W (and

−
W ) takes one of the types I, D andO (see [1] for an example; additional references

include [9, 15]).

4. Results on 4-dimensional Ricci solitons and Examples

In this section, the results of the study are presented and 4-dimensional Ricci soliton exam-
ples supporting them are constructed. Within this framework, we will concentrate on specific
classes of torse-forming vector fields presented in Section 2 and examine their properties on Ricci
solitons. Equation (1.1) can be locally expressed as

(4.1)
1

2
(∇iξj +∇jξi) +Rij = λgij .

Firstly, suppose that a Ricci soliton (M, g, ξ, λ) contains a nowhere-zero parallel vector field
η orthogonal to potential field ξ. In this case, ∇η = 0, and from the Ricci identity, one has
Rhijkη

k = 0, where Rhijk are components of the Riemann tensor of type (0, 4). This implies that

Rikη
k = 0. On the other hand, taking the covariant derivative of the orthogonality condition

between η and ξ yields ηi∇jξi = 0. In that case, by contracting equation (4.1) with ηi and
subsequently with ηj , we obtain

(4.2) ληjη
j = 0.

If g is positive definite, then η must be non-null, which implies that λ must be zero from
equation (4.2). Thus, a steady Ricci soliton is obtained. On the other hand, if the metric
signature is neutral or Lorentzian, η can be null or non-null. However, if it is non-null, then λ
must still be zero, and (M, g, ξ, λ) is a steady Ricci soliton. If η is null, λ may or may not be
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zero, and thus equation (4.2) is automatically satisfied. As a result, the subsequent theorem is
established:

Theorem 4.1. Let (M, g, ξ, λ) be a 4-dimensional Ricci soliton and assume that it admits a
nowhere-zero parallel vector field η which is orthogonal to the potential field ξ. Accordingly, the
following are valid:

(i) If g is of signature (+,+,+,+), then such a Ricci soliton is steady.
(ii) If g is of signature (+,+,+,−) or (+,+,−,−), then either such a Ricci soliton is steady,

or η is null, or both.

Remark 4.2. Since the focus of this paper is on the 4-dimensional cases, Theorem 4.1 is stated
accordingly, but note that its proof does not depend on the dimension.

Example 4.3. Let us consider M = R4 with coordinates (u, v, y, s) and the following metric:

(4.3) u2y2du2 + 2dudv + dy2 + ϵds2

where u ̸= 0 and y ̸= 0. In the case where ϵ = −1 in (4.3), g has neutral signature. Let ξ be

chosen as the vector field u3

3
∂
∂v . Then, ξ is null and recurrent since the conditions g(ξ, ξ) = 0

and ∇ξ = ξ ⊗ µ are satisfied where µ = 3
udu is the recurrence 1-form. On the other hand, the

Ricci tensor is calculated as Ric = −u2dudu = −u2l ⊗ l where l := ∂
∂v and its Segre type is

{(211)} with eigenvalue zero. Moreover, one calculates

(4.4) Lξg = 2u2dudu = 2u2l ⊗ l.

With the help of (4.1) and (4.4), one gets

1

2
Lξg +Ric = u2dudu− u2dudu = 0,

which shows that (M, g, ξ, λ) is a steady Ricci soliton with the potential field ξ being null and
recurrent. Due to the splitting form of (4.3), a timelike parallel vector field ∂

∂s is admitted, which

is also orthogonal to ξ. Therefore, Theorem 4.1(ii) holds for (M, g, ξ, λ), where η := ∂
∂s is non-

null (parallel) and λ = 0. Besides, ∂
∂y is also a spacelike vector field which is unit and orthogonal

to ξ. Additionally, the Weyl type is (N,N). For ϵ = 1 in (4.3), g is of Lorentz signature. Thus,
(M, g, ξ, λ) is a space-time, similar outcomes as in the neutral case are achieved (but for this
case, ∂

∂s is spacelike, parallel and orthogonal to ξ) and the Petrov type is N.

Remark 4.4. Note that if the potential field ξ is recurrent, the equation (4.1) gives

(4.5) Rij = λgij −
1

2
(ξiµj + µiξj)

for some 1-form µ. If the Ricci tensor takes the form given in equation (4.5), (M, g) is known
in the literature as a special kind of quasi-Einstein manifold, where ξ is typically assumed to be
(unit and) non-null, and since it is usually considered on manifolds with positive definite metric
signature, Ric is diagonalizable. However, one should be careful when the signature of the metric
changes as the Ricci tensor may not be diagonalizable. Example 4.3 demonstrates a steady Ricci
soliton whose potential vector field is null and recurrent but Ric is not diagonalizable having
Segre type {(211)} with eigenvalue zero. An additional example is given below:

Example 4.5. With a global coordinate system denoted by (u, v, y, s), consider M = R4 and
the following metric:

(4.6) (u2 + s2)du2 + 2dudv + dy2 + ϵds2
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where u ̸= 0. For ϵ = −1, the metric (4.6) has neutral signature. Then, the Ricci tensor is
computed as Ric = dudu = l⊗ l, where l := ∂

∂v and it is of Segre type {(211)} (zero eigenvalue).

Moreover, Chijkl
k = 0, and C is of type (N,N). Let ξ := −u ∂

∂v . Then, ξ is a (null) recurrent

vector field satisfying ∇ξ = ξ ⊗ µ, where µ = 1
udu is the recurrence 1-form. On the other hand,

one gets
Lξg = −2dudu = −2 l ⊗ l

and hence

(4.7)
1

2
Lξg +Ric = −dudu+ dudu = 0.

Equation (4.7) reveals that (M, g, ξ, λ) is a steady Ricci soliton with the potential field ξ which
is null and recurrent. This metric also admits a spacelike parallel vector field ∂

∂y orthogonal to

ξ. Consequently, Theorem 4.1(ii) is also satisfied. It should be noted that for ϵ = 1, the metric
(4.6) is Lorentzian. The Ricci tensor, the potential field ξ, and Lξg differ from the previously
obtained expressions only by a sign, and (4.7) holds. In addition, the Petrov type is N.

Remark 4.6. It is possible to make further comments regarding Example 4.5. The analysis
can also be interpreted in the context of the holonomy theory of 4-dimensional manifolds (for
details, see, e.g., [8–10, 19]). Because for this example, l is a parallel, null vector field being an
eigenvector of Ric. Moreover, ∇Ric = 0 having type {(211)}. As the metric (4.6) also admits a
non-null parallel vector field ∂

∂y , the holonomy type is 1(c) (when g is of signature (+,+,−,−),

i.e., ϵ = −1 in (4.6)) or R3 (when g is of signature (+,+,+,−), i.e., ϵ = 1 in (4.6)). We refer
to [8] and [9] for the representation of holonomy types and all other details.

According to the results reached above, it is worth examining whether similar situations
hold for other special vector fields, such as convergent ones. Now suppose (M, g, ξ, λ) admits
a nowhere-zero convergent vector field, say φ, orthogonal to ξ. It follows that φ satisfies the
equation (2.3) for some constant ρ. Following a similar analysis as before, the Ricci identity
yields Rhijkφ

k = 0, and so Rikφ
k = 0. By taking the covariant derivative of the orthogonality

condition between φ and ξ, one gets from (2.3) that

(4.8) φi∇jξi + ρξj = 0.

Contracting (4.8) over φj , we get φiφj∇jξi = 0. In that case, multiplying equation (4.1) by
φiφj , we find

λφjφ
j = 0,

leading to conclusions analogous to those of equation (4.2). In addition, the case when φ is null,
then it is known to reduce to a parallel vector field (see Theorem 3.3 (iii) in [16]). Hence, the
following outcome is immediate.

Corollary 4.7. Consider a 4-dimensional Ricci soliton (M, g, ξ, λ) and assume that it admits a
nowhere-zero convergent vector field φ which is orthogonal to the potential field ξ. In this case,
the results of Theorem 4.1 remain valid. Additionally, in the event that φ is null, it turns out
to be parallel.
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