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Abstract. A specific class of rotational hypersurfaces x with five parameters in the six-
dimensional Euclidean space E6 is investigated. The curvature functions associated with these
hypersurfaces are explicitly computed, and their geometric properties are examined. Further-
more, the action of the Laplace–Beltrami operator on such hypersurfaces is analyzed, and the
conditions under which the relation ∆x = Ax holds for a 6× 6 matrix A are determined.
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1. Introduction

The concept of finite type submanifolds immersed in Em or Em
ν was introduced by Chen [6,

7, 8, 9] using a finite number of eigenfunctions of the Laplacian, and was further developed and
expanded up to the present day.

A related result was given by Takahashi [29], stating that a Euclidean submanifold was of
1-type if and only if it was minimal or minimal in some hypersphere of Em. Closed spherical
submanifolds of 2-type were studied by Barros and Chen [5], and Chen [7]. Takahashi’s theo-
rem was further examined in Em by Garay [20]. Hypersurfaces with constant curvature were
considered by Cheng and Yau [13], while submanifolds with finite type Gauss maps in Em were
investigated by Chen and Piccinni [11]. Hypersurfaces with pointwise 1-type Gauss maps in
(n + 1)-dimensional space were introduced by Dursun [17]. The geometry of submanifolds was
presented by Aminov [2].

In E3, minimal surfaces and spheres were characterized by Takahashi [29] as the only surfaces
satisfying ∆r = λr, for some λ ∈ R. The minimal helicoid possessing a pointwise 1-type Gauss
map of the first kind was studied by Choi and Kim [14]. A class of finite type surfaces of
revolution was obtained by Garay [19]. It was demonstrated by Dillen, Pas, and Verstraelen [15]

46



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 15 (2025)

that the only surfaces satisfying ∆r = Ar + B, with A ∈ Mat(3, 3) and B ∈ Mat(3, 1), are
minimal surfaces, spheres, and circular cylinders.

In E4, general rotational surfaces were investigated by Moore [27, 28]. Hypersurfaces pos-
sessing a harmonic mean curvature vector field were analyzed by Hasanis and Vlachos [23].
Complete hypersurfaces with constant mean curvature were studied by Cheng and Wan [12].
The fourth fundamental form and curvature formulas were investigated by Güler [21].

In the Minkowski 4-space E4
1, an analogue of the surfaces studied by Moore [27, 28] was

presented by Ganchev and Milousheva [18]. The mean curvature vector field of M3
1 satisfying

∆H = αH, for a constant α, was examined by Arvanitoyeorgos, Kaimakamis, and Magid [4].
Meridian surfaces of elliptic or hyperbolic type possessing a pointwise 1-type Gauss map were
investigated by Arslan and Milousheva [3]. A family of right conoid hypersurfaces having a
light-like axis was studied by Li, Güler, and Toda [26].

The twisted hypersurfaces in Euclidean 5-space E5 were studied by Li and Güler [25]. In
addition, a family of helicoidal hypersurfaces in the same space was investigated by Güler [22].

A comprehensive survey of 1-type submanifolds and submanifolds with 1-type Gauss maps
was provided by Chen et al. [10], covering developments over the last forty years.

In this work, a specific class of rotational hypersurfaces in six-dimensional Euclidean space
E6 is investigated. In Section 2, the fundamental notions of six-dimensional Euclidean geometry
are presented. In Section 3, curvature formulas for hypersurfaces in E6 are derived. The concept
of a rotational hypersurface is formulated in Section 4. Finally, in the last section, rotational
hypersurfaces satisfying the condition ∆x = Ax, where A is a 6×6 matrix in E6, are introduced
and examined.

2. Preliminaries

Let Em denote the m-dimensional Euclidean space equipped with the standard Euclidean

metric tensor g̃ = ⟨ , ⟩ =
m∑
i=1

dx2i , where (x1, x2, . . . , xm) is a global coordinate system on Em.

Let M be an m-dimensional Riemannian submanifold of Em.
Let sj denote the j-th elementary symmetric function of the principal curvatures k1, k2, . . . , kn;

that is,

sj = σj(k1, k2, . . . , kn),

where σj is defined by

σj(a1, a2, . . . , an) =
∑

1≤i1<i2<···<ij≤n

ai1ai2 · · · aij .

To express the elementary symmetric function excluding the i-th curvature, we introduce the
notation

rji = σj(k1, k2, . . . , ki−1, ki+1, . . . , kn).

By definition, one has r0i = 1, and sn+1 = sn+2 = · · · = 0.

Definition 2.1. The function sk is referred to as the k-th mean curvature of the hypersurface
M . In particular, the normalized mean curvature is given by H = 1

ns1, while the Gauss–
Kronecker curvature is given by K = sn. A hypersurface M for which sj ≡ 0 is called a
j-minimal hypersurface.
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In En+1, the i-th curvature functions Ci (refer to [1] and [24] for further details), for i =
0, 1, . . . , n, are obtained through the characteristic polynomial of the shape operator S, given by

(2.1) PS(λ) = det(S− λIn) =
n∑

k=0

(−1)k skλ
n−k = 0,

where In denotes the n × n identity matrix. Consequently, the curvature functions are related
to the elementary symmetric functions by the formula

(
n
i

)
Ci = si.

An isometric immersion (M,x) into Euclidean space is said to be of finite type if the position
vector field x : M −→ Em can be expressed as a finite sum of eigenfunctions of the Laplacian ∆
on M ; that is,

x = x0 +

k∑
i=1

xi,

where x0 is a constant map and x1, x2, . . . , xk are non-constant maps satisfying ∆xi = λixi for
some λi ∈ R, i = 1, 2, . . . , k. If the eigenvalues λ1, λ2, . . . , λk are distinct, then the submanifold
M is said to be of k-type. For more details, see [7].

Let x = x(u, v, w, s, t) be an immersion from a 5-dimensional manifold M5 ⊂ E5 into
the six-dimensional Euclidean space E6. The quintuple vector product of five vectors −→x =
(x1, x2, . . . , x6),

−→y = (y1, y2, . . . , y6),
−→z = (z1, z2, . . . , z6),

−→p = (p1, p2, . . . , p6), and −→q =
(q1, q2, . . . , q6) in E6 is defined by the determinant

−→x ×−→y ×−→z ×−→p ×−→q =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 e5 e6
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
z1 z2 z3 z4 z5 z6
p1 p2 p3 p4 p5 p6
q1 q2 q3 q4 q5 q6

∣∣∣∣∣∣∣∣∣∣∣∣
.

For a hypersurface x in E6, the first and second fundamental form matrices (gij)5×5 and (hij)5×5
are given, respectively, by

gij = ⟨xi,xj⟩ , hij = ⟨xij , G⟩ , i, j = 1, 2, . . . , 5,

where xi =
∂x
∂u when i = 1 , xij =

∂2x
∂u∂v when i = 1 and j = 2, and so on. The Gauss map G of

the hypersurface is defined by

(2.2) G =
xu × xv × xw × xs × xt

∥xu × xv × xw × xs × xt∥
,

where ∥ · ∥ denotes the standard Euclidean norm in E6.

3. Curvatures

In this section, we derive the curvature expressions for a general hypersurface given by
x = x(u, v, w, s, t) in the six-dimensional Euclidean space E6.

Theorem 3.1. Let x be an immersion from a 5-dimensional manifold M5 ⊂ E5 into the six-
dimensional Euclidean space E6. Then, the curvature functions Ci for i = 0, 1, . . . , 5 satisfy the
following relations

(3.1) C0 = 1, 5C1 = −b

a
, 10C2 =

c

a
, 10C3 = −d

a
, 5C4 =

e

a
, C5 = − f

a
,
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where the coefficients a,b,c,d,e,f are obtained from the characteristic polynomial of the shape
operator matrix S, given by PS(λ) = aλ5 + bλ4 + cλ3 + dλ2 + eλ + f = 0. Here, a=det (gij),
f = det (hij), where (gij) and (hij) denote the first and second fundamental form matrices of
the hypersurface, respectively.

Proof. The shape operator matrix S of the hypersurface x in E6 is obtained by multiplying
the inverse of the first fundamental form matrix with the second fundamental form matrix. To
determine the curvature functions Ci for i = 0, 1, . . . , 5, we consider the characteristic polynomial
associated with S, given by

PS(λ) = det(S− λI5) = aλ5 + bλ4 + cλ3 + dλ2 + eλ+ f = 0,

where I5 indicates the 5 × 5 identity matrix. The coefficients a,b,c,d,e,f are derived from the
entries of (gij) and (hij) . These coefficients yield the curvature expressions in six-dimensional
space. Accordingly, the mean curvature function is obtained as follows(

5

1

)
C1 = k1 + k2 + k3 + k4 + k5 = −b

a

□

For detailed treatments of the cases in E4 and E5, the reader is referred to the works of Güler
[21], Li and Güler [25], respectively.

4. A Specific Rotational Hypersurface

In this section, the specific rotational hypersurface is introduced, and its differential geometric
characteristics are investigated in the six-dimensional Euclidean space E6.

The rotational hypersurfaces in Riemannian space forms were presented by Do Carmo and
Dajczer [16]. In Euclidean (n+ 1)-space, a rotational hypersurface M is constructed by rotat-
ing a profile curve γ, which does not intersect the axis ℓ, under the action of the orthogonal
transformations that leave a fixed line r invariant pointwise (see [16, Remark 2.3]).

The profile surface γ(u, v) = (f(u, v), 0, g(u, v), 0, h(u, v), 0) is considered, and it is acted upon
by the following block-diagonal rotation matrix

R = diag
(
Rw, Rs, Rt

)
,

where each submatrix Rj , for j = w, s, t, is defined as the planar rotation matrix

Rj =

(
cos j − sin j
sin j cos j

)
.

Through this transformation, the rotational hypersurface is generated by the expression x =
R.γT , and its definition is presented below.

Definition 4.1. A specific rotational hypersurface x = x(u, v, w, s, t) in E6 is defined by the
parametrization

(4.1) x = (f cosw, f sinw, g cos s, g sin s, h cos t, h sin t) ,

where the functions f = f(u, v), g = f(u, v), and h = f(u, v) are assumed to be differentiable.
The parameters, u, v vary over R, while w, s, t are angular variables satisfying 0 ≤ w, s, t < 2π.
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By computing the first partial derivatives of the parametrization given in (4.1) with respect to
the variables u, v, w, s, t, the components of the first fundamental form matrix (gij) are obtained.
The resulting matrix takes the form

(4.2) (gij) = diag
(
(gij)2×2 g33, g44, g55

)
,

where the entries are given by

g11 = f2
u + g2u + h2u,

g12 = fufv + gugv + huhv = g21,

g22 = f2
v + g2v + h2v,

g33 = f2,

g44 = g2,

g55 = h2.

with W =
(
f2
u + g2u + h2u

) (
f2
v + g2v + h2v

)
− (fufv + gugv + huhv)

2 , and the notations fu = ∂f
∂u ,

fv = ∂f
∂v , and similarly for g and h, are used. The determinant of the first fundamental form

matrix (gij) is computed as

g = det (gij) = f2g2h2W.

By applying the Gauss map definition in (2.2) , the Gauss mapG of the rotational hypersurface
described in (4.1) is obtained as

(4.3) G = (G1 cosw,G1 sinw,G2 cos s,G2 sin s,G3 cos t, G3 sin t) ,

where the component functions G1, G2, G3 are given by

G1 =
gvhu − guhv

W 1/2
, G2 =

fuhv − fvhu

W 1/2
, G3 =

fvgu − fugv

W 1/2
.

By utilizing the second-order partial derivatives of the rotational hypersurface described in (4.1),
together with its Gauss map given in (4.3), the second fundamental form matrix (hij) is obtained.
This matrix takes the form

(4.4) (hij) = diag
(
(hij)2×2 h33, h44, h55

)
,

with the entries computed as follows,

h11 = G1fuu +G2guu +G3huu,

h12 = G1fuv +G2guv +G3huv,

h22 = G1fvv +G2gvv +G3hvv,

h33 = G1f,

h44 = G2g,

h55 = G3h.

Accordingly, the determinant of the second fundamental form matrix is given by

h = det (hij) = fghG1G2G3

(
h2
12 − h11h22

)
.

The shape operator matrix S associated with the rotational hypersurface defined in (4.1) is
obtained by utilizing the first and second fundamental form matrices provided in (4.2) and (4.4),
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respectively. It is expressed as

S = diag


g22h11 − g12h12

g11g22 − g2
12

g22h12 − g12h22

g11g22 − g2
12

g11h12 − g12h11

g11g22 − g2
12

g11h22 − g12h12

g11g22 − g2
12

,
h33

g33
,
h44

g44
,
h55

g55

 .

Finally, by applying the curvature identities provided in (3.1), together with the components
of the first and second fundamental form matrices given in (4.2) and (4.4), respectively, the
curvature functions of the trotational hypersurface described in (4.1) are determined as follows.

Theorem 4.2. Let x : M5 −→ E6 be the immersion defined by the parametrization in (4.1).
Then, the hypersurface x is characterized by the following curvature function

5C1 =

(
f2g2h55 + f2h2h44 + g2h2h33

) (
g11g22 − g2

12

)
+ f2g2h2 (g22h11 − 2g12h12 + g11h22)

f2g2h2
(
g11g22 − g2

12

)
where f2g2h2

(
g11g22 − g2

12

)
̸= 0.

Proof. The result follows from computing the trace of the shape operator: C1 =
1
5 Trace(S). □

Theorem 4.3. Let x : M5 −→ E6 be the immersion defined by the parametrization in (4.1). If
the numerator of the curvature function vanishes, that is,(

f2g2h55 + f2h2h44 + g2h2h33

) (
g11g22 − g2

12

)
+ f2g2h2 (g22h11 − 2g12h12 + g11h22) = 0,

then the hypersurface x is 1-minimal; that is, the mean curvature vanishes identically: C1 = 0.

Hence, the following example is presented to illustrate the result.

Example 4.4. Let x : M5 −→ E6 be the immersion defined by the parametrization given in
(4.1). If the profile surface γ(u, v) of x is parametrized on the unit sphere by

f(u, v) = cosu cos v, g(u, v) = sinu cos v, h(u, v) = sin v,

then the shape operator matrix becomes the identity matrix, that is, S = I5. Consequently,
the rotational hypersurface has constant mean curvature given by C1 = 1.

5. A Specific Rotational Hypersurface Satisfying ∆x =Ax in E6

In this section, the Laplace–Beltrami operator associated with a smooth function defined on
a hypersurface in E6 is presented, and its explicit expression is computed in the context of a
rotational hypersurface.

By employing the inverse of the first fundamental form matrix (gij)5×5, and denoting its

determinant by g = det (gij), the Laplace–Beltrami operator can be formulated as follows.

Definition 5.1. Let ϕ = ϕ(x1, x2, x3, x4, x5) be a smooth function of class C5, defined on
domain D ⊂ R5. The Laplace–Beltrami operator ∆ϕ, depending on the first fundamental
form, is defined by

(5.1) ∆ϕ =
1

g1/2

5∑
i,j=1

∂

∂xi

(
g1/2gij ∂ϕ

∂xj

)
,

where (gij) is the inverse matrix of (gij), and g = det(gij).
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For the tri-rotational hypersurface given in (4.1) , the first fundamental form matrix (gij) is
diagonal except for the non-zero off-diagonal terms g12 = g21 ̸= 0. Consequently, the Laplace–
Beltrami operator for the parametrization x = x(u, v, w, s, t) takes the form

(5.2) ∆x =
1

|g|1/2



∂

∂u

(
|g|1/2 g11∂x

∂u

)
− ∂

∂u

(
|g|1/2 g12∂x

∂v

)
− ∂

∂v

(
|g|1/2 g21∂x

∂u

)
+

∂

∂v

(
|g|1/2 g22∂x

∂v

)
+

∂

∂w

(
|g|1/2 g33 ∂x

∂w

)
+

∂

∂s

(
|g|1/2 g44∂x

∂s

)
+

∂

∂t

(
|g|1/2 g55∂x

∂t

)


.

By computing the partial derivatives of the terms appearing in (5.2), with respect to u, v, w, s,
and t, the explicit form of ∆x is obtained.

Theorem 5.2. The Laplace–Beltrami operator ∆x of the tri-rotational hypersurface defined in
(4.1) is expressed as

∆x = (F cosw,F sinw,G cos s,G sin s,H cos t,H sin t) ,

where the functions F = F(u, v), G = G(u, v), and H = H(u, v) are given by

F(u, v) =

(
gu
2g

g11 +
(
g11

)
u

)
fu −

((
gu + gv

2g

)
g12 +

(
g12

)
u
+
(
g12

)
v
− gv

2g
g22 −

(
g22

)
v

)
fv

+g11fuu − 2g12fuv + g22fvv −
1

f
,

G(u, v) =

(
gu
2g

g11 +
(
g11

)
u

)
gu −

((
gu + gv

2g

)
g12 +

(
g12

)
u
+
(
g12

)
v
− gv

2g
g22 −

(
g22

)
v

)
gv

+g11guu − 2g12guv + g22gvv −
1

g
,

H(u, v) =

(
gu
2g

g11 +
(
g11

)
u

)
hu −

((
gu + gv

2g

)
g12 +

(
g12

)
u
+
(
g12

)
v
− gv

2g
g22 −

(
g22

)
v

)
hv

+g11huu − 2g12huv + g22hvv −
1

h
.

gij are the components of the inverse matrix of (gij), and g = det (gij) .

Proof. By performing a direct computation of the Laplace–Beltrami operator as given in (5.2),
the expressions for the functions F(u, v), G(u, v), and H(u, v) can be simplified to the following
clearer forms

F(u, v) = Ωfu −Ψfv + g11fuu − 2g12fuv + g22fvv −
1

f
,

G(u, v) = Ωgu −Ψgv + g11guu − 2g12guv + g22gvv −
1

g
,

H(u, v) = Ωhu −Ψhv + g11huu − 2g12huv + g22hvv −
1

h
,

where
Ω = 2ζ6 +

[
η2 +W−1 (ζ5g11 − (ζ3 + ζ4)g12 + ζ6g22)

]
g11,
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Ψ = ζ1 − ζ2 + ζ3 + ζ4 + ζ5 + η1 + η2

−
[
η1 +W−1 (ζ2g11 − (ζ1 + ζ5)g12 + ζ4g22)

]
g22

+W−1

 (ζ2 + ζ5)g11
− (ζ1 + ζ3 + ζ4 + ζ5)g12

+(ζ4 + ζ6)g22

g12,

W = g11g22 − (g12)
2

g11 = f2
u + g2u + h2u,

g12 = fufv + gugv + huhv = g21,

g22 = f2
v + g2v + h2v,

g33 = f2, g44 = g2, g55 = h2,

ζ1 = fufvv + gugvv + huhvv,

ζ2 = fvfvv + gvgvv + hvhvv,

ζ3 = fvfuu + gvguu + hvhuu,

ζ4 = fufuv + guguv + huhuv,

ζ5 = fvfuv + gvguv + hvhuv,

ζ6 = fufuu + guguu + huhuu,

η1 =
fv
f

+
gv
g

+
hv
h
,

η2 =
fu
f

+
gu
g

+
hu
h
.

□

Therefore, we have the following.

Corollary 5.3. Let x : M5 −→ E6 be a hypersurface immersion with position vector field x,
and let C1 denote its first mean curvature. If G is the Gauss map of x as defined in (2.2), then
the Laplacian of x satisfies the identity

∆x = −5C1G.

Example 5.4. Let x : M5 −→ E6 be the immersion defined as in (4.1). If the generating
surface γ(u, v) of x is parametrized by the unit sphere via

f(u, v) = cosu cos v, g(u, v) = sinu cos v, h(u, v) = sin v,

then the rotational hypersurface satisfies ∆x = Ax, where A = −5I6, and I6 denotes the
identity matrix of order six.
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