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EXTRINSIC CHARACTERISATIONS OF IMMERSIONS

BOGDAN D. SUCEAVĂ

Abstract. In 1763, Leonhard Euler wrote that one cannot define a good curvature measure for
surfaces: “la question sur la courbure des surfaces n’est pas susceptible d’une réponse simple,
mais elle exige à la fois une infinité de déterminations.” The quest for the right measure
for curvature was settled by C.F. Gauss in 1825, and Sophie Germain introduced the mean
curvature in 1831 (her memoir written in 1816 included also the average of principal curvature
as a shape invariant). We outline the history of the idea of deformation of space, which lead
to the concept of curvature invariants, as we understand them today, including contributions
of E. Bacaloglu and F. Casorati, among others. We pursue the following question: what is the
best way to quantify the deformation of space? This important question could be viewed in a
new paradigm after 1956, when John F. Nash, Jr. proved that a Riemannian manifold can be
immersed isometrically into an Euclidean ambient space of dimension sufficiently large. This
important theorem allowed to view the representation of space from its exterior, from an outside
perspective. In 1968, S.-S. Chern pointed out that a key technical element in applying Nash’s
Theorem effectively is finding useful relationships between intrinsic and extrinsic quantities
characterising immersions. And such relations seem to be rather few, at least few enough to
present us with a technical challenge in applying Nash’s Theorem. One technical difficulty
is presented by the passing through the narrow gateway provided by Gauss’ equation, and
that’s why in order to obtain some new results it might be useful to include additional natural
conditions. A turning point in the history of the question we pursue was an enlightening
paper written by B.-Y. Chen in 1993, which paved the way for a deeper understanding of the
meaning of the Riemannian inequalities between intrinsic and extrinsic quantities. Our present
discussion invites a reflection on whether we could hope to characterise submanifolds by using
mainly extrinsic quantities. After looking at several recent examples of such results, we conclude
our paper with the following Problem. Are there any other extrinsic relations that determine
the topology or the geometry of an embedded geometric object? How do we define them? How
much insight do they provide, when we look at the geometric object “from the outside”?
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1. The Question of Space and its Deformations

The present paper represents the written version of one of the four Invited Addresses at the
Riemannian Geometry and Its Applications (RIGA) 2025 conference. The talk was presented
on May 24, 2025. While the author is profoundly grateful to the organisers for their invitation,
this work aims to reach out towards an interesting idea much indebted to the advances ushered
in by John F. Nash, Jr.’s Embedding Theorem and its consequences (for its importance see e.g.
[14]). We felt this was the best opportunity to present a more thorough overview of our research
direction, starting with the profound philosophical motivation of the theme. We have been
much encouraged towards such a perspective by an inspiring paper, Leopold Verstraelen’s work
[44], an author whose views shaped much of our current interests. Our present perspective was
preceded by yet another Invited Addres, delivered in the fall of 2022, for a national conference
in philosophy in Romania, which can be read in the work [40].

Quite unexpectedly, the definition of curvature appears for the first time at the middle of the
14th century, in the works of Nicole Oresme [29], see also [35] 1.

It is quite remarkable to point out that Oresme’s reasons to introduce his concept of curvitas
(as it makes perfect sense within the context of his doctrine) are not related to the mathematical
motivations that later authors pursued to investigate deformations of shape, and together with it
the modern concept of curvature. It is an idea born in Western Europe in the intellectual context
of the Rediscovery of Aristotle [33], a fertile context different from the scientific revolution from
the 17th century [43], when the later mathematical discoveries took place. The paradigms were
so different that it really requires a different type of mathematical reading.

The assertion we propose is that Oresme introduced the idea of investigating shape (a thought
encoded in his works under the far-enveloping word “configurations”) at the same time with
introducing the idea of curvature as deformation of shape, which makes the so-called (by its
author) doctrine of configurations a striking contribution to the medieval thinking, analogue in
this aspect with Riemann’s fundamental contribution from 1854 [32]. Namely, Oresme considers:
(1) a representation of the idea of space; together with (2) its deformation. This is how there
is an analogy between Oresme’s doctrine and Riemann’s seminal construction of the concept of
manifold, together with its sectional curvature [32].

If there is any other source where the concept of curvature is discussed prior to 1351, it did
not reach us and it is not known to us. It would actually be a very interesting question for
historians if anyone would ever discover any contribution about the idea of deformation of space
prior to Oresme’s thoughts.

We cannot separate any discussion of Oresme’s doctrine of configurations from the problem
of representing space. The origin of the theme, however, has in Western philosophy older roots
than the Aristotle’s tradition, where Oresme found his inspiration (as far as his testimonial

1The author of the present paper found out about Oresme’s works from Bang-Yen Chen’s work [13], and also
from several private conversations about the origin of the concept of curvature that took place at Michigan State
University about the time the survey [13] was published. The atmosphere surrounding the Differential Geometry
Seminar at Michigan State University in those years is recalled in the book [38], and the careful reading of [29]
lead among other works to [35, 43].
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records). Bertrand Russell reflects in [34], p.146 et al., on the following key fragment, from
Plato’s Timaeus:

There is one kind of being which is always the same, uncreated and indestructible,
never receiving anything into itself from without, not itself going out to any other,
but invisible and imperceptible by any sense, and of which the contemplation is
granted to intelligence only. And there is another nature of the same name with
it, and like to it, perceived by sense, created, always in motion, becoming in
place and again vanishing out of place, which is apprehended by opinion and
sense. And there is a third nature, which is space, and is eternal, and admits not
of destruction and provides a home for all created things, and is apprehended
without the help of sense, by a kind of spurious reason, and is hardly real; which
we beholding as in a dream, say of all existence that it must of necessity be in
some place and occupy a space, but that what is neither in heaven nor in earth
has no existence.

We believe that it might useful for anyone interested in geometry today to start any examina-
tion of geometric ideas with this highly inspiring starting point. About this passage, Bertrand
Russell writes [34]:

This is a very difficult passage, which I do not pretend to understand at all fully.
The theory expressed must, I think, have arisen from reflection on geometry,
which appeared to be a matter of pure reason, like arithmetic, and yet had to do
with space, which was an aspect of the sensible world. In general it is fanciful
to find analogies with later philosophers, but I cannot help thinking that Kant
must have liked this view of space, as one having an affinity with his own.

From the philosophical standpoint (see e.g. [40]), therefore, the question we discuss therefore
could be phrased as: “what is space?” We argue that any discussion on the history of this theme
should include Nicole Oresme’s contributions, even if we are hereby proposing an author who
did not use a precise computational tool to determine curvature for planar curves, space curves,
or for surfaces, as later authors did, either by using the tools of calculus, or later on vectorial or
tensorial calculus. Nevertheless, for this particular topic, Oresme’s contribution was way ahead
of his time [37].

2. From Leonhard Euler to C.F. Gauss and Sophie Germain

One generation before Gauss, the question of curvature of a surface at a given point was far
from being settled (see e.g. [36]). To better understand how the concept of curvature of surfaces
was viewed before Gauss, we recall that Leonhard Euler wrote in 1763 that we cannot define
the curvature for surfaces. He writes:

Pour connoitre la courbure des lignes courbes, la détermination du rayon oscu-
lateur en fournit la plus juste mesure, en nous présentant pour chaque point de
la courbe un cercle, dont la courbure est précisément la même. Mais, quand on
demande la courbure d’une surface, la question est fort équivoque, et point du
tout susceptible d’une réponse absolue, comme dans le cas précédent.

The geometric situation that eluded Euler was the case when the tangent plane at a point to
a surface is intersecting the surface, that is, if we were to use a more contemporary language,
the case when the surface is hyperbolic at that point. This happens, e.g., at every point of the
catenoid. What Euler hoped to see materialised was the idea of approximation of the surface

106



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 15 (2025)

with a sphere, an extension of Newton’s idea of osculating circle approximating locally the
curve. However, it was not this idea that produced the definition of the curvature at a point of
a surface, as we can see by reading Gauss’ Disquisitiones but a combination of ideas including
small infinitesimals and limiting processes. It was Gauss’ vision that generated the curvature
of surfaces, and later on it was Riemann’s effort who extended this concept to n-dimensional
representation of space.

In section V of Disquisitiones, Gauss introduces the curvature for surfaces. For a smooth
surface S lying in R3, and an arbitrary point P ∈ S, consider NP the normal to the surface at
P. Consider the family of all planes passing through P that contain the line through P with the
same direction asNP . These planes yield a family of curves on S called normal sections. Consider
now the curvature κ(P ) of the normal sections, viewed just as planar curves. Then κ(P ) has a
maximum, denoted κ1, and a minimum, denoted κ2. The curvatures κ1 and κ2 are called the
principal curvatures. The Gaussian curvature [22] is defined asK(P ) = κ1(P )·κ2(P ), and Sophie
Germain’s mean curvature is defined [23] by the arithmetic mean H(P ) = 1

2 [κ1(P ) + κ2(P )] .
C.F. Gauss’ Theorema Egregium, a result of massive importance in geometry’s development, was
later rephrased by many authors that the curvature K is of intrinsic nature, which means that
it depends only of the geometry of the surface, and it is derived based on Gauss’s calculations
at the end of section 11 in Disquisitiones.

It is quite interesting to read that Sophie Germain appreciated Euler’s contribution as fun-
damental. She writes:

Si, par rapport aux surfaces, on avoit besoin de connôıtre la mesure de la cour-
bure, on trouveroit peu de secours dans les écrits des géomètres qui se sont
occupés des diverses questions dont se compose la géométrie descriptive, et l’on
seroit forcé de remonter à des travaux plus anciens.

La mémoire d’Euler, intitulé: Recherches sur la courbure des surfaces con-
tient, en effet, tout ce que l’on sait d’important à cet égard; et, en lisant ce
beau mémoire, on apperçoit bientôt que l’illustre auteur y a déposé le germe des
recherches, qui peuvent faire disparôıtre les difficultés qu’il a pris soin de signaler.

At p.4 in [23], S. Germain mentions that the mean curvature was included in her memoire
submitted to the French Academy in 1816.

3. Nicolas Renard and Emanoil Bacaloglu

A noteworthy contribution in investigating the concept of curvature of surfaces took place
on August 18, 1856, when at the Faculté des sciences de Paris Nicolas Renard defended his
doctoral thesis, which was straightforwardly titled Courbure des surfaces [31], with a committee
chaired by Louis Lefébure de Fourcy, and having as members Gabriel Lamé and Augustin-Louis
Cauchy (the actual defense took place just a few months before Cauchy passed away). Nicolas
Renard investigation focused on the so-called geometric locus of the centers of mean curvature.
He investigated the relationship between a given smooth surface and the surface which is this
locus, and discovered that the two surfaces are reciprocal, in the sense introduced by him.

Renard’s thesis is one of the references in Emanoil Bacaloglu’s short article [4], in which he
proposes a new curvature invariant. After a reasoning relying on a limiting process which involves
Gauss’ map, Bacaloglu argues that it would be natural to consider as curvature the quantity
H2 + 1

8L
2, where L is the difference between the principal curvatures at a point of a smooth

surface. Bacaloglu’s curvature invariant is an extrinsic concept. His vision regards the surface
from the outside, in the paradigm proposed by Sophie Germain, although his reasoning starts
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from Gauss’ map. What is truly important in this early development is the very connection
between limiting processes and a quantity that is, in every sense of the word, representing the
deformation of space. And it’s not just that, Bacaloglu investigates, just for elliptical surfaces,
for situations when K > 0, yet another limiting process that ends up with another quantity
representing curvature, namely the invariant K3/2/H.

It was a very interesting early development in the geometry of smooth surfaces, showing that
one indeed can consider rightfully other quantities other than K or H, as long as the quest is
motivated by a profound geometric substance.

4. Felice Casorati’s Curvature Invariant. What Can Be Pursued Today?

In a recent very interesting paper [30], Arrigo Pisati and Riccardo Rosso discuss the genesis
of Felice Casorati’s paper from 1890 [9], where he proposed his curvature invariant. Pisati and
Rosso self-describe their effort: “In his last paper, Felice Casorati proposed an extrinsic measure
of curvature of a surface that vanishes only on planes. His proposal triggered strong reactions
in the mathematical community that we examine here, also by use of unpublished material.”
Actually, Casorati’s inquiries towards a better understanding of the idea of deformation of space
go back to 1867, see [8]. We feel it is important to understand well Casorati’s argument and his
efforts, and a lecture of his original work is not lacked of interest today. It is truly the spirit
of that time (the decade of 1890s) that Casorati’s argument is fundamentally a limiting process
motivated by geometric intuition. Casorati proposes as curvature of a surface at a point p the
quantity C(p) = 1

2 [κ1(p)
2 + κ2(p)

2], and in his paper [9] we read plenty of reasons to do so.
Casorati, as well as Bacaloglu back in 1859, has as starting point a limiting process inspired
by Gauss’ profound reflection dating back to 1825 [22]. Pisati and Rosso are right to point out
that recently there is a new revived interest in investigations in which the Casorati curvature is
regarded as a geometric quantity representing in the most legit way the idea of curvature, see
e.g. some recent works in this direction [1, 5, 15, 16, 18, 19, 20, 25, 26, 27, 42, 45], to recall here
just a few.

For the effectiveness of our presentation, we feel it would be best if we pursue our analysis in
the context of smooth hypersurfaces embedded in a real Euclidean ambient. The reason we do
so is that we would like to connect this historical heritage to the contemporary theory of sub-
manifolds. To recall a few concepts in the geometry of differential hypersurfaces or, to be more
precise, smooth hypersurfaces [6, 7, 39, 42], let σ : U ⊂ Rn → Rn+1 be a smooth hypersurface
given by the smooth map σ. Let p be a point on the hypersurface. Denote σk(p) =

∂σ
∂xk

, for all k

from 1 to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss frame of the hypersurface, where
N denotes the normal vector field. We denote by gij(p) the coefficients of the first fundamental
form and by hij(p) the coefficients of the second fundamental form. Then

gij(p) = ⟨σi(p), σj(p)⟩, hij(p) = ⟨N(p), σij(p)⟩.

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote by (hij(p))1≤i,j≤n

the matrix associated to Weingarten’s map, that is:

Lp(σi(p) = hki (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation convention.
Weingerten’s operator is self-adjoint, which implies that the roots of the algebraic equation

det(hij(p)− λ(p)δij) = 0
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are real. The eigenvalues of Weingarten’s linear map are called principal curvatures of the
hypersurface. They are the roots k1(p), k2(p), . . . , kn(p) of this algebraic equation. The mean
curvature at the point p is

H(p) =
1

n
[k1(p) + . . .+ kn(p)],

and the Gauss-Kronecker curvature is

K(p) = k1(p)k2(p) . . . kn(p).

If all the principal curvature of a smooth regular hypersurface are ≥ 0, then the hypersurface
is convex.

One may define the Casorati curvature in the direction of the k-dimensional planar section
Vp ⊂ TpM, or the Casorati curvature of order k, by

Ck(e1, e2, . . . , ek) = a21 + . . .+ a2k,

for k ≤ n, where a1, . . . , ak are the principal curvatures at point p ∈ M. If we regard the matters
in this way, Casorati curvatures are related to the geometry of submanifolds [10, 11, 14], and any
information that relates curvature invariants to the topology of the submanifolds is of interest.
Here is the idea we pursue.

Question. Are there any prescribed conditions in terms of Casorati curvature that yield global
conclusions about the geometry of a surface or of a hypersurface?

To give an example of what we can obtain from this idea, we refer to the following.

Proposition 4.1. [6] Let σ : U ⊂ Rn → Rn+1 be a regular smooth hypersurface, Im σ = Mn.
Let a1, a2, . . . , an be the principal curvatures at p ∈ M. If all the Casorati curvatures of order 2
satisfy the inequality √

(n− 1)Cn−1(p) ≤ nH(p),

for every p in M, then the hypersurface must be convex.

This result is cited also in [15], where the derivation of this analytic fact is placed in a natural
context of ideas.

For its proof, we need the following claim [6]. If for n ≥ 3 real numbers a1, a2, . . . , an the
following inequalities hold:√

(n− 1)(a21 + a22 + . . .+ a2n−1) ≤ a1 + a2 + . . .+ an,√
(n− 1)(a21 + a22 + . . .+ a2n−2 + a2n) ≤ a1 + a2 + . . .+ an,

. . .√
(n− 1)(a22 + a23 + . . .+ a2n) ≤ a1 + a2 + . . .+ an.

Then we must have a1 ≥ 0, a2 ≥ 0, . . . , an ≥ 0.
To prove this claim, we solve in the first inequality for an, which appears only in the right

hand side term:

an ≥
√

(n− 1)(a21 + a22 + . . .+ a2n−1)− (a1 + a2 + . . .+ an−1).

We need to prove this term is greater than or at least equal to zero. Then we have:

an ≥
√

(n− 1)(a21 + a22 + . . .+ a2n−1)− (a1 + a2 + . . .+ an−1).
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We need to prove the right side of this inequality is greater than or at least equal to zero. This is
just the Cauchy-Schwarz inequality applied to the numbers a1, a2, . . . , an−1, and then to (n− 1)
copies of 1 :√

(12 + 12 + . . .+ 12)(a21 + a22 + . . .+ a2n−1) ≥ (1 · a1 + 1 · a2 + . . .+ 1 · an−1).

This proves that an ≥ 0. Similarly one may prove all the other inequalities ai ≥ 0, i = 1, . . . , n−1.
Equality holds when all the n numbers ai, i = 1, . . . , n take the same value. Proposition 4.1 is
a direct consequence of this algebraic argument. □

The important point is this: The inequality in the above Proposition 4.1 [6] is an all-extrinsic
condition, which yields the convexity of the geometric object under investigation. One can
even draw some analogies with the Second Derivative Test from our calculus experience. In
this context, we would like to conclude this section with the following open thought: Are there
any more results of this kind awaiting for us to discover them? It may be just a matter of us
adopting the appropriate perspective, as we follow the path and the paradigm opened by Nash’s
Embedding Theorem.

5. A Question of S.-S. Chern

Consider a surface S in R3. Principal curvatures at P ∈ S are k1, k2. We have seen that the
Gaussian curvature is K(p) = k1 · k2, and Sophie Germain’s mean curvature is H(p) = k1+k2

2 .

Remark that (k1−k2)
2 ≥ 0, or, if we rewrite k21−2k1k2+k22 ≥ 0, we obtain k21+2k1k2+k22 ≥

4k1k2. In terms of curvature invariants, at any point P ∈ S:

(k1 + k2)
2 ≥ 4K.

In conclusion: H2(P ) ≥ K(P ). We read this relation as an inequality of type extrinsic ≥
intrinsic.

Thus, the inequalityH2(P ) ≥ K(P ) is an elementary relationship of type extrinsic≥ intrinsic.
Why is such a relationship important for the geometry of the surface embedded in the three

dimensional real space? A surface S ⊂ R3 is minimal if at ∀P ∈ S : H(P ) ≡ 0. Since H2(P ) ≥
K(P ), we obtained the following obstruction to minimality: If there exists a point P ∈ S such
that K(P ) > 0, then H(P ) ̸= 0.

A classical theorem in the geometry of surfaces states that if S is compact, then there exists
P ∈ S such that K(P ) > 0. Based on the above obstruction, we have just proved that a compact
surface in R3 can not be minimal.

After this elementary take, we turn our attention to a more general case. There is more
than the sectional curvature (introduced first by B. Riemann, 1854). For an orthonormal basis
e1, ..., en of the tangent space TpM of a Riemannian n-manifold M , the scalar curvature at p is:

scal(p) =
∑
i<j

sec(ei ∧ ej).

If we denote by h the second fundamental form of an isometric immersion of a Riemannian n-
manifoldMn into a Riemannian space M̄n+m, the mean curvature vector field byH = 1

n traceh,
the immersion is called minimal if H(p) = 0, ∀p ∈ M.

Consider now M, a submanifold of dimension n in a Riemannian ambient space (M̄, ḡ) of
dimension n+m.

Gauss formula is:

∇̄XY = ∇XY + h(X,Y ), ∀X,Y ∈ TpM.
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Gauss equation is:

g(R(X,Y )Z,W ) = ḡ(R̄(X,Y )Z,W ) + ḡ(h(X,W ), h(Y, Z))

−ḡ(h(X,Z), h(Y,W )).

In particular, if M is a submanifold in an Euclidean ambient space:

sec(ei ∧ ej) = ḡ(h(ei, ei), h(ej , ej))− |h(ei, ej)|2.

Let v = e1 be a unit vector at P. Consider e2, ..., en the completion to an orthonormal basis
of v. Then, by definition:

Ric(v, v) =
n∑

i=2

sec(v ∧ ei)

By using Gauss equation:

Ric(e1, e1) =
n∑

i=2

sec(e1 ∧ ei) =
n∑

i=2

ḡ(h(e1, e1), h(ei, ei))−
n∑

i=2

|h(e1, ei)|2 =

= ḡ

(
h(e1, e1),

n∑
i=2

h(ei, ei)

)
−

n∑
i=2

|h(e1, ei)|2 =

= ḡ (h(e1, e1), nH − h(e1, e1))−
n∑

i=2

|h(e1, ei)|2 = ḡ (h(e1, e1), nH)−
n∑

i=1

|h(e1, ei)|2.

Thus, we have seen that if M is a minimal submanifold (H = 0 at every point) in an Euclidean
space, by Gauss equation we have

Ric(X,X) = −
n∑

i=1

|h(X, ei)|2 ≤ 0,

where {e1, ..., en} is an orthonormal local frame field on M. This means that the Ricci tensor of
a minimal submanifold M of a Euclidean space is negative semi-definite. This is what Shiing-
Shen Chern (1911-2004) pointed out in his 1968 monograph titled Minimal submanifolds in a
Riemannian manifold [17], precisely at p.13, that Ric > 0 yields the only known Riemannian
obstruction to minimal isometric immersion in Euclidean space. As Bang-Yen Chen pointed
out many times, based on S.-S. Chern’s remark, it is important to understand the Riemannian
obstructions to minimality. (Or to any other classes of immersions, as much as they can be
controlled through the geometric structures.)

Related to Chern’s remark from [17], Bang-Yen Chen asked and thoroughly investigated in
the 1990s the following Problem: When does a given Riemannian manifold M admit (or does
not admit) a minimal immersion into a Euclidean space of arbitrary dimension ?

This is the context of ideas in which Bang-Yen Chen proved the following theorem.

Theorem 5.1. [12] Let Mn be a submanifold in a space form of constant sectional curvature c.
Then

inf(sec) ≥ scal − n2(n− 2)

2(n− 1)
|H|2 − (n+ 1)(n− 2)

2
c.

The equality case is completely determined by the form of the shape operators with respect to a
suitable orthonormal frame fields.
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This geometric inequality sparked an important direction of investigation, much of which is
surveyed and profoundly analysed in the monograph [14]. Our reflections in the present paper
are much inspired and indebted to this philosophy and vision.

6. An Olympiad Problem

Although the inclusion of a rather elementary (but nontrivial) example here might seem
surprising, we believe this thought has simultaneously expository and mathematical value. At
the 1984 International Mathematical Olympiad, Problem 1 asked to prove that for a, b and c
nonnegative real numbers satisfying the constraint a+ b+ c = 1 the following double inequality
holds true:

0 ≤ ab+ bc+ ca− 2abc ≤ 7

27
.

The problem’s solution is available in many references, e.g. [2] or, for a more recent source, [3],
pp.11-12.

We are interested in it, because this double inequality admits a nice geometric interpreta-
tion, that could reveal interesting information on other inequalities as well. Further similar
extensions or generalisations would also be interesting, that’s why this problem deserves special
consideration.

The 1984 IMO Problem recalled above is about three nonnegative real numbers a, b, c. In order
to provide the geometric interpretation we mentioned, we focus our attention on a hypersurface
in the four-dimensional Euclidean space R4. We regard the numbers a, b, c as the principal
curvatures at a point on this hypersurface, and we aim to decode the meaning in this double
inequality. Let σ : U ⊂ R3 → R4 be the graph in the four-dimensional real space of a function;
this is a hypersurface given by the smooth map σ. Let p be a point on the hypersurface.

There are quantities similar to κ1 and κ2 from the geometry of surfaces; and they are the
principal curvatures of the hypersurface, denoted λ1, λ2, λ3. They are introduced as the eigen-
values of the so-called Weingarten linear map. Similar to the geometry of surfaces, the curvature
invariants in higher dimensions can also be described in terms of the principal curvatures. Let
p be a point of the hypersurface M immersed into R4 endowed with the canonical metric. Let
e1, e2, e3 an orthonormal frame at p, that diagonalizes the Weingarten operator. Then, as Bern-
hard Riemann saw it in 1854, the natural analogue of Gaussian curvature in the direction of the
planar section generated by ei and ej is the product λiλj , where i, j ∈ {1, 2, 3}, i ̸= j. We write
sec(ei ∧ ej) = λiλj . The mean curvature at the point p is

H(p) =
1

3
[λ1(p) + λ2(p) + λ3(p)],

and the Gauss-Kronecker curvature is

K(p) = λ1(p)λ2(p)λ3(p).

In Riemannian geometry, a third important curvature quantity is the scalar curvature ([14],
p.19) denoted by scal(p), which intuitively sums up all the sectional curvatures on all the faces
of the trihedron formed by the tangent vectors in the Gauss frame:

scal(p) = sec(σ1 ∧ σ2) + sec(σ2 ∧ σ3) + sec(σ3 ∧ σ1) = λ1λ2 + λ3λ1 + λ2λ3.

The last equality is due to the Gauss equation of the hypersurface σ(U) in the ambient space
R4 endowed with the Euclidean metric.
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In order to match the notation in the Problem recalled above, denote λ1 = a, λ2 = b, λ3 = c.
The condition in the hypothesis that a, b, c > 0, is quite strong, and it means that the hypersur-
face is strictly convex (see [24], p.40). Then the statement of the Problem could be reformulated
as: If in the neighborhood of point p on a strictly convex three dimensional hyper-
surface the mean curvature H = 1

3(a + b + c) is constant and equal to 1
3 , then we

have

0 ≤ scal(p)− 2K(p) ≤ 7

27
.

The matter could be pursued even further, and it has to do with the rephrased assertion

scal(p) ≤ 2K(p) +
7

27
.

This fact must be appreciated under its full limelight. The left-hand side quantity, scal(p) is
intrinsic (as sum of three sectional curvatures), while the right hand side, represented by the
double of the Gauss-Kronecker quantity plus a constant, is for a three-dimensional hypersurface
extrinsic (see [24], p.33). The 1984 IMO problem describes nicely an inequality between an
intrinsic and an extrinsic quantity, exactly the kind of statement that made Gauss reflect on the
nature of a geometric quantity describing shape. We did use Gauss’s equation in a subtle way,
when we said that the product λiλj represents sectional curvature.

This fundamental example allows us to hereby introduce a major development in the theory.
In 1956 John F. Nash, Jr. proved [28] that a Riemannian manifold (the hypersurface is a
particular case) can be immersed isometrically into an Euclidean ambient space of dimension
sufficiently large. We recalled that over a decade later, S.-S. Chern pointed out (see e.g. p.13
in [17]) that a key technical element in applying Nash’s Theorem effectively is finding useful
relationships between intrinsic and extrinsic quantities characterizing immersions. And such
relations are few. The fact that for constant mean curvature convex hypersurfaces of dimension
3 there exists such a relationship, namely scal(p) ≤ 2K(p) + 7

27 , is no little thing. It would
be interesting to find out more such relations, if they exist. Anyways, an additional geometric
assumption provided a fundamental inequality.

It might seem surprising that some elementary inequalities could provide an insight into the
problem of the best possible immersion of a space into another ambient space. As about the
hypersurfaces with constant mean curvature, much could be said, see e.g. Chapter 4 in [10],
for a thorough coverage of the idea. The original condition a+ b+ c = 1 admits an interesting
geometric interpretation as well, which makes the matter even more natural to be investigated,
from a geometric standpoint.

7. B.-Y. Chen’s Curvature Invariants

As we outlined before, in his visionary paper [12] B.-Y. Chen proved (more precisely in Lemma
3.2), that for a submanifold Mn in a space form Rn+m(c) of constant sectional curvature c the
scalar curvature satisfies at a point the fundamental inequality

(7.1) scal − inf(sec) ≤ n2(n− 2)

2(n− 1)
|H|2 + (n+ 1)(n− 2)

2
c,

where |H| represents the magnitude of the mean curvature vector, and inf(sec) represents the
infimum of all the scalar curvature taken over all 2-planes at that respective point. Recall that
for any orthonormal basis e1, ..., en of the tangent space TpM in a Riemannian manifold Mn,
the scalar curvature is defined to be scal(p) =

∑
i<j sec(ei ∧ ej). Chen’s inequality recalled
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above is important because it illustrates the kind of relationships it would be interesting to
obtain: between intrinsic geometric quantities, by one hand (the terms in the left), and extrinsic
geometric quantities by the other (in the right). This is the kind of relations we are interested
in finding out. The comprehensive monograph [14] describes a series of relationships recently
discovered (in the last three decades) involving intrinsic and extrinsic curvature invariants. And
that is important, it represents exploiting fully the pathways opened by John Nash’s Embedding
Theorem [28].

For an orthonormal basis e1, . . . en of the tangent space TpM of a Riemannian n-manifold M ,
the scalar curvature at p is:

scal(p) =
∑
i<j

sec(ei ∧ ej)

For any r-dimensional subspace of TpM denoted by L, with orthonormal basis e1, . . . , er, one
defines

scal(L) =
∑

1≤i<j≤r

sec(ei ∧ ej).

B. - Y. Chen considered the finite set S(n) of k-tuples (n1, . . . , nk) with k ≥ 0 which satisfy
the conditions: n1 < n, ni ≥ 2 and n1+ . . .+nk ≤ n. For each (n1, . . . , nk) ∈ S(n) B. - Y. Chen
introduced the following Riemannian invariants:

δ(n1, . . . , nk)(p) = scal(p)− inf{scal(L1) + . . .+ scal(Lk)}(p),

where infimum is taken for all possible choices of orthogonal subspaces L1, . . . , Lk, satisfying
nj =dim Lj , (j = 1, . . . , k).

These invariants are now known as Chen invariants. When k = 0, the Chen invariant is
nothing but the scalar curvature.

With the following notation,

c(n1, . . . , nk) =
n2(n+ k − 1−

∑
nj)

2(n+ k −
∑

nj)
,

b(n1, . . . , nk) =
1

2

(n(n− 1)−
k∑

j=1

nj(nj − 1)

 ,

we can recall the following.

Theorem 7.1 (B.-Y. Chen’s fundamental inequalities, Thm.13.3/pg.262 in [14]). For any
n-dimensional submanifold M of an arbitrary Riemannian space M̄n+m and for any k-tuple
(n1, . . . , nk) ∈ S(n), we have:

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)|H|2 + b(n1, . . . , nk)max ¯sec(p),

where max ¯sec(p) denotes the maximum of the sectional curvature function of M̄n+m restricted to
2-plane sections of TpM. Equality case completely determined by some conditions on the second
fundamental form.

This important theorem was much cited and received a lot of attention from many geometers.
One of its first consequences is the following.
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Theorem 7.2 (Obstruction to minimality, B.-Y. Chen, 2000 [14]). Let M be a Riemannian
n-manifold. If there exists a k-tuple (n1, . . . , nk) ∈ S(n) and a point p ∈ M such that

(7.2) δ(n1, . . . , nk)(p) >
1

2
{n(n− 1)−

∑
nj(nj − 1)}ε,

then M admits no minimal isometric immersion into any Riem.space form Rm(ε) with arbitrary
codimension.

In particular, if δ(n1, . . . , nk)(p) > 0 at a point for some k-tuple (n1, . . . , nk) ∈ S(n), then M
admits no minimal isometric immersion into any Euclidean space for any codimension.

We presented earlier how the inequality H2(P ) ≥ K(P ) in the geometry of surfaces yields a
natural obstruction to minimality. This last result by B.-Y. Chen we recalled above represents a
more advanced conquest of this idea, and a meaningful step forward in our better understanding
the phenomenon.

8. Extrinsic vs. Extrinsic Relations. An Open Ending

Recently, the focus on extrinsic geometric quantities lead to the following fact. We are getting
closer to the point we are making with the present paper.

Theorem 8.1. [41] Let p0 be an umbilic on a smooth hypersurface in Rn+1, endowed with a
second fundamental form denoted by h, whose averaged trace yields the mean curvature H. Let
s(L) be the spread of the shape operator. Let p be another point close enough to p0, that is not
an umbilic. Then, the limit

(8.1) lim
p→p0

s(L)√
||h||2 − nH2

∈
[

2√
n
,
√
2

]
,

provided the limit exists.

This assertion truly describes a limiting process with extrinsic quantity, along the lines of the
philosophical perspective opened up by the paradigm of extrinsic-based invariants whose origin
can be traced back to Sophie Germain (1816), Emanoil Bacaloglu (1859) and Felice Casorati’s
reflections (1890), as we described before. It is exactly this kind of results we are pursuing, due
to this interesting tension of ideas and intertwining of perspectives which could be followed all
along the history of differential geometry.

If s(L) represents the spread of the shape operator, the work in [41] leads to the following
inequality between intrinsic (in the left hand side term) and extrinsic quantities (grouped in the
right hand side terms), respectively.

Theorem 8.2. [41] Let Mn ⊂ Rn+1(c) be a smooth hypersurface in a space form endowed with
constant sectional curvature c. If ||h|| is the norm of the second fundamental form and s(L) is
the spread of the shape operator, then between the intrinsic and the extrinsic quantities at one
point of the hypersurface the following inequality holds:

(8.2) scal − inf(sec) ≤ n(n− 2)

4(n− 1)

[
2||h||2 − s2(L)]

]
+

(n+ 1)(n− 2)

2
c.

Equality holds at the umbilical points.

For a sketch of the proof, we remark that at any point of the smooth hypersurface, we have:

(8.3) δ(2)− (n+ 1)(n− 2)

2
c ≤ n2(n− 2)

2(n− 1)
H2.
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On the other hand, s2(L) ≤ 2||h||2 − 2nH2, which yields right away

(8.4) H2 ≤ 2||h||2 − s2(L)

2n
.

By combining the relations we obtain the claimed inequality. Note that the umbilical points
satisfy the equality case as described in Lemma 3.2 from B.-Y.Chen’s fundamental work [12]. □

We have the following consequence.

Proposition 8.3. [41] Let Mn be a hypersurface in a Riemannian (n + 1)-manifold M̄n+1.
Then at every point p ∈ M the following inequality holds:

(8.5) ρ(p) ≤ 2||h||2 − s2(L)

2n
+

2

n(n− 1)

∑
i<j

sec(ei ∧ ej),

where ρ is the normalized scalar curvature of M at p, H is the mean curvature at p, and
sec(ei∧ej) represents the sectional curvature on the plane generated by vectors ei and ej tangent
to the ambient space M̄ . The equality holds at p if and only if p is an umbilical point.

As an interesting point to make here, recall that in [39] a class of purely extrinsic invariants
have been introduced. The construction is the following.

Theorem 8.4. Let M3 ⊂ R4 be a smooth hypersurface and k1, k2, k3 be its principal curvatures
in the ambient space R4 endowed with the canonical metric. Let p ∈ M be an arbitrary point.
Suppose that at p none of the principal curvatures vanish. Denote by K the Gauss-Kronecker
curvature. Introduce the absolute mean sectional curvatures defined by

H̄ij(p) =
|ki(p)|+ |kj(p)|

2
.

Then the following inequalities hold true at every point p ∈ M :

(8.6) 3 ≤ |k1|
H̄23

+
|k2|
H̄13

+
|k3|
H̄12

= B1
1(p)

(8.7) 2
√
2 <

√
|k1|
H̄23

+

√
|k2|
H̄13

+

√
|k3|
H̄12

= B0.5
0.5(p)

The first of these inequalities is nothing else but the classical Nesbitt’s inequality, this time
turned into a geometric fact. We have therefore the geometric interpretation of Nesbitt’s inequal-
ity, as earlier in this paper we discussed a geometric interpretation of Cauchy-Schwarz inequality
in terms of Casorati curvature. We thought this result deserves to be recalled here because it
shows that there are examples of extrinsic curvature invariants bounded below by a constant;
their construction is provided in [39].

We would like to conclude our present work with the statement of the following.

Problem. Are there any other extrinsic relations that determine the topology or the geometry
of an embedded geometric object? How do we define them? How much insight do they provide,
when we look at the geometric object “from the outside”?

This way of asking the question is philosophically indebted to John Forbes Nash’s Embedding
Theorem, exactly as described by Bang-Yen Chen in [14]. By thinking along these lines we
are pursuing a classical direction of inquiry in differential geometry, which might have further
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ramifications, as the interest in a variety of geometric objects might diversity in the future, and
whose noble history was hereby outlined [4, 8, 9, 22, 23, 21, 29, 32].
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