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Abstract. The classification of rotational surfaces in Euclidean space satisfying a linear re-
lation between their principal curvatures was completed in [9]. On the other hand, using the
notion of geometric linear momentum of a planar curve with respect to a line introduced in [2]
or [3], a new approach to rotational Weingarten surfaces was developed in [1]. Taking advantage
of this study, we face the case that the principal curvatures satisfy a certain quadratic relation.
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1. Introduction

Following [4] or [10], Weingarten surfaces are those whose principal curvatures κ1 and κ2
satisfy a functional relation W(κ1, κ2) = 0. In particular, those ones satisfying a linear relation
aκ1 + bκ2 = c, a2 + b2 ̸= 0, c ∈ R, are called linear Weingarten surfaces.

In the case of rotational surfaces, the principal curvatures are reached along meridians and
parallels and it is clear that rotational surfaces constitute a distinguish class of Weingarten
surfaces. In the equation of linear rotational Weingarten surfaces, we can assume a ̸= 0 without
loss of generality and we just write km = p kp + q, p, q ∈ R, p ̸= 0, where km and kp denote the
principal curvatures along meridians and parallels respectively. These surfaces have been recently
classified in [9] by means of a qualitative study, providing closed (embedded and not embedded)
surfaces and periodic (embedded and not embedded) surfaces with a geometric behaviour similar
to Delaunay surfaces (cf. [5]). As a simple brief summary, they provide the following types of
rotational surfaces (see [9] for details):

• q = 0: Planes, ovaloids and catenoid type.
• q ̸= 0, p > 0: Ovaloids, vesicle type, pinched spheroid, immersed spheroid, cylindrical
anti-nodoid type, anti-nodoid type and circular cylinders.
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• q ̸= 0, p < 0: Unduloid type, circular cylinders, spheres and nodoid type.

In [9] there is also a necessary distinction of cases according to p = 1 or p ̸= 1. In fact,
when p ̸= 1, the generatrix curves are p

p−1 - elastic curves generalizing classical elastic curves

corresponding to p = 2 (see [8]).
On the other hand, Kühnel and Steller studied in [7] certain quadratic rotational Weingarten

surfaces. Concretely, extending the method of Hopf in [6], they considered closed rotational
surfaces satisfying km = c(kp − b)2 + kp − a, ac > 0, b ∈ R, and were able to prove that there
are explicit analytic solutions of genus zero with self-intersections.

In this article, our aim is to get a complete explicit local classification of the quadratic
rotational Weingarten surfaces verifying km = µk2p, µ ̸= 0 (see Section 3), making use of the
tools and the techniques developed in [1], which are collected in Section 2.

2. The geometric linear momentum of a rotational surface

In this section we deal with rotational surfaces, also called surfaces of revolution. They are
surfaces globally invariant under the action of any rotation around a fixed line called axis of
revolution. The rotation of a curve (called generatrix) around a fixed line generates a surface
of revolution. The sections of a surface of revolution by half-planes delimited by the axis of
revolution, called meridians, are special generatrices. The sections by planes perpendicular to
the axis are circles called parallels of the surface.

We denote Sα the rotational surface in R3 generated by the rotation around the z-axis of
a plane curve α in the xz-plane. That is, α is the generatrix curve that we can consider
parameterized by arc-length, whose parametric equations are given by x = x(s), y = 0, z = z(s),
s ∈ I ⊆ R. The function x = x(s), s ∈ I ⊆ R, represents the (signed) distance from the point
α(s) to the z- axis of revolution. Then Sα is parameterized by

Sα ≡ X(s, θ) = (x(s) cos θ, x(s) sin θ, z(s)) , (s, θ) ∈ I × (−π, π).

Given any plane curve α in the xz-plane, we introduced in [1, Section 2] the geometric linear
momentum of α (with respect to the z-axis) as a smooth function assuming values in [−1, 1] that
completely determines it (up to translations in the z-direction). It is defined by K(s) = ż(s),
where the dot ˙ means derivation with respect to the arc parameter s. Geometrically, K controls
the angle of the Frenet frame of the curve with the coordinate axes. Moreover, in physical terms,
K = K(s) may be described as the linear momentum (with respect to the z-axis) of a particle of
unit mass with unit speed and trajectory α(s). We point out that K is well defined, up to the
sign, depending on the orientation of α.

If the plane curve α = (x, z) is not necessarily parameterized by arc length, i.e. α = α(t), t
being any parameter, one can compute the geometric linear momentum K = K(t) by means of
K(t) = z′(t)/|α′(t)|, where ′ denotes derivation respect to t.

The importance of the geometric linear momentumK lies in the fact that it allows to determine
by quadratures in a constructive explicit way the plane curves α = (x, z) such that its curvature
depends on the distance to the z-axis, that is, it is given as a function of x, i.e. κ = κ(x). In this
case, K = K(x) satisfies K′(x) = κ(x) and the algorithm to recover the curve α = (x, z) involves
the following computations (see [2] and [3]):
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(i) Arc-length parameter s of α = (x, z) in terms of x, defined – up to translations of the
parameter – by the integral:

(2.1) s = s(x) =

∫
dx√

1−K(x)2
,

where −1 < K(x) < 1, and inverting s = s(x) to get x = x(s).

(ii) z-coordinate of the curve – up to translations along z-axis – by the integral:

(2.2) z(s) =

∫
K(x(s)) ds.

Alternatively, if we eliminate ds in the above integrals, we obtain:

(2.3) z = z(x) =

∫
K(x)dx√
1−K(x)2

.

Thus we can summarize the determining role of the geometric linear momentum in the next
result.

Corollary 2.1. [1, Corollary 1] Any plane curve α = (x, z), with x non-constant, is uniquely
determined by its geometric linear momentum K as a function of its distance to z-axis, that is,
by K = K(x). The uniqueness is modulo translations in the z-direction. Moreover, the curvature
of α is given by κ(x) = K′(x).

It is obvious that if we translate the generatrix curve α of a rotational surface Sα along z-axis,
we obtain a congruent surface to Sα. An immediate consequence of Corollary 2.1 is then the
following key result:

Corollary 2.2. [1, Corollary 2] Any rotational surface Sα, with generatrix curve α = (x, z), is
uniquely determined, up to z-translations, by the geometric linear momentum K = K(x) of its
generatrix curve, being x non-constant.

We can confirm the result established in Corollary 2.2 when we study the geometry of Sα

through its first and second fundamental forms, I and II, since a direct computation, using that
κ(x) = K′(x), shows that both can be expressed only in terms of the geometric linear momentum
K and, of course, the non constant distance x from the surface to the axis of revolution:

I ≡ ds2 + x2dθ2, II ≡ K′(x)ds2 + xK(x)dθ2.

Therefore we get the following expressions for the principal curvatures κ1 and κ2, whose
curvature lines are the meridians (m) and the parallels (p) respectively of the rotational surface
Sα:

(2.4) κ1 ≡ km = K′(x), κ2 ≡ kp =
K(x)

x
.

Making use of Corollary 2.2, we can list the following characterizations of some simple surfaces
of revolution:

Example 2.3. [1, Propositon 1]

(i) Any (horizontal) plane is uniquely determined by the geometric linear momentum K ≡ 0.
(ii) The circular cone with opening θ0 ∈ (−π/2, π/2), given by x2 + y2 = cot2 θ0 z

2, is
uniquely determined by the geometric linear momentum K ≡ sin θ0.

(iii) The sphere of radius R > 0, given by x2 + y2 + z2 = R2, is uniquely determined by the
geometric linear momentum K(x) = x/R.
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Now we can pay attention to rotational Weingarten surfaces. In general, we just simply write
Φ(km, kp) = 0 for the Weingarten relation. But taking into account (2.4), we easily deduce that

the above functional relation translates into a first-order differential equation Φ̂(x,K(x),K′(x)) =
0 for the geometric linear momentum K = K(x) determining Sα according to Corollary 2.2.

Using this method, we proved in [1] that linear rotational Weingarten surfaces (see Section
1) are uniquely determined, up to z-translations, by the following geometric linear momenta:

p ̸= 1 : K(x) =
q x

1− p
+ c xp, c ∈ R,

and
p = 1 : K(x) = q x lnx+ c x, c ∈ R.

This can be a reasonable explanation of the commented distinction of cases in [9].
We will use the same simple idea in order to reach our main result of the paper in next section.

3. Rotational surfaces satisfying km = µk2p, µ ̸= 0

In this section, we are interested in the rotational Weingarten surfaces whose principal cur-
vatures are related by the quadratic equation km = µk2p, µ ̸= 0. Taking into account (2.4), we
arrive at the differential equation

(3.1) K′(x) = µK2(x)/x2,

whose solutions determine the corresponding surfaces by Corollary 2.2.
Notice that the constant trivial solution K ≡ 0 provides the plane in view of Example 2.3-(i).

The general solution of (3.1) is given by

(3.2) Kµ,c(x) =
x

µ+ cx
, c ∈ R.

Since K−µ,−c(x) = −Kµ,c(x), we may assume that µ > 0 in the following. If c = 0, the
geometric linear momentum (3.2) is Kµ,0(x) = x/µ, and therefore the surface is locally congruent
to the sphere of radius µ (see Example 2.3-(iii)).

Taking (2.3) into account, we deduce that the desired rotational surfaces are generated by
the graphs

(3.3) zµ,c(x) = ±
∫ Kµ,c(x)√

1−Kµ,c(x)2
dx = ±

∫
x√

(c2 − 1)x2 + 2µcx+ µ2
dx.

Notice that zµ,−c(−x) = zµ,c(x), hence we may also assume that c > 0.
Now, we compute the integrals in (3.3) depending on c > 0 and considering µ > 0.

(a) If 0 < c < 1, the generatrix curve is written, up to a constant, as the graph

(3.4) zµ,c(x) =
±1

c2 − 1

(√
(c2 − 1)x2 + 2µcx+ µ2 +

µc√
1− c2

arcsin

(
c2 − 1

µ
x+ c

))
,

with − µ

c+ 1
≤ x ≤ µ

1− c
(see Figure 1). We remark that if c = 0 in (3.4) we recover the circle

of radius µ centered at the origin.

(b) If c = 1, the integral in (3.3) is immediate and the generatrix curve is given by

(3.5) zµ,1(x) = ±(x− µ)
√
2x+ µ

3
√
µ

, x > −µ

2
.

It is an algebraic curve of degree 3, since that 9µ z2µ,1 = 2x3 − 3µx2 + µ3 (see Figure 2).
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(c) If c > 1, the generatrix curve is given, up to a constant, by

(3.6) zµ,c(x) = ±
√

(c2 − 1)x2 + 2µcx+ µ2

c2 − 1

∓ µc

(c2 − 1)3/2
log

∣∣∣2(c2 − 1)x+ 2µc+ 2
√

(c2 − 1)((c2 − 1)x2 + 2µcx+ µ2)
∣∣∣ ,

with x ≤ µ

1− c
or x ≥ − µ

c+ 1
. This curve has two connected components corresponding with

these two intervals of variation for x (see Figure 3).
Therefore, we have proved the following local classification result for quadratic rotational

Weingarten surfaces:

Theorem 3.1. The only rotational surfaces whose principal curvatures satisfy km = µk2p, µ ̸= 0,
are (open subsets of) the plane, the sphere of radius |µ| and the rotational surfaces generated by
the graphs z = zµ,c(x), c > 0, described in (3.4), (3.5) and (3.6).

Figure 1. Curve zµ,c, µ > 0, 0<c<1, and the corresponding rotational surface
(µ = 1, c = 0.5).

Figure 2. Curve zµ,1, µ > 0, and the corresponding rotational surface (µ = 1).
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Figure 3. Curve zµ,c, µ > 0, c>1 (left: x ≤ µ

1− c
, right: x ≥ − µ

c+ 1
), and the

corresponding rotational surfaces (µ = 1, c = 1.5).
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