ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE

available online at https://rjm-cs.utcb.ro Issue 2, Vol. 15 (2025)

Proceedings of the International Conference Riemannian Geometry and Applications - RIGA 2025 Bucharest, Romania, May 23-25, 2025

QUADRATIC ROTATIONAL WEINGARTEN SURFACES

PAULA CARRETERO, ILDEFONSO CASTRO AND ILDEFONSO CASTRO-INFANTES

ABSTRACT. The classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures was completed in [9]. On the other hand, using the notion of geometric linear momentum of a planar curve with respect to a line introduced in [2] or [3], a new approach to rotational Weingarten surfaces was developed in [1]. Taking advantage of this study, we face the case that the principal curvatures satisfy a certain quadratic relation.

Mathematics Subject Classification (2020): 53A04, 53A05, 74B20. Key words: Rotational surfaces, Weingarten surfaces, principal curvatures.

Article history:

Received: June 29, 2025

Received in revised form: July 23, 2025

Accepted: July 25, 2025

1. Introduction

Following [4] or [10], Weingarten surfaces are those whose principal curvatures κ_1 and κ_2 satisfy a functional relation $W(\kappa_1, \kappa_2) = 0$. In particular, those ones satisfying a linear relation $a\kappa_1 + b\kappa_2 = c$, $a^2 + b^2 \neq 0$, $c \in \mathbb{R}$, are called *linear Weingarten surfaces*.

In the case of rotational surfaces, the principal curvatures are reached along meridians and parallels and it is clear that rotational surfaces constitute a distinguish class of Weingarten surfaces. In the equation of linear rotational Weingarten surfaces, we can assume $a \neq 0$ without loss of generality and we just write $k_{\rm m} = p \, k_{\rm p} + q$, $p, q \in \mathbb{R}$, $p \neq 0$, where $k_{\rm m}$ and $k_{\rm p}$ denote the principal curvatures along meridians and parallels respectively. These surfaces have been recently classified in [9] by means of a qualitative study, providing closed (embedded and not embedded) surfaces and periodic (embedded and not embedded) surfaces with a geometric behaviour similar to Delaunay surfaces (cf. [5]). As a simple brief summary, they provide the following types of rotational surfaces (see [9] for details):

- q = 0: Planes, ovaloids and catenoid type.
- $q \neq 0, p > 0$: Ovaloids, vesicle type, pinched spheroid, immersed spheroid, cylindrical anti-nodoid type, anti-nodoid type and circular cylinders.

• $q \neq 0, p < 0$: Unduloid type, circular cylinders, spheres and nodoid type.

In [9] there is also a necessary distinction of cases according to p = 1 or $p \neq 1$. In fact, when $p \neq 1$, the generatrix curves are $\frac{p}{p-1}$ - elastic curves generalizing classical elastic curves corresponding to p = 2 (see [8]).

On the other hand, Kühnel and Steller studied in [7] certain quadratic rotational Weingarten surfaces. Concretely, extending the method of Hopf in [6], they considered closed rotational surfaces satisfying $k_{\rm m} = c(k_{\rm p} - b)^2 + k_{\rm p} - a$, ac > 0, $b \in \mathbb{R}$, and were able to prove that there are explicit analytic solutions of genus zero with self-intersections.

In this article, our aim is to get a complete explicit local classification of the quadratic rotational Weingarten surfaces verifying $k_{\rm m} = \mu \, k_{\rm p}^2$, $\mu \neq 0$ (see Section 3), making use of the tools and the techniques developed in [1], which are collected in Section 2.

2. The geometric linear momentum of a rotational surface

In this section we deal with rotational surfaces, also called surfaces of revolution. They are surfaces globally invariant under the action of any rotation around a fixed line called axis of revolution. The rotation of a curve (called generatrix) around a fixed line generates a surface of revolution. The sections of a surface of revolution by half-planes delimited by the axis of revolution, called meridians, are special generatrices. The sections by planes perpendicular to the axis are circles called parallels of the surface.

We denote S_{α} the rotational surface in \mathbb{R}^3 generated by the rotation around the z-axis of a plane curve α in the xz-plane. That is, α is the generatrix curve that we can consider parameterized by arc-length, whose parametric equations are given by x = x(s), y = 0, z = z(s), $s \in I \subseteq \mathbb{R}$. The function x = x(s), $s \in I \subseteq \mathbb{R}$, represents the (signed) distance from the point $\alpha(s)$ to the z- axis of revolution. Then S_{α} is parameterized by

$$S_{\alpha} \equiv X(s,\theta) = (x(s)\cos\theta, x(s)\sin\theta, z(s)), (s,\theta) \in I \times (-\pi, \pi).$$

Given any plane curve α in the xz-plane, we introduced in [1, Section 2] the geometric linear momentum of α (with respect to the z-axis) as a smooth function assuming values in [-1, 1] that completely determines it (up to translations in the z-direction). It is defined by $\mathcal{K}(s) = \dot{z}(s)$, where the dot 'means derivation with respect to the arc parameter s. Geometrically, \mathcal{K} controls the angle of the Frenet frame of the curve with the coordinate axes. Moreover, in physical terms, $\mathcal{K} = \mathcal{K}(s)$ may be described as the linear momentum (with respect to the z-axis) of a particle of unit mass with unit speed and trajectory $\alpha(s)$. We point out that \mathcal{K} is well defined, up to the sign, depending on the orientation of α .

If the plane curve $\alpha = (x, z)$ is not necessarily parameterized by arc length, i.e. $\alpha = \alpha(t)$, t being any parameter, one can compute the geometric linear momentum $\mathcal{K} = \mathcal{K}(t)$ by means of $\mathcal{K}(t) = z'(t)/|\alpha'(t)|$, where ' denotes derivation respect to t.

The importance of the geometric linear momentum \mathcal{K} lies in the fact that it allows to determine by quadratures in a constructive explicit way the plane curves $\alpha = (x, z)$ such that its curvature depends on the distance to the z-axis, that is, it is given as a function of x, i.e. $\kappa = \kappa(x)$. In this case, $\mathcal{K} = \mathcal{K}(x)$ satisfies $\mathcal{K}'(x) = \kappa(x)$ and the algorithm to recover the curve $\alpha = (x, z)$ involves the following computations (see [2] and [3]):

(i) Arc-length parameter s of $\alpha=(x,z)$ in terms of x, defined – up to translations of the parameter – by the integral:

$$(2.1) s = s(x) = \int \frac{dx}{\sqrt{1 - \mathcal{K}(x)^2}},$$

where $-1 < \mathcal{K}(x) < 1$, and inverting s = s(x) to get x = x(s).

(ii) z-coordinate of the curve – up to translations along z-axis – by the integral:

(2.2)
$$z(s) = \int \mathcal{K}(x(s)) ds.$$

Alternatively, if we eliminate ds in the above integrals, we obtain:

(2.3)
$$z = z(x) = \int \frac{\mathcal{K}(x)dx}{\sqrt{1 - \mathcal{K}(x)^2}}.$$

Thus we can summarize the determining role of the geometric linear momentum in the next result.

Corollary 2.1. [1, Corollary 1] Any plane curve $\alpha = (x, z)$, with x non-constant, is uniquely determined by its geometric linear momentum K as a function of its distance to z-axis, that is, by K = K(x). The uniqueness is modulo translations in the z-direction. Moreover, the curvature of α is given by $\kappa(x) = K'(x)$.

It is obvious that if we translate the generatrix curve α of a rotational surface S_{α} along z-axis, we obtain a congruent surface to S_{α} . An immediate consequence of Corollary 2.1 is then the following key result:

Corollary 2.2. [1, Corollary 2] Any rotational surface S_{α} , with generatrix curve $\alpha = (x, z)$, is uniquely determined, up to z-translations, by the geometric linear momentum $\mathcal{K} = \mathcal{K}(x)$ of its generatrix curve, being x non-constant.

We can confirm the result established in Corollary 2.2 when we study the geometry of S_{α} through its first and second fundamental forms, I and II, since a direct computation, using that $\kappa(x) = \mathcal{K}'(x)$, shows that both can be expressed only in terms of the geometric linear momentum \mathcal{K} and, of course, the non constant distance x from the surface to the axis of revolution:

$$I \equiv ds^2 + x^2 d\theta^2$$
, $II \equiv \mathcal{K}'(x)ds^2 + x\mathcal{K}(x)d\theta^2$.

Therefore we get the following expressions for the principal curvatures κ_1 and κ_2 , whose curvature lines are the meridians (m) and the parallels (p) respectively of the rotational surface S_{α} :

(2.4)
$$\kappa_1 \equiv k_{\rm m} = \mathcal{K}'(x), \quad \kappa_2 \equiv k_{\rm p} = \frac{\mathcal{K}(x)}{x}.$$

Making use of Corollary 2.2, we can list the following characterizations of some simple surfaces of revolution:

Example 2.3. [1, Proposition 1]

- (i) Any (horizontal) plane is uniquely determined by the geometric linear momentum $\mathcal{K} \equiv 0$.
- (ii) The circular cone with opening $\theta_0 \in (-\pi/2, \pi/2)$, given by $x^2 + y^2 = \cot^2 \theta_0 z^2$, is uniquely determined by the geometric linear momentum $\mathcal{K} \equiv \sin \theta_0$.
- (iii) The sphere of radius R > 0, given by $x^2 + y^2 + z^2 = R^2$, is uniquely determined by the geometric linear momentum $\mathcal{K}(x) = x/R$.

Now we can pay attention to rotational Weingarten surfaces. In general, we just simply write $\Phi(k_{\rm m}, k_{\rm p}) = 0$ for the Weingarten relation. But taking into account (2.4), we easily deduce that the above functional relation translates into a first-order differential equation $\hat{\Phi}(x, \mathcal{K}(x), \mathcal{K}'(x)) = 0$ for the geometric linear momentum $\mathcal{K} = \mathcal{K}(x)$ determining S_{α} according to Corollary 2.2.

Using this method, we proved in [1] that linear rotational Weingarten surfaces (see Section 1) are uniquely determined, up to z-translations, by the following geometric linear momenta:

$$p \neq 1$$
: $\mathcal{K}(x) = \frac{q x}{1-p} + c x^p, c \in \mathbb{R},$

and

$$p = 1$$
: $\mathcal{K}(x) = q x \ln x + c x, c \in \mathbb{R}$.

This can be a reasonable explanation of the commented distinction of cases in [9].

We will use the same simple idea in order to reach our main result of the paper in next section.

3. Rotational surfaces satisfying
$$k_{\rm m} = \mu k_{\rm p}^2, \ \mu \neq 0$$

In this section, we are interested in the rotational Weingarten surfaces whose principal curvatures are related by the quadratic equation $k_{\rm m} = \mu k_{\rm p}^2$, $\mu \neq 0$. Taking into account (2.4), we arrive at the differential equation

(3.1)
$$\mathcal{K}'(x) = \mu \,\mathcal{K}^2(x)/x^2,$$

whose solutions determine the corresponding surfaces by Corollary 2.2.

Notice that the constant trivial solution $\mathcal{K} \equiv 0$ provides the plane in view of Example 2.3-(i). The general solution of (3.1) is given by

(3.2)
$$\mathcal{K}_{\mu,c}(x) = \frac{x}{\mu + cx}, \quad c \in \mathbb{R}.$$

Since $\mathcal{K}_{-\mu,-c}(x) = -\mathcal{K}_{\mu,c}(x)$, we may assume that $\mu > 0$ in the following. If c = 0, the geometric linear momentum (3.2) is $\mathcal{K}_{\mu,0}(x) = x/\mu$, and therefore the surface is locally congruent to the sphere of radius μ (see Example 2.3-(iii)).

Taking (2.3) into account, we deduce that the desired rotational surfaces are generated by the graphs

(3.3)
$$z_{\mu,c}(x) = \pm \int \frac{\mathcal{K}_{\mu,c}(x)}{\sqrt{1 - \mathcal{K}_{\mu,c}(x)^2}} dx = \pm \int \frac{x}{\sqrt{(c^2 - 1)x^2 + 2\mu cx + \mu^2}} dx.$$

Notice that $z_{\mu,-c}(-x) = z_{\mu,c}(x)$, hence we may also assume that c > 0.

Now, we compute the integrals in (3.3) depending on c > 0 and considering $\mu > 0$.

(a) If 0 < c < 1, the generatrix curve is written, up to a constant, as the graph

(3.4)
$$z_{\mu,c}(x) = \frac{\pm 1}{c^2 - 1} \left(\sqrt{(c^2 - 1)x^2 + 2\mu cx + \mu^2} + \frac{\mu c}{\sqrt{1 - c^2}} \arcsin\left(\frac{c^2 - 1}{\mu}x + c\right) \right),$$

with $-\frac{\mu}{c+1} \le x \le \frac{\mu}{1-c}$ (see Figure 1). We remark that if c=0 in (3.4) we recover the circle of radius μ centered at the origin.

(b) If c=1, the integral in (3.3) is immediate and the generatrix curve is given by

(3.5)
$$z_{\mu,1}(x) = \pm \frac{(x-\mu)\sqrt{2x+\mu}}{3\sqrt{\mu}}, \quad x > -\frac{\mu}{2}.$$

It is an algebraic curve of degree 3, since that $9\mu z_{\mu,1}^2 = 2x^3 - 3\mu x^2 + \mu^3$ (see Figure 2).

(c) If c > 1, the generatrix curve is given, up to a constant, by

(3.6)
$$z_{\mu,c}(x) = \pm \frac{\sqrt{(c^2 - 1)x^2 + 2\mu cx + \mu^2}}{c^2 - 1}$$

 $\mp \frac{\mu c}{(c^2 - 1)^{3/2}} \log \left| 2(c^2 - 1)x + 2\mu c + 2\sqrt{(c^2 - 1)((c^2 - 1)x^2 + 2\mu cx + \mu^2)} \right|,$

with $x \le \frac{\mu}{1-c}$ or $x \ge -\frac{\mu}{c+1}$. This curve has two connected components corresponding with these two intervals of variation for x (see Figure 3).

Therefore, we have proved the following local classification result for quadratic rotational Weingarten surfaces:

Theorem 3.1. The only rotational surfaces whose principal curvatures satisfy $k_m = \mu k_p^2$, $\mu \neq 0$, are (open subsets of) the plane, the sphere of radius $|\mu|$ and the rotational surfaces generated by the graphs $z = z_{\mu,c}(x)$, c > 0, described in (3.4), (3.5) and (3.6).

FIGURE 1. Curve $z_{\mu,c}$, $\mu > 0$, 0 < c < 1, and the corresponding rotational surface $(\mu = 1, c = 0.5)$.

FIGURE 2. Curve $z_{\mu,1}$, $\mu > 0$, and the corresponding rotational surface ($\mu = 1$).

FIGURE 3. Curve $z_{\mu,c}$, $\mu > 0$, c > 1 (left: $x \le \frac{\mu}{1-c}$, right: $x \ge -\frac{\mu}{c+1}$), and the corresponding rotational surfaces ($\mu = 1, c = 1.5$).

Acknowledgement. This research was supported by the grants no. PID2022-142559NB-I00 and PID2021-124157NB-I00 funded by MCIN/AEI/10.13039/501100011033, Spain. Third author also by Comunidad Autónoma de la Región de Murcia, Spain, by Fundación Séneca, Regional Agency of Science and Technology, REF, 21899/PI/22.

References

- [1] P. Carretero and I. Castro, A new approach to rotational Weingarten surfaces, Mathematics 10(4) (2022), 578
- [2] I. Castro and I. Castro-Infantes, Plane curves with curvature depending on distance to a line, Diff. Geom. Appl. 44 (2016), 77–97.
- [3] I. Castro, I. Castro-Infantes and J. Castro-Infantes, On a problem of David Singer about prescribing curvature for curves, Geom. Integrability & Quantization 21 (2020), 100–117.
- [4] S.S. Chern, Some new characterizations of the Euclidean sphere, Duke Math. J. 12 (1945), 279–290.
- [5] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. 6 (1841), 309–320.
- [6] H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232–249.
- [7] W. Kühnel and M. Steller, On closed Weingarten surfaces, Monatsh. Math. 146 (2005), 113–126.
- [8] J. Langer and D. Singer, The total squared curvature of closed curves, J. Diff. Geom. 20 (1984), 1–22.
- [9] R. López and A. Pámpano, Classification of rotational surfaces in Euclidean space satisfying a lineal relation between their principal curvatures, Math. Nachr. **293**(4) (2020), 735–753.
- [10] J. Weingarten, Ueber eine Klasse auf einander abwickelbarer Flächen, J. Reine Angew. Math. **59** (1861), 382–393.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JAÉN, JAÉN, SPAIN *Email address*: pch00005@red.ujaen.es

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JAÉN, JAÉN, SPAIN AND IMAG INSTITUTE OF MATHEMATICS, UNIVERSITY OF GRANADA, GRANADA, SPAIN

Email address: icastro@ujaen.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, MURCIA, SPAIN

 $Email\ address: {\tt ildefonso.castro@um.es}$