ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE available online at https://rjm-cs.utcb.ro Issue 2, Vol. 15 (2025)

Proceedings of the International Conference Riemannian Geometry and Applications - RIGA 2025 Bucharest, Romania, May 23-25, 2025

ON φ -INVARIANT SASAKI-LIKE STATISTICAL SUBMERSIONS

KAZUHIKO TAKANO

ABSTRACT. We discuss Sasaki-like statistical submersions such that the structure vector ξ is horizontal or vertical, and each fiber is φ -invariant. We give some examples of Sasaki-like statistical manifolds and Sasaki-like statistical submersions.

Mathematics Subject Classification (2020): 53B05, 53B12, 53C15.

Key words: Almost contact manifold, statistical manifold, Sasaki-like statistical manifold, statistical submersion, Sasaki-like statistical submersion.

Article history: Received: June 3, 2025 Received in revised form: June 30, 2025 Accepted: July 1, 2025

1. INTRODUCTION

Statistical models in information geometry have a Fisher metric as a Riemannian metric, and admit a torsion-free affine connection which is constructed from expectations of derivatives of a probability density ([3], [4]). This affine connection is called an α -connection, denoted by $\nabla^{(\alpha)}$, where α is a real number, and conjugate relative to the Fisher metric is a $(-\alpha)$ -connection. The 0-connection is a Levi-Civita connection with respect to the Fisher metric. Particularly, $\nabla^{(1)}$ (resp. $\nabla^{(-1)}$) is said to be an exponential connection (resp. mixture connection) or e-connection (resp. m-connection) simply and denoted by $\nabla^{(e)}$ (resp. $\nabla^{(m)}$). The statistical model of an exponential family (resp. mixture family) is 1-flat (resp. (-1)-flat). The e-connection and mconnection are dual with respect to the Fisher metric. The concept of dual connection is very important in information geometry.

Let (M, g) and ∇ be a (semi-)Riemannian manifold and a torsion-free affine connection. A statistical manifold is a smooth manifold with a statistical structure (g, ∇) , and denoted by (M, g, ∇) . We define another affine connection ∇^* with respect to g, and said to be conjugate (or dual). Then (g, ∇^*) is a statistical structure, and (M, g, ∇^*) is a statistical manifold, too. In [13], Noguchi studied statistical manifolds.

Let M and B be two (semi-)Riemannian manifolds of class C^{∞} . A (semi-)Riemannian submersion $\pi: M \to B$ is a mapping of M onto B such that π has maximal rank and π_* preserves lengths of horizontal vectors ([6], [9], [11]). A (semi-)Riemannian submersion π is said to be an almost Hermitian submersion, if M and B are almost Hermitian manifolds and commutes with almost complex structures. Especially, we say that π is a Kählerian submersion if M is a Kählerian manifold [21].

There are many studies of manifolds with geometric structures such as almost complex structures and almost contact structures. In a sense, we can define dual another geometric structures with respect to these geometric structures. In [15], we defined a Kähler-like statistical manifold similar to Kählerian manifold and studied statistical submersion which the total space is a Kähler-like statistical manifold (M, g, ∇, J) and each fiber is *J*-invariant submanifold of *M*. The concept of statistical submersion was defined by Abe and Hasegawa [1]. Also, we defined an analogy of a Sasakian structure on the statistical manifold [16]. We studied the Sasaki-like statistical submersion that the total space is a Sasaki-like statistical manifold (M, g, ∇) with geometric structure (φ, ξ, η) , each fiber is φ -invariant submanifold of *M* and tangent to the vector ξ .

In [8], Furuhata and Hasegawa studied submanifolds of holomorphic statistical manifolds. Recently, we considered anti-holomorphic statistical submersion [10]. Also, we studied locally product-like statistical manifolds and their hypersurfaces [7], locally product-like statistical submersions [17], and generalized Kähler-like statistical submersion [18]. Moreover, the following papers study statistical submersions with other geometric structures: cosymplectic-like statistical submersions [5], quaternionic Kähler-like statistical submersions [19], para-Kähler-like statistical submersions [20], Kenmotsu-like statistical submersions [14], etc.

2. Preliminaries

An *m*-dimensional semi-Riemannian manifold is a smooth manifold M^m furnished with a metric tensor g, where g is a symmetric nondegenerate tensor field on M of constant index. The common value ν of index g on M is called the index of M ($0 \le \nu \le m$) and we denote a semi-Riemannian manifold by M_{ν}^m . If $\nu = 0$, then M is a Riemannian manifold. For each $p \in M$, a tangent vector E to M is spacelike (resp. null, timelike) if g(E, E) > 0 or E = 0 (resp. g(E, E) = 0 and $E \neq 0$, g(E, E) < 0). Let \mathbb{R}_{ν}^m be an *m*-dimensional real vector space with an inner product of signature $(\nu, m - \nu)$ given by

(2.1)
$$\langle x, x \rangle = -\sum_{i=1}^{\nu} x_i^2 + \sum_{i=\nu+1}^{m} x_i^2$$

where $x = (x_1, \ldots, x_m)$ is the natural coordinate of \mathbb{R}^m_{ν} . \mathbb{R}^m_{ν} is called an *m*-dimensional semi-Euclidean space. If $\nu = 0$ (resp. $\nu = 1$), then \mathbb{R}^m (resp. \mathbb{R}^m_1) is an Euclidean space (resp. a Lorentzian space).

Let M be a semi-Riemannian manifold. Denote a torsion-free affine connection by ∇ . The triple (M, g, ∇) is called a statistical manifold if ∇g is symmetric. For the statistical manifold (M, g, ∇) , we define another affine connection ∇^* by

(2.2)
$$Eg(F,G) = g(\nabla_E F,G) + g(F,\nabla_E^*G),$$

for vector fields E, F and G on M. The affine connection ∇^* is called conjugate (or dual) to ∇ with respect to g. The affine connection ∇^* is torsion-free, $\nabla^* g$ is symmetric and satisfies $(\nabla^*)^* = \nabla$. Clearly, the triple (M, g, ∇^*) is statistical. We denote by R and R^* the curvature tensors on M with respect to the affine connection ∇ and its conjugate ∇^* , respectively. Then

we find

(2.3)
$$g(R(E,F)G,H) = -g(G,R^*(E,F)H),$$

for any vector fields E, F, G and H on M, where $R(E, F)G = [\nabla_E, \nabla_F]G - \nabla_{[E,F]}G$. Therefore R vanishes identically if and only if so is R^* . We call flat if R vanishes identically. If the curvature tensor R with respect to the affine connection ∇ satisfies

(2.4)
$$R(E,F)G = c \{ g(F,G)E - g(E,G)F \},\$$

then the statistical manifold (M, g, ∇) is called a space of constant curvature c. The triple (M, g, ∇) is of constant curvature c if and only if so is (M, g, ∇^*) .

We denote by the local orthonomal basis of T_pM for each $p \in M$ by $\{E_1, \ldots, E_m\}$. We define the Ricci tensor of the affine connection ∇ by

$$\operatorname{Ric}(E,F) = \sum_{A=1}^{m} \varepsilon_A g(R(E_A, E)F, E_A),$$

where $\varepsilon_A = g(E_A, E_A) = -1$ or +1 according as E_A is timelike or spacelike. If the Ricci tensor satisfies

(2.5)
$$\operatorname{Ric}(E,F) = k g(E,F),$$

where k is a constant, then (M, g, ∇) is called Einstein.

Let M be a smooth manifold with a tensor field J of type (1,1) on M such that

where I stands for the identity transformation. Then we say that M is an almost complex manifold with almost complex structure J. An almost complex manifold is necessarily orientable and must have an even dimension. We consider the semi-Riemannian manifold on the almost complex manifold M. If J preserves the metric g, that is,

$$(2.7) g(JE, JF) = g(E, F)$$

for vector fields E and F on M, then (M, g, J) is called an almost Hermitian manifold. Now, we consider the semi-Riemannian manifold (M, g) with the almost complex structure J which has another tensor field J^* of type (1, 1) satisfying

(2.8)
$$g(JE, F) + g(E, J^*F) = 0$$

for any vector fields E and F. Then the triple (M, g, J) is called an almost Hermite-like manifold. We see that $(J^*)^* = J$, $(J^*)^2 = -I$ and

(2.9)
$$g(JE, J^*F) = g(E, F).$$

Lemma 2.1. [15] The triple (M, g, J) is an almost Hermite-like manifold if and only if so is (M, g, J^*) .

Next, if J is parallel with respect to the affine connection ∇ , then (M, g, ∇, J) is called a Kähler-like statistical manifold. From (2.8), we get

(2.10)
$$g((\nabla_G J)E, F) + g(E, (\nabla_G^* J^*)F) = 0,$$

for any vector fields E, F and G on M. Hence we have (see [15]) the following

Lemma 2.2. (M, g, ∇, J) is a Kähler-like statistical manifold if and only if so is (M, g, ∇^*, J^*) .

Remark 2.3. Let (M, g, ∇, J) be a Kähler-like statistical manifold. If M is of constant curvature c with respect to the affine connection ∇ , then c = 0 (dim $M \ge 4$), that is, M is flat [22].

We put

$$S_E F = \nabla_E F - \nabla_E^* F,$$

for $E, F \in TM$. Then $S_E F = S_F E$ and $g(S_E F, G) = g(F, S_E G)$ hold. If the curvature tensor R satisfies

(2.11)
$$R(E,F)G = \frac{c}{4} [g(F,G)E - g(E,G)F - g(F,JG)JE + g(E,JG)JF + \{g(E,JF) - g(JE,F)\}JG],$$

then the Kähler-like statistical manifold is called a space of constant holomorphic sectional curvature c. The curvature tensor R satisfies R(E, F)JG = JR(E, F)G and the Bianchi's 1st identity. We put

$$(\nabla_D R)(E,F)G = \nabla_D \{R(E,F)G\} - R(\nabla_D E,F)G - R(E,\nabla_D F)G - R(E,F)\nabla_D G$$

Then it is easy to see from (2.11) that

$$(\nabla_D R)(E,F)G = -\frac{c}{4} \left[g(S_D F,G)E - g(S_D E,G)F - g(S_D F,JG)JE + g(S_D E,JG)JF + \left\{ g(S_D E,JF) - g(JE,S_D F) \right\} JG \right]$$

holds, which implies that the curvature tensor R satisfies the Bianchi's 2nd identity. Moreover, we have from (2.3)

(2.12)
$$R^{*}(E,F)G = \frac{c}{4} \left[g(F,G)E - g(E,G)F - g(F,J^{*}G)J^{*}E + g(E,J^{*}G)J^{*}F + \left\{ g(E,J^{*}F) - g(J^{*}E,F) \right\} J^{*}G \right].$$

Then the Kähler-like statistical manifold (M, g, ∇^*, J^*) is called a space of constant holomorphic sectional curvature c. (M, g, ∇, J) is a space of constant holomorphic sectional curvature c if and only if so is (M, g, ∇^*, J^*) .

Remark 2.4. If M is a Kählerian manifold, then M satisfying (2.11) is a space of constant holomorphic sectional curvature c (see [22]).

Next, let M be a (2n + 1)-dimensional manifold and φ , ξ , η be a tensor field of type (1, 1), a vector field, a 1-form on M respectively. If φ , ξ and η satisfy the following conditions

(2.13)
$$\eta(\xi) = 1, \qquad \varphi^2 E = -E + \eta(E)\xi,$$

for any vector field E on M, then M is said to have an almost contact structure (φ, ξ, η) and is called an almost contact manifold. We find

(2.14)
$$\varphi \xi = 0, \qquad \eta(\varphi E) = 0.$$

Example 2.5. Let \mathbb{R}^3 be a smooth manifold with local coordinate system (x_1, x_2, x_3) and

$$\varphi = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & x_2 & 0 \end{pmatrix}, \qquad \xi = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \eta = (-x_2, 0, 1).$$

Then \mathbb{R}^3 is an almost contact manifold with an almost contact structure (φ, ξ, η) . It is easy to see that $\eta \wedge d\eta = dx_1 \wedge dx_2 \wedge dx_3 \ (\neq 0)$, which means that η is a contact structure.

Example 2.6. Let \mathbb{R}^5 be a smooth manifold with local coordinate system $(x_1, x_2, x_3, x_4, x_5)$ and (0)

$$\varphi = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ x_2 & 0 & x_4 & 0 & 0 \end{pmatrix}, \qquad \xi = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \eta = (-x_4, 0, x_2, 0, 1).$$

Then \mathbb{R}^5 is an almost contact manifold with an almost contact structure (φ, ξ, η) . It is easy to see that

$$\eta \wedge (d\eta)^2 = 2dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_5 \neq 0,$$

which means that η is a contact structure.

Moreover, if we put

(2.15)
$$\eta(E) = \varepsilon g(\xi, E),$$

then we get $g(\xi,\xi) = \varepsilon$, where $\varepsilon = -1$ or +1 according as ξ is timelike or spacelike, respectively. Now, we consider the semi-Riemannian manifold (M, g) with the almost contact structure φ, ξ, η which has another tensor field φ^* of type (1, 1) satisfying

$$(\varphi, \xi, \eta)$$
 which has another tensor field φ^* of type $(1, 1)$ satisfying

(2.16)
$$g(\varphi E, F) + g(E, \varphi^* F) = 0,$$

for any vector fields E and F. Then the pair (M, g) is called an almost contact metric manifold with almost contact structure (φ, ξ, η) . We see that $(\varphi^*)^* = \varphi, (\varphi^*)^2 E = -E + \eta(E)\xi, \varphi^*\xi =$ 0, $\eta(\varphi^* E) = 0$ and

(2.17)
$$g(\varphi E, \varphi^* F) = g(E, F) - \varepsilon \eta(E) \eta(F).$$

Lemma 2.7. [16] The pair (M, g) is an almost contact metric manifold with almost contact structure (φ, ξ, η) if and only if so is (M, g) with (φ^*, ξ, η) .

Next, we give two examples of the almost contact metric manifold.

Example 2.8. We put $M^3 = \{(x_1, x_2, x_3) \mid -\infty < x_i < \infty \ (i = 1, 2, 3)\} = \mathbb{R}^3$ with an almost contact structure (φ, ξ, η) of Example 2.5 and

$$g = \begin{pmatrix} \varepsilon x_2^2 & 1 & -\varepsilon x_2 \\ 1 & 1 & 0 \\ -\varepsilon x_2 & 0 & \varepsilon \end{pmatrix},$$

then (M, g) is an almost contact metric manifold with almost contact structure (φ, ξ, η) and (M,g) is with almost contact structure (φ^*,ξ,η) , where

$$\varphi^* = \begin{pmatrix} -1 & -2 & 0 \\ 1 & 1 & 0 \\ -x_2 & -2x_2 & 0 \end{pmatrix}.$$

We notice that det $g = -\varepsilon$, and the signature of g is (1,2) if ξ is spacelike, is (2,1) if ξ is timelike.

Example 2.9. We put $M^5 = \{(x_1, x_2, x_3, x_4, x_5) | x_2 > 0, x_4 > 0\} \subset \mathbb{R}^5$ with an almost contact structure (φ, ξ, η) of Example 2.6 and

$$g = \begin{pmatrix} \varepsilon x_4^2 & 0 & 0 & 0 & -\varepsilon x_4 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & \varepsilon x_2^2 & 1 & \varepsilon x_2 \\ 0 & 0 & 1 & 1 & 0 \\ -\varepsilon x_4 & 0 & \varepsilon x_2 & 0 & \varepsilon \end{pmatrix},$$

then (M, g) is an almost contact metric manifold with almost contact structure (φ, ξ, η) and (M, g) is with almost contact structure (φ^*, ξ, η) , where

$$\varphi^* = \begin{pmatrix} \frac{\varepsilon}{x_2 x_4} & -\frac{\varepsilon}{x_2 x_4} & -1 & \frac{1}{x_2^2 x_4^2} & 0\\ 0 & 0 & -1 & -1 & 0\\ 1 & 0 & 0 & \frac{\varepsilon}{x_2 x_4} & 0\\ -1 & 1 & 0 & -\frac{\varepsilon}{x_2 x_4} & 0\\ -\frac{x_2^2 - \varepsilon}{x_2} & -\frac{\varepsilon}{x_2} & -x_4 & -\frac{\varepsilon x_2^2 - 1}{x_2^2 x_4} & 0 \end{pmatrix}$$

Also, we find det $g = \varepsilon x_2^2 x_4^2$.

The triple (M, g, ∇) is called a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) satisfying

(2.18)
$$\nabla_E \xi = -\varepsilon \varphi E,$$

(2.19)
$$(\nabla_E \varphi)F = g(E, F)\xi - \varepsilon \eta(F)E.$$

It is clear from $\eta(\varphi F) = 0$ and (2.19) that $g(\nabla_E^* \xi, \varphi F) + \varepsilon g(E, F) - \eta(E)\eta(F) = 0$, which yields that $\nabla_E^* \xi = -\varepsilon \varphi^* E$. From (2.16), we get

(2.20)
$$g((\nabla_G \varphi)E, F) + g(E, (\nabla_G^* \varphi^*)F) = 0,$$

which means that $(\nabla_G^* \varphi^*) F = g(G, F) \xi - \varepsilon \eta(F) G$. Hence we have

Lemma 2.10. The triple (M, g, ∇) is a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) if and only if (M, g, ∇^*) is with Sasaki-like structure (φ^*, ξ, η) .

We give two examples of Sasaki-like statistical manifold.

Example 2.11. Let (M, g) be an almost contact metric manifold with almost contact structure (φ, ξ, η) of Example 2.8. We put the affine connection ∇ as follows:

$$\begin{split} \nabla_{\partial_1}\partial_1 &= -2\varepsilon x_2\partial_2 + \partial_3, \\ \nabla_{\partial_1}\partial_2 &= \nabla_{\partial_2}\partial_1 = \varepsilon x_2\partial_1 + \varepsilon x_2^2\partial_3, \\ \nabla_{\partial_1}\partial_3 &= \nabla_{\partial_3}\partial_1 = \varepsilon\partial_2, \\ \nabla_{\partial_2}\partial_2 &= -\partial_3, \\ \nabla_{\partial_2}\partial_3 &= \nabla_{\partial_3}\partial_2 = -\varepsilon\partial_1 - \varepsilon x_2\partial_3, \\ \nabla_{\partial_3}\partial_3 &= 0, \end{split}$$

where $\partial_i = \partial/\partial x_i$ (i = 1, 2, 3) and $\xi = \partial_3$. Then we find

$$\begin{split} \nabla^*_{\partial_1}\partial_1 &= -2\varepsilon x_2\partial_1 + 2\varepsilon x_2\partial_2 - (2\varepsilon x_2^2 + 1)\partial_3, \\ \nabla^*_{\partial_1}\partial_2 &= \nabla^*_{\partial_2}\partial_1 = -2\varepsilon x_2\partial_1 + \varepsilon x_2\partial_2 - (2\varepsilon x_2^2 + 1)\partial_3, \\ \nabla^*_{\partial_1}\partial_3 &= \nabla^*_{\partial_3}\partial_1 = \varepsilon\partial_1 - \varepsilon\partial_2 + \varepsilon x_2\partial_3, \\ \nabla^*_{\partial_2}\partial_2 &= \partial_3, \\ \nabla^*_{\partial_2}\partial_3 &= \nabla^*_{\partial_3}\partial_2 = 2\varepsilon\partial_1 - \varepsilon\partial_2 + 2\varepsilon x_2\partial_3, \\ \nabla^*_{\partial_3}\partial_3 &= 0. \end{split}$$

Therefore (M, g, ∇) is a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) and (M, g, ∇^*) is with Sasaki-like structure (φ^*, ξ, η) .

In a Sasaki-like statistical manifold (M, g, ∇) of Example 2.11, if we put

$$X_1 = \partial_1 - \partial_2 + x_2 \partial_3, \qquad X_2 = \partial_2, \qquad X_3 = \xi = \partial_3,$$

then $\{X_1, X_2, X_3\}$ is an orthonormal basis such that $g(X_1, X_1) = -1$, $g(X_2, X_2) = 1$, $g(X_3, X_3) = \varepsilon$, that is, X_1 is timelike and X_2 is spacelike. Thus we have

Example 2.12. The affine connections ∇ and ∇^* are rewritten as follows:

$$\nabla_{X_1} X_1 = \nabla_{X_2} X_2 = -X_3,$$

$$2\nabla_{X_1} X_2 = \nabla_{X_2} X_1 = 2X_3,$$

$$\nabla_{X_1} X_3 = \nabla_{X_3} X_1 = \varepsilon (X_1 + 2X_2),$$

$$\nabla_{X_2} X_3 = \nabla_{X_3} X_2 = -\varepsilon (X_1 + X_2),$$

$$\nabla_{X_3} X_3 = 0$$

and

$$\begin{split} \nabla_{X_1}^* X_1 &= \nabla_{X_2}^* X_2 = X_3, \\ \nabla_{X_1}^* X_2 &= 2 \nabla_{X_2}^* X_1 = -2 X_3, \\ \nabla_{X_1}^* X_3 &= \nabla_{X_3}^* X_1 = -\varepsilon (X_1 + X_2), \\ \nabla_{X_2}^* X_3 &= \nabla_{X_3}^* X_2 = \varepsilon (2 X_1 + X_2), \\ \nabla_{X_3}^* X_3 &= 0. \end{split}$$

Also, we get $\varphi X_1 = -X_1 - 2X_2$, $\varphi X_2 = X_1 + X_2$ and $\varphi X_3 = 0$.

Example 2.13. Let (M, g) be an almost contact metric manifold with almost contact structure (φ, ξ, η) of Example 2.9. We put the affine connection ∇ as follows:

$$\begin{split} \nabla_{\partial_1}\partial_1 &= -\varepsilon x_2\partial_1 - \varepsilon x_4\partial_3 - \varepsilon x_4\partial_4 + \varepsilon x_2x_4\partial_5, \\ \nabla_{\partial_1}\partial_2 &= \nabla_{\partial_2}\partial_1 = -\varepsilon x_4\partial_4, \\ \nabla_{\partial_1}\partial_3 &= \nabla_{\partial_3}\partial_1 = \nabla_{\partial_1}\partial_4 = \nabla_{\partial_4}\partial_1 = \varepsilon x_4\partial_2, \\ \nabla_{\partial_1}\partial_5 &= \nabla_{\partial_5}\partial_1 = \varepsilon\partial_3 - \varepsilon x_2\partial_5, \\ \nabla_{\partial_2}\partial_2 &= \nabla_{\partial_4}\partial_4 = \nabla_{\partial_5}\partial_5 = 0, \\ \nabla_{\partial_2}\partial_3 &= \nabla_{\partial_3}\partial_2 = \varepsilon x_2\partial_4 + \partial_5, \\ \nabla_{\partial_2}\partial_4 &= \nabla_{\partial_4}\partial_2 = \partial_5, \\ \nabla_{\partial_2}\partial_5 &= \nabla_{\partial_5}\partial_2 = \varepsilon\partial_4, \\ \nabla_{\partial_3}\partial_3 &= -\varepsilon x_2\partial_1 - \varepsilon x_4\partial_3 + \varepsilon x_4\partial_4 - \varepsilon x_2x_4\partial_5, \\ \nabla_{\partial_3}\partial_4 &= \nabla_{\partial_4}\partial_3 = -\varepsilon x_2\partial_2, \\ \nabla_{\partial_3}\partial_5 &= \nabla_{\partial_5}\partial_4 = -\varepsilon\partial_2, \end{split}$$

where $\partial_i = \partial/\partial x_i$ (i = 1, 2, 3, 4, 5) and $\xi = \partial_5$. Then we find

$$\begin{split} \nabla_{\partial_1}^* \partial_1 &= \frac{\varepsilon(x_2^2 + \varepsilon)}{x_2} \partial_1 + \varepsilon x_4 \partial_3 - \varepsilon x_4 \partial_4 - \frac{\varepsilon x_4(x_2^2 - \varepsilon)}{x_2} \partial_5, \\ \nabla_{\partial_1}^* \partial_2 &= \nabla_{\partial_2}^* \partial_1 = \varepsilon x_4 \partial_4, \\ \nabla_{\partial_1}^* \partial_3 &= \nabla_{\partial_3}^* \partial_1 = \frac{\varepsilon}{x_2^2 x_4} \partial_1 - \varepsilon x_4 \partial_2 + \frac{1}{x_2} \partial_3 - \frac{1}{x_2} \partial_4 - \frac{x_2^2 - \varepsilon}{x_2^2} \partial_5, \\ \nabla_{\partial_1}^* \partial_4 &= \nabla_{\partial_4}^* \partial_1 = \frac{x_2^2 + \varepsilon}{x_2^2 x_4} \partial_1 - \varepsilon x_4 \partial_2 + \frac{1}{x_2} \partial_3 - \frac{1}{x_2} \partial_4 - \frac{x_2^2 - \varepsilon}{x_2^2} \partial_5, \\ \nabla_{\partial_1}^* \partial_5 &= \nabla_{\partial_5}^* \partial_1 = -\frac{1}{x_2 x_4} \partial_1 - \varepsilon \partial_3 + \varepsilon \partial_4 + \frac{\varepsilon(x_2^2 - \varepsilon)}{x_2} \partial_5, \\ \nabla_{\partial_2}^* \partial_2 &= \nabla_{\partial_4}^* \partial_4 = \nabla_{\partial_5}^* \partial_5 = 0, \\ \nabla_{\partial_2}^* \partial_3 &= \nabla_{\partial_3}^* \partial_2 = \frac{x_2^2 + \varepsilon}{x_2^2 x_4} \partial_1 + \frac{1}{x_2} \partial_3 - \frac{\varepsilon(x_2^2 + \varepsilon)}{x_2} \partial_4 + \frac{\varepsilon}{x_2^2} \partial_5, \\ \nabla_{\partial_2}^* \partial_4 &= \nabla_{\partial_4}^* \partial_2 = -\partial_5, \\ \nabla_{\partial_2}^* \partial_3 &= \varepsilon x_2 \partial_1 + 2\varepsilon x_2 \partial_2 + \varepsilon x_4 \partial_3 - \varepsilon x_4 \partial_4 + \varepsilon x_2 x_4 \partial_5, \end{split}$$

$$\begin{split} \nabla^*_{\partial_3}\partial_4 &= \nabla^*_{\partial_4}\partial_3 = \varepsilon x_2\partial_2, \\ \nabla^*_{\partial_3}\partial_5 &= \nabla^*_{\partial_5}\partial_3 = \varepsilon\partial_1 + \varepsilon\partial_2 + \varepsilon x_4\partial_5, \\ \nabla^*_{\partial_4}\partial_5 &= \nabla^*_{\partial_5}\partial_4 = -\frac{\varepsilon}{x_2^2 x_4^2}\partial_1 + \varepsilon\partial_2 - \frac{1}{x_2 x_4}\partial_3 + \frac{1}{x_2 x_4}\partial_4 + \frac{x_2^2 - \varepsilon}{x_2^2 x_4}\partial_5. \end{split}$$

Therefore (M, g, ∇) is a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) and (M, g, ∇^*) is with Sasaki-like structure (φ^*, ξ, η) .

For any vector fields E, F, G on the Sasaki-like statistical manifold, we obtain

(2.21) $R(E, F)\xi = \eta(F)E - \eta(E)F$,

(2.22)
$$R(E,F)\varphi G - \varphi R(E,F)G = \varepsilon \{g(F,\varphi G)E - g(E,\varphi G)F - g(F,G)\varphi E + g(E,G)\varphi F\},\$$

where we used $\eta(S_EF) = -g(\varphi E,F) - g(E,\varphi F).$ From (2.21) or (2.22), we have

Lemma 2.14. Let (M, g, ∇) be a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) . If (M, g, ∇) is of constant curvature c, then $c = \varepsilon$, that is,

$$R(E,F)G = \varepsilon \{g(F,G)E - g(E,G)F\}.$$

On the Sasaki-like statistical manifold, we consider

$$(2.23) \quad R(E,F)G = \frac{1}{4}(c+3\varepsilon) \left\{ g(F,G)E - g(E,G)F \right\} \\ + \frac{1}{4}(c-\varepsilon) \left[\varepsilon \eta(G) \{ \eta(E)F - \eta(F)E \} + \left\{ g(E,G)\eta(F) - g(F,G)\eta(E) \right\} \xi \\ - g(F,\varphi G)\varphi E + g(E,\varphi G)\varphi F + \left\{ g(E,\varphi F) - g(\varphi E,F) \right\} \varphi G \right],$$

where c is a constant [2]. If the curvature tensor R satisfies (2.24), then the Sasaki-like statistical manifold (M, g, ∇) with Sasaki-like structure (φ, ξ, η) , or (M, g, ∇) simply is called a space of constant φ -holomorphic sectional curvature c. The curvature tensor R satisfies (2.21), (2.22) and the Bianchi's 1st identity. If $c = \varepsilon$, then the Sasaki-like statistical manifold is of constant curvature ε . It is easy to see from (2.23) and $\eta(S_D E) = -g(\varphi D, E) - g(D, \varphi E)$ that

$$\begin{split} (\nabla_D R)(E,F)G \\ &= \frac{1}{4}(c+3\varepsilon)\{g(S_D E,G)F - g(S_D F,G)E\} \\ &+ \frac{1}{4}(c-\varepsilon)[\varepsilon g(D,\varphi G)\{\eta(E)F - \eta(F)E\} + \varepsilon\{g(F,\varphi G)\eta(E) - g(E,\varphi G)\eta(F)\}D \\ &+ \varepsilon \eta(G)\{g(D,\varphi E)F - g(D,\varphi F)E - g(E,\varphi F)D + g(F,\varphi E)D\} \\ &+ \varepsilon g(D,G)\{\eta(E)\varphi F - \eta(F)\varphi E\} + \varepsilon\{g(F,G)\eta(E) - g(E,G)\eta(F)\}\varphi D \\ &+ \varepsilon \eta(G)\{g(D,F)\varphi E - g(D,E)\varphi F\} + 2\varepsilon\{g(D,F)\eta(E) - g(D,E)\eta(F)\}\varphi G \\ &+ \{g(E,G)g(D,\varphi F) - g(F,G)g(D,\varphi E) + g(D,G)g(E,\varphi F) \\ &- g(D,G)g(F,\varphi E) - g(D,E)g(F,\varphi G) + g(D,F)g(E,\varphi G)\}\xi \\ &- g(S_D E,\varphi G)\varphi F + g(S_D F,\varphi G)\varphi E - \{g(S_D E,\varphi F) - g(S_D F,\varphi E)\}\varphi G \\ &- \{g(S_D E,G)\eta(F) - g(S_D F,G)\eta(E)\}\xi] \end{split}$$

holds, which denotes that the curvature tensor R satisfies the Bianchi's 2nd identity. Also, we obtain from (2.3)

$$(2.24) \quad R^{*}(E,F)G = \frac{1}{4}(c+3\varepsilon) \left\{ g(F,G)E - g(E,G)F \right\} \\ + \frac{1}{4}(c-\varepsilon) [\varepsilon\eta(G)\{\eta(E)F - \eta(F)E\} + \left\{ g(E,G)\eta(F) - g(F,G)\eta(E) \right\} \\ - g(F,\varphi^{*}G)\varphi^{*}E + g(E,\varphi^{*}G)\varphi^{*}F \\ + \left\{ g(E,\varphi^{*}F) - g(\varphi^{*}E,F) \right\} \varphi^{*}G].$$

Then the Sasaki-like statistical manifold (M, g, ∇^*) with Sasaki-like structure (φ^*, ξ, η) , or (M, g, ∇^*) simply is called a space of constant φ^* -holomorphic sectional curvature c. The triple (M, g, ∇) is of constant φ -holomorphic sectional curvature c if and only if so is (M, g, ∇^*) .

Example 2.15. Let (M, g, ∇) be a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) of Example 2.11. Then (M, g, ∇) is a space of constant φ -holomorphic sectional curvature $c = -3\varepsilon$.

Remark 2.16. If *M* is a Sasakian manifold and $\varepsilon = 1$, then *M* satisfying (2.23) is a space of constant φ -holomorphic sectional curvature *c* [22].

Remark 2.17. Let $H(X) = K(X, \varphi X) = g(R(X, \varphi X)\varphi X, X)$ be a φ -sectional curvature for φ -section in the Sasakian manifold. If M is a Sasakian, then we get H(X) = c for (2.23).

3. STATISTICAL SUBMERSIONS

Let M and B be semi-Riemannian manifolds. A surjective mapping $\pi : M \to B$ is called a semi-Riemannian submersion if π has maximal rank and π_* preserves lengths of horizontal vectors. Let $\pi : M \to B$ be a semi-Riemannian submersion. We put dim M = m and dim B = n. For each point $x \in B$, semi-Riemannian submanifold $\pi^{-1}(x)$ with the induced metric \overline{g} is called a fiber and denoted by \overline{M}_x or \overline{M} simply. We notice that the dimension of each fiber is always m - n (= s). A vector field on M is vertical if it is always tangent to fibers, horizontal if always orthogonal to fibers. We denote the vertical and horizontal subspace in the tangent space T_pM of the total space M by $\mathcal{V}_p(M)$ and $\mathcal{H}_p(M)$ for each point $p \in M$, and the vertical and horizontal distributions in the tangent bundle TM of M by $\mathcal{V}(M)$ and $\mathcal{H}(M)$, respectively. Then TM is the direct sum of $\mathcal{V}(M)$ and $\mathcal{H}(M)$. The projection mappings are denoted $\mathcal{V} : TM \to \mathcal{V}(M)$ and $\mathcal{H} : TM \to \mathcal{H}(M)$ respectively. We call a vector field X on M projectable if there exists a vector field X_* on B such that $\pi_*(X_p) = X_{*\pi(p)}$ for each $p \in M$, and say that X and X_* are π -related. Also, a vector field X on M is called basic if it is projectable and horizontal. Then we have ([6], [9], [11], [12], [22], etc.)

Lemma 3.1. If X and Y are basic vector fields on M which are π -related to X_* and Y_* on B, then

- (1) $g(X,Y) = g_B(X_*,Y_*) \circ \pi$, where g is the metric on M and g_B the metric on B,
- (2) $\mathcal{H}[X,Y]$ is basic and is π -related to $[X_*,Y_*]$,

(3) $\mathcal{H}\nabla'_X Y$ is basic and π -related to $\widehat{\nabla}'_{X_*} Y_*$, where ∇' and $\widehat{\nabla}'$ are the Levi-Civita connections of M and B, respectively.

Let (M, g, ∇) be a statistical manifold and $\pi : M \to B$ be a semi-Riemannian submersion. We denote the affine connections of \overline{M} be $\overline{\nabla}$ and $\overline{\nabla}^*$. Notice that $\overline{\nabla}_U V$ and $\overline{\nabla}^*_U V$ are welldefined vertical vector fields on M for vertical vector fields U and V on M, more precisely $\overline{\nabla}_U V = \mathcal{V} \nabla_U V$ and $\overline{\nabla}^*_U V = \mathcal{V} \nabla^*_U V$. Moreover, $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion-free and conjugate to each other with respect to \overline{g} . The triple $(\overline{M}, \overline{g}, \overline{\nabla})$ is a statistical manifold and so is $(\overline{M}, \overline{g}, \overline{\nabla}^*)$.

We call that $\pi: (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ is a statistical submersion [1] if $\pi: M \to B$ satisfies

(3.1)
$$\pi_*(\nabla_X Y)_p = (\widehat{\nabla}_{X_*} Y_*)_{\pi(p)}$$

for basic vector fields X, Y and $p \in M$. The tensor fields T and A of type (1,2) defined by

$$(3.2) T_E F = \mathcal{H} \nabla_{\mathcal{V}E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{V}E} \mathcal{H} F, A_E F = \mathcal{H} \nabla_{\mathcal{H}E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{H}E} \mathcal{H} F$$

for any vector fields E and F on M. Changing ∇ to ∇^* in the above equations, we set T^* and A^* , respectively. Then we find $T^{**} = T$ and $A^{**} = A$. For vertical vector fields, T and T^* have the symmetry property. For $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$, we obtain

(3.3)
$$g(T_UV, X) = -g(V, T_U^*X), \qquad g(A_XY, U) = -g(Y, A_X^*U).$$

Thus $T_U V$ (resp. $T_U X$) vanishes identically if and only if $T_U^* X$ (resp. $T_U^* V$) vanishes identically. If $T_U V$ (resp. $T_U^* V$) vanishes identically, then π is called with isometric fiber with respect to ∇ (resp. ∇^*). It is known that

Theorem 3.2. [1] Let $\pi : M \to B$ be a semi-Riemannian submersion. Then (M, g, ∇) is a statistical manifold if and only if the following conditions hold:

- (1) $\mathcal{H}S_V X = A_X V A_X^* V$,
- (2) $\mathcal{V}S_X V = T_V X T_V^* X$,
- (3) $(\overline{M}, \overline{g}, \overline{\nabla})$ is a statistical manifold for each $x \in B$,
- (4) $(B, g_B, \widehat{\nabla})$ is a statistical manifold.

For the statistical submersion $\pi: (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$, we have the following Lemmas:.

Lemma 3.3. [15] If X and Y are horizontal vector fields, then $A_X Y = -A_V^* X$.

From (3.3) and Lemma 3.3, the tensor field A vanishes identically if and only if A^* vanishes identically. Since A is related to the integrability of $\mathcal{H}(M)$, it is identically zero if and only if $\mathcal{H}(M)$ is integrable.

Lemma 3.4. [15] For $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$ we have

$$\begin{split} \nabla_U V &= T_U V + \overline{\nabla}_U V, & \nabla^*_U V = T^*_U V + \overline{\nabla}^*_U V, \\ \nabla_U X &= \mathcal{H} \nabla_U X + T_U X, & \nabla^*_U X = \mathcal{H} \nabla^*_U X + T^*_U X, \\ \nabla_X U &= A_X U + \mathcal{V} \nabla_X U, & \nabla^*_X U = A^*_X U + \mathcal{V} \nabla^*_X U, \\ \nabla_X Y &= \mathcal{H} \nabla_X Y + A_X Y, & \nabla^*_X Y = \mathcal{H} \nabla^*_X Y + A^*_X Y. \end{split}$$

Furthermore, if X is basic, then $\mathcal{H}\nabla_U X = A_X U$ and $\mathcal{H}\nabla_U^* X = A_X^* U$.

We define the covariant derivatives ∇T and ∇A by

$$(\nabla_E T)_F G = \nabla_E (T_F G) - T_{\nabla_E F} G - T_F (\nabla_E G),$$

$$(\nabla_E A)_F G = \nabla_E (A_F G) - A_{\nabla_E F} G - A_F (\nabla_E G)$$

for any $E, F, G \in TM$. We change ∇ to ∇^* , then the covariant derivatives ∇^*T^* and ∇^*A^* are defined simiraly. We consider the curvature tensor on the statistical submersion. Let \overline{R} (resp. \overline{R}^*) be the curvature tensor with respect to the induced affine connection $\overline{\nabla}$ (resp. $\overline{\nabla}^*$) of each fiber. Also, let $\widehat{R}(X,Y)Z$ (resp. $\widehat{R}^*(X,Y)Z$) be horizontal vector field such that $\pi_*(\widehat{R}(X,Y)Z) = \widehat{R}(\pi_*X,\pi_*Y)\pi_*Z$ (resp. $\pi_*(\widehat{R}^*(X,Y)Z) = \widehat{R}^*(\pi_*X,\pi_*Y)\pi_*Z$) at each $p \in M$, where \widehat{R} (resp. \widehat{R}^*) is the curvature tensor on B of the affine connection $\widehat{\nabla}$ (resp. $\widehat{\nabla}^*$). Then we have

Theorem 3.5. [15] If $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ is a statistical submersion, then we get for $X, Y, Z, Z' \in \mathcal{H}(M)$ and $U, V, W, W' \in \mathcal{V}(M)$

$$\begin{split} g(R(U,V)W,W') &= g(\overline{R}(U,V)W,W') + g(T_UW,T_V^*W') - g(T_VW,T_U^*W'), \\ g(R(U,V)W,X) &= g((\nabla_UT)_VW,X) - g((\nabla_VT)_UW,X), \\ g(R(U,V)X,W) &= g((\nabla_UT)_VX,W) - g((\nabla_VT)_UX,W), \\ g(R(U,V)X,Y) &= g((\nabla_UA)_XV,Y) - g((\nabla_VA)_XU,Y) + g(T_UX,T_V^*Y) - g(T_VX,T_U^*Y) \\ &- g(A_XU,A_Y^*V) + g(A_XV,A_Y^*U), \\ g(R(X,U)V,W) &= g([\nabla\nabla_X,\overline{\nabla}_U]V,W) - g(\nabla_{[X,U]}V,W) - g(T_UV,A_X^*W) + g(T_U^*W,A_XV), \\ g(R(X,U)V,Y) &= g((\nabla_XT)_UV,Y) - g((\nabla_UA)_XV,Y) + g(A_XU,A_Y^*V) - g(T_UX,T_V^*Y), \\ g(R(X,U)Y,V) &= g((\nabla_XT)_UY,V) - g((\nabla_UA)_XY,V) + g(T_UX,T_VY) - g(A_XU,A_YV), \\ g(R(X,U)Y,Z) &= g((\nabla_XA)_YU,Z) - g(T_UX,A_Y^*Z) - g(T_UY,A_X^*Z) + g(A_XY,T_U^*Z), \\ g(R(X,Y)U,V) &= g([\nabla\nabla_X,\nabla\nabla_Y]U,V) - g((\nabla_YA)_XU,Z) + g(T_U^*Z,\theta_XY), \\ g(R(X,Y)U,Z) &= g((\nabla_XA)_YU,Z) - g((\nabla_YA)_XZ,U) - g(T_UZ,\theta_XY), \\ g(R(X,Y)Z,U) &= g((\nabla_XA)_YZ,U) - g((\nabla_YA)_XZ,U) - g(T_UZ,\theta_XY), \\ g(R(X,Y)Z,Z') &= g(\widehat{R}(X,Y)Z,Z') - g(A_YZ,A_X^*Z') + g(A_XZ,A_Y^*Z') + g(\theta_XY,A_Z^*Z'), \\ \end{split}$$

where we put $\theta_X Y = A_X Y + A_X^* Y = \mathcal{V}[X, Y].$

For each $p \in M$, we denote by $\{E_1, \ldots, E_m\}$, $\{X_1, \ldots, X_n\}$ and $\{U_1, \ldots, U_s\}$ local orthonormal bases of T_pM , $\mathcal{H}_p(M)$ and $\mathcal{V}_p(M)$, respectively such that $E_i = X_i$ $(i = 1, \ldots, n)$ and $E_{n+\alpha} = U_{\alpha}$ $(\alpha = 1, \ldots, s)$. Denote respectively by ω_a^b and ω_a^{*b} the connection forms in terms of local coordinates with respect to $\{E_1, \ldots, E_m\}$ of the affine connection ∇ and its conjugate ∇^* , where a, b run over the range $\{1, \ldots, m\}$. Set $\varepsilon_a = g(E_a, E_a) = -1$ or +1 according as E_a is timelike or spacelike. Also, mean curvature vectors of the affine connections are given by the horizontal vector field $N = \sum \varepsilon_{\alpha} T_{U_{\alpha}} U_{\alpha}$ and $N^* = \sum \varepsilon_{\alpha} T^*_{U_{\alpha}} U_{\alpha}$. If $T_U V = \frac{1}{s} g(U, V)N$ (resp. $T^*_U V = \frac{1}{s} g(U, V)N^*$) holds, then π is called with conformal fiber with respect to ∇ (resp. ∇^*). Moreover, we put $\sigma = \sum \varepsilon_i A_{X_i} X_i$.

Lemma 3.6. [15] g(N, N) and $g(N, N^*)$ are constants on each fiber.

Next, we define the Ricci tensor $\operatorname{Ric}(E, F)$ of the affine connection ∇ for $E, F \in TM$ by

$$\operatorname{Ric}(E,F) = \sum_{i=1}^{n} \varepsilon_{i} g(R(X_{i},E)F,X_{i}) + \sum_{\alpha=1}^{s} \varepsilon_{\alpha} g(R(U_{\alpha},E)F,U_{\alpha}),$$

moreover, we put for $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$

$$\widehat{\operatorname{Ric}}(X,Y) = \sum_{i=1}^{n} \varepsilon_{i} g(\widehat{R}(X_{i},X)Y,X_{i}), \qquad \overline{\operatorname{Ric}}(U,V) = \sum_{\alpha=1}^{s} \varepsilon_{\alpha} g(\overline{R}(U_{\alpha},U)V,U_{\alpha})$$

Changing R (resp. $\widehat{R}, \overline{R}$) to R^* (resp. $\widehat{R}^*, \overline{R}^*$) in the above equations, we set Ric^{*} (resp. $\widehat{\text{Ric}}^*, \overline{\text{Ric}}^*$). Then $\widehat{\text{Ric}}$ (resp. $\widehat{\text{Ric}}^*$) is the horizontal 2-form on M such that $\widehat{\text{Ric}}(X, Y) = \widehat{\text{Ric}}(\pi_*X, \pi_*Y)$ (resp. $\widehat{\text{Ric}}^*(X, Y) = \widehat{\text{Ric}}^*(\pi_*X, \pi_*Y)$), and $\overline{\text{Ric}}$ (resp. $\overline{\text{Ric}}^*$) is the Ricci tensor of each fiber with respect to the induced affine connection $\overline{\nabla}$ (resp. conjugate $\overline{\nabla}^*$ of $\overline{\nabla}$).

4. SASAKI-LIKE STATISTICAL SUBMERSIONS

Let (M, g) be an almost contact metric manifold with almost contact structure (φ, ξ, η) , and (B, g_B) be a semi-Riemannian manifold. The semi-Riemannian submersion $\pi : (M, g) \to (B, g_B)$ is called an almost contact metric submersion. For $X \in \mathcal{H}(M)$, we put ([22])

(4.1)
$$\varphi X = PX + FX, \qquad \varphi^* X = P^* X + F^* X,$$

where $PX, P^*X \in \mathcal{H}(M)$ and $FX, F^*X \in \mathcal{V}(M)$. For $V \in \mathcal{V}(M)$ we set

(4.2)
$$\varphi V = tV + fV, \qquad \varphi^* V = t^*V + f^*V$$

where $tV, t^*V \in \mathcal{H}(M)$ and $fV, f^*V \in \mathcal{V}(M)$. From $(\varphi^*)^* = \varphi$, we find $(P^*)^* = P, (F^*)^* = F, (t^*)^* = t$ and $(f^*)^* = f$. Because of $\varphi^2 = -I + \eta \otimes \xi$, we get

Lemma 4.1. In an almost contact metric submersion, we find

(1) if $\xi \in \mathcal{H}(M)$, then $P^2 = -I - tF + \eta \otimes \xi$, FP + fF = 0, Pt + tf = 0, $f^2 = -I - Ft$. (2) if $\xi \in \mathcal{V}(M)$, then $P^2 = -I - tF$, FP + fF = 0, Pt + tf = 0, $f^2 = -I - Ft + \eta \otimes \xi$.

From $\varphi \xi = 0$ and $\eta(\varphi E) = 0$, we have

Lemma 4.2. In an almost contact metric submersion, we find

- (1) if $\xi \in \mathcal{H}(M)$, then $P\xi = 0$, $F\xi = 0$, $\eta(PX) = 0$ and $\eta(tV) = 0$.
- (2) if $\xi \in \mathcal{V}(M)$, then $t\xi = 0$, $f\xi = 0$, $\eta(FX) = 0$ and $\eta(fV) = 0$.

Because of $g(\varphi E, F) + g(E, \varphi^* F) = 0$ for any vector fields E and F on M, we find

(4.3)
$$g(PX,Y) + g(X,P^*Y) = 0,$$

(4.4)
$$g(FX,V) + g(X,t^*V) = 0,$$

(4.5) $g(tV,Y) + g(V,F^*Y) = 0,$

(4.6)
$$g(fV,W) + g(V,f^*W) = 0.$$

Thus P (resp. F) vanishes identically if and only if so is P^* (resp. t^*), and t (resp. f) vanishes identically is and only if so is F^* (resp. f^*). Thus we get

Lemma 4.3. In an almost contact metric submersion, we find (1) if $\xi \in \mathcal{H}(M)$, then

$$g(PX, P^*Y) = g(X, Y) - g(FX, F^*Y) - \varepsilon \eta(X)\eta(Y),$$

$$g(fU, f^*V) = g(U, V) - g(tU, t^*V).$$

(2) if $\xi \in \mathcal{V}(M)$, then

$$\begin{split} g(PX,P^*Y) &= g(X,Y) - g(FX,F^*Y), \\ g(fU,f^*V) &= g(U,V) - g(tU,t^*V) - \varepsilon \eta(U)\eta(V). \end{split}$$

Lemma 4.4. In an almost contact metric submersion, we find for each $p \in M$

- (1) $\varphi(\mathcal{V}_p(M)) \subset \mathcal{V}_p(M)$ if and only if $\varphi^*(\mathcal{H}_p(M)) \subset \mathcal{H}_p(M)$.
- (2) $\varphi(\mathcal{H}_p(M)) \subset \mathcal{H}_p(M)$ if and only if $\varphi^*(\mathcal{V}_p(M)) \subset \mathcal{V}_p(M)$.
- (3) $\varphi(\mathcal{V}_p(M)) \subset \mathcal{H}_p(M)$ if and only if $\varphi^*(\mathcal{V}_p(M)) \subset \mathcal{H}_p(M)$.
- (4) $\varphi(\mathcal{H}_p(M)) \subset \mathcal{V}_p(M)$ if and only if $\varphi^*(\mathcal{H}_p(M)) \subset \mathcal{V}_p(M)$.

If $\varphi(\mathcal{V}_p(M)) \subset \mathcal{V}_p(M)$ (resp. $\varphi^*(\mathcal{V}_p(M)) \subset \mathcal{V}_p(M)$) for each $p \in M$, then \overline{M} is said to be a φ -invariant (resp. φ^* -invariant) submanifold of M. Then t and F^* (resp. F and t^*) vanish identically. If $\varphi(\mathcal{V}_p(M)) \subset \mathcal{H}_p(M)$ for each $p \in M$, then \overline{M} is said to be a φ -anti-invariant submanifold of M. Since f = 0 is equivalent to $f^* = 0$, \overline{M} is φ -anti-invariant if and only if \overline{M} is φ^* -anti-invariant. Thus, in this paper, it is simply referred to as anti-invariant. Let \overline{f} , $\overline{\xi}$ and $\overline{\eta}$ be a tensor field of type (1,1), vector field and 1-form such that $\overline{f} = f|_{\overline{M}}$, $\overline{\xi} = \xi|_{\overline{M}}$ and $\overline{\eta} = \eta|_{\overline{M}}$, where $f|_{\overline{M}}$ denote the restriction of f to \overline{M} . Also, let \widehat{P} , $\widehat{\xi}$ and $\widehat{\eta}$ be a tensor field of type (1,1), vector field and 1-form such that $\pi_*P = \widehat{P}\pi_*, \pi_*\xi = \widehat{\xi}$ and $\eta(\pi_*X) = \widehat{\eta}(X_*)$ for basic vector field X. From Lemmas 4.1~4.3, we obtain

Theorem 4.5. Let π be an almost contact metric submersion, and \overline{M} be φ -invariant or φ^* invariant of M. If $\xi \in \mathcal{H}(M)$, then

(1) each fiber $(\overline{M}, \overline{g}, \overline{f})$ is an almost Hermite-like manifold.

(2) the base space (B, g_B) is an almost contact metric manifold with almost contact structure $(\widehat{P}, \widehat{\xi}, \widehat{\eta})$.

Theorem 4.6. Let π be an almost contact metric submersion, and \overline{M} be φ -invariant or φ^* invariant of M. If $\xi \in \mathcal{V}(M)$, then

(1) each fiber $(\overline{M}, \overline{g})$ is an almost contact metric manifold with almost contact structure $(\overline{f}, \overline{\xi}, \overline{\eta})$.

(2) the base space (B, q_B, \widehat{P}) is an almost Hermite-like manifold.

Let (M, g, ∇) be a Sasaki-like statistical manifold with a Sasaki-like structure (φ, ξ, η) and $(B, g_B, \widehat{\nabla})$ be a statistical manifold. The statistical submersion $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ is called a Sasaki-like statistical submersion. We put

$$\begin{aligned} (\mathcal{H}\nabla_X P)Y &= \mathcal{H}\nabla_X(PY) - P(\mathcal{H}\nabla_X Y), & (\mathcal{H}\nabla_U P)Y &= \mathcal{H}\nabla_U(PY) - P(\mathcal{H}\nabla_U Y), \\ (\mathcal{V}\nabla_X F)Y &= \mathcal{V}\nabla_X(FY) - F(\mathcal{H}\nabla_X Y), & (\mathcal{V}\nabla_U F)Y &= \overline{\nabla}_U(FY) - F(\mathcal{H}\nabla_U Y), \\ (\mathcal{H}\nabla_X t)V &= \mathcal{H}\nabla_X(tV) - t(\mathcal{V}\nabla_X V), & (\mathcal{H}\nabla_U t)V &= \mathcal{H}\nabla_U(tV) - t(\overline{\nabla}_U V), \\ (\mathcal{V}\nabla_X f)V &= \mathcal{V}\nabla_X(fV) - f(\mathcal{V}\nabla_X V), & (\overline{\nabla}_U f)V &= \overline{\nabla}_U(fV) - f(\overline{\nabla}_U V), \end{aligned}$$

also, we set $(\mathcal{H}\nabla_X^* P^*)Y = \mathcal{H}\nabla_X^* (P^*Y) - P^*(\mathcal{H}\nabla_X^*Y)$, etc. Then we have from (4.3)~(4.6)

Lemma 4.7. If $\pi: (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ is a Sasaki-like statistical submersion, then we find

$$\begin{split} g((\mathcal{H}\nabla_X P)Y,Z) + g(Y,(\mathcal{H}\nabla_X^*P^*)Z) &= 0, \\ g(\mathcal{V}\nabla_X F)Y,V) + g(Y,(\mathcal{H}\nabla_X^*t^*)V) &= 0, \\ g((\mathcal{H}\nabla_V F)Y,V) + g(Y,(\mathcal{H}\nabla_X^*t^*)V) &= 0, \\ g((\mathcal{H}\nabla_X t)V,Y) + g(V,(\mathcal{V}\nabla_X^*F^*)Y) &= 0, \\ g((\mathcal{V}\nabla_X f)V,W) + g(V,(\mathcal{V}\nabla_X^*f^*)W) &= 0, \\ g((\mathcal{V}\nabla_V f)V,W) + g(V,(\mathcal{V}\nabla_V f^*f^*)W) &= 0. \\ g((\mathcal{V}\nabla_V f^*f^*)V,W) &= 0. \\ g((\mathcal{V}\nabla_V f^*f^*)V,W) + g(V,(\mathcal{V}\nabla_V f^*f^*)W) &= 0. \\ g((\mathcal{V}\nabla_V f^*f^*)V,W) &= 0. \\$$

Hence we have

Corollary 4.8. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion. We get (1) $\mathcal{H}\nabla P = 0$ is equivalent to $\mathcal{H}\nabla^* P^* = 0$.

- (2) $\mathcal{V}\nabla F = 0$ is equivalent to $\mathcal{H}\nabla^* t^* = 0$.
- (3) $\mathcal{H}\nabla t = 0$ is equivalent to $\mathcal{V}\nabla^* F^* = 0$.
- (4) $\mathcal{V}\nabla f = 0$ is equivalent to $\mathcal{V}\nabla^* f^* = 0$, where $\mathcal{V}\nabla_U f = \overline{\nabla}_U f$ and $\mathcal{V}\nabla^*_U f = \overline{\nabla}^*_U f$.

Because of $\nabla_E \xi = -\varepsilon \varphi E$ and $(\nabla_E \varphi)G = g(E, G)\xi - \varepsilon \eta(G)E$, we get

Proposition 4.9. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion. We get for any $U \in \mathcal{V}(M)$ and $X \in \mathcal{H}(M)$

(1) if $\xi \in \mathcal{H}(M)$, then

 $\mathcal{H}\nabla_U \xi = -\varepsilon t U, \qquad T_U \xi = -\varepsilon f U, \qquad \mathcal{H}\nabla_X \xi = -\varepsilon P X, \qquad A_X \xi = -\varepsilon F X.$

(2) if $\xi \in \mathcal{V}(M)$, then

$$T_U\xi = -\varepsilon tU, \qquad \nabla_U\xi = -\varepsilon fU, \qquad A_X\xi = -\varepsilon PX, \qquad \mathcal{V}\nabla_X\xi = -\varepsilon FX.$$

Proposition 4.10. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion. We get for any $U, V \in \mathcal{V}(M)$ and $X, Y \in \mathcal{H}(M)$ (1) if $\xi \in \mathcal{H}(M)$, then

$$\begin{split} (\mathcal{H}\nabla_U t)V + T_U(fV) - P(T_UV) &= g(U,V)\xi, \\ (\overline{\nabla}_U f)V + T_U(tV) - F(T_UV) &= 0, \\ (\mathcal{H}\nabla_U P)Y + T_U(FY) - t(T_UY) &= 0, \\ (\mathcal{V}\nabla_U F)Y + T_U(PY) - f(T_UY) &= -\varepsilon\eta(Y)U, \\ (\mathcal{H}\nabla_X t)V + A_X(fV) - P(A_XV) &= 0, \\ (\mathcal{V}\nabla_X f)V + A_X(tV) - F(A_XV) &= 0, \\ (\mathcal{H}\nabla_X P)Y + A_X(FY) - t(A_XY) &= g(X,Y)\xi - \varepsilon\eta(Y)X, \\ (\mathcal{V}\nabla_X F)Y + A_X(PY) - f(A_XY) &= 0. \end{split}$$

(2) if $\xi \in \mathcal{V}(M)$, then

$$\begin{aligned} (\mathcal{H}\nabla_U t)V + T_U(fV) &- P(T_UV) = 0, \\ (\overline{\nabla}_U f)V + T_U(tV) - F(T_UV) &= g(U,V)\xi - \varepsilon\eta(V)U, \\ (\mathcal{H}\nabla_U P)Y + T_U(FY) - t(T_UY) &= 0, \\ (\mathcal{V}\nabla_U F)Y + T_U(PY) - f(T_UY) &= 0, \\ (\mathcal{H}\nabla_X t)V + A_X(fV) - P(A_XV) &= -\varepsilon\eta(V)X, \\ (\mathcal{V}\nabla_X f)V + A_X(tV) - F(A_XV) &= 0, \\ (\mathcal{H}\nabla_X P)Y + A_X(FY) - t(A_XY) &= 0, \\ (\mathcal{V}\nabla_X F)Y + A_X(PY) - f(A_XY) &= 0, \end{aligned}$$

By virtue of Lemmas 4.1, 4.2 and Propositions 4.9, 4.10, we have

Lemma 4.11. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion. We get (1) If $\xi \in \mathcal{H}(M)$, then $\eta(T_U V) = -g(U, fV)$ and $\eta(A_X V) = -g(X, tV)$ hold. Moreover, we find $f^* = -f$.

(2) If $\xi \in \mathcal{V}(M)$, then $\eta(T_UY) = -g(U, FY)$ and $\eta(A_XY) = -g(X, PY)$ hold.

Theorem 4.12. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion with isometric fiber with respect to ∇

(1) If $\xi \in \mathcal{H}(M)$, then each fiber is anti-invariant.

(2) If $\xi \in \mathcal{V}(M)$, then each fiber is φ -invariant. Moreover, each fiber $(\overline{M}, \overline{g}, \overline{\nabla})$ is a Sasaki-like statistical manifold with Sasaki-like structure $(\overline{f}, \overline{\xi}, \overline{\eta})$.

Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion. If the total space (M, g, ∇) is of constant curvature ε , then we get from Lemma 2.14 and Theorem 3.5

(4.7)
$$g(R(U,V)W,W') + g(T_UW,T_V^*W') - g(T_VW,T_U^*W')$$

= $\varepsilon \{ g(V,W)g(U,W') - g(U,W)g(V,W') \},$

- (4.8) $g((\nabla_U T)_V W, X) g((\nabla_V T)_U W, X) = 0,$
- (4.9) $g((\nabla_U T)_V X, W) g((\nabla_V T)_U X, W) = 0,$
- $(4.10) \ g((\nabla_U A)_X V, Y) g((\nabla_V A)_X U, Y) + g(T_U X, T_V^* Y) g(T_V X, T_U^* Y)$

 $-g(A_XU, A_Y^*V) + g(A_XV, A_Y^*U) = 0,$

- $(4.11) \ g([\mathcal{V}\nabla_X, \overline{\nabla}_U]V, W) g(\nabla_{[X,U]}V, W) g(T_UV, A_X^*W) + g(T_U^*W, A_XV) = 0,$
- $(4.12) \ g((\nabla_X T)_U V, Y) g((\nabla_U A)_X V, Y) + g(A_X U, A_Y^* V) g(T_U X, T_V^* Y) = \varepsilon \ g(U, V) g(X, Y),$
- $(4.13) \ g((\nabla_X T)_U Y, V) g((\nabla_U A)_X Y, V) + g(T_U X, T_V Y) g(A_X U, A_Y V)$ $= -\varepsilon g(U, V)g(X, Y),$

 $(4.14) \ g((\nabla_X A)_Y U, Z) - g(T_U X, A_Y^* Z) - g(T_U Y, A_X^* Z) + g(A_X Y, T_U^* Z) = 0,$

(4.15)
$$g([\mathcal{V}\nabla_X, \mathcal{V}\nabla_Y]U, V) - g(\nabla_{[X,Y]}U, V) + g(A_XU, A_Y^*V) - g(A_YU, A_X^*V) = 0,$$

(4.16)
$$g((\nabla_X A)_Y U, Z) - g((\nabla_Y A)_X U, Z) + g(T_U^* Z, \theta_X Y) = 0,$$

(4.17)
$$g((\nabla_X A)_Y Z, U) - g((\nabla_Y A)_X Z, U) - g(T_U Z, \theta_X Y) = 0,$$

(4.18)
$$g(R(X,Y)Z,Z') - g(A_YZ,A_X^*Z') + g(A_XZ,A_Y^*Z') + g(\theta_XY,A_Z^*Z') = \varepsilon \{ g(Y,Z)g(X,Z') - g(X,Z)g(Y,Z') \},$$

for $X, Y, Z, Z' \in \mathcal{H}(M)$ and $U, V, W, W' \in \mathcal{V}(M)$. We discuss a Sasaki-like statistical submersion with conformal fiber with respect to ∇ and ∇^* , that is,

$$T_U V = \frac{1}{s} g(U, V) N,$$
 $T_U^* V = \frac{1}{s} g(U, V) N^*.$

Then we get $T_U X = -\frac{1}{s}g(N^*, X)U$ and $T_U^* X = -\frac{1}{s}g(N, X)U$. It is easy to see from (4.7) that we find

(4.19)
$$\overline{R}(U,V)W = \left\{\varepsilon + \frac{1}{s^2}g(N,N^*)\right\} \left\{g(V,W)U - g(U,W)V\right\}.$$

Because of Lemma 3.6, it should be noticed that $\varepsilon + \frac{1}{s^2}g(N, N^*)$ is a constant on each fiber. Thus we have

Theorem 4.13. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion with conformal fiber with respect to ∇ and ∇^* . If the total space (M, g, ∇) is of constant curvature ε , then each fiber satisfies (4.19).

Corollary 4.14. Let π be a Sasaki-like statistical submersion with isometric fiber with respect to ∇ or ∇^* . If the total space (M, g, ∇) is of constant curvature ε , then each fiber is of constant curvature ε .

By virtue of (4.8), we have

Lemma 4.15. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion with conformal fiber with respect to ∇ . If the total space (M, g, ∇) is of constant curvature ε and $s \ge 2$, then $\mathcal{H}\nabla_U N = 0$ holds.

If the total space (M, g, ∇) is of constant φ -holomorphic sectional curvature c, then we find from (2.23) and Theorem 3.5 If the total space (M, g, ∇) is of constant φ -holomorphic sectional curvature c, then we find from (2.23) and Theorem 3.5:

$$\begin{split} (4.20) & g(\overline{R}(U,V)W,W') + g(T_UW,T_V^*W') - g(T_VW,T_U^*W') \\ &= \frac{1}{4}(c+3\varepsilon) \{g(V,W)g(U,W') - g(U,W)g(V,W') \} \\ &+ \frac{1}{4}(c-\varepsilon) [\varepsilon\eta(W)\{\eta(U)g(V,W') - \eta(V)g(U,W')\} \\ &+ \varepsilon\{g(U,W)\eta(V) - g(V,W)\eta(U)\}\eta(W') - g(V,fW)g(fU,W') \\ &+ g(U,fW)g(fV,W') + \{g(U,fV) - g(fU,V)\}g(fW,W')], \\ (4.21) & g((\nabla_UT)_VW,X) - g((\nabla_VT)_UW,X) \\ &= \frac{1}{4}(c-\varepsilon) [-g(V,fW)g(tU,X) + g(U,fW)g(tV,X) + \{g(U,fV) - g(fU,V)\}g(tW,X)], \\ (4.22) & g((\nabla_UT)_VX,W) - g((\nabla_VT)_UX,W) \\ &= \frac{1}{4}(c-\varepsilon) [-g(V,FX)g(fU,W) + g(U,FX)g(fV,W) + \{g(U,fV) - g(fU,V)\}g(FX,W)], \\ (4.23) & g((\nabla_UA)_XV,Y) - g((\nabla_VA)_XU,Y) + g(T_UX,T_V^*Y) - g(T_VX,T_U^*Y) \\ &- g(A_XU,A_Y^*V) + g(A_XV,A_Y^*U) \\ &= \frac{1}{4}(c-\varepsilon) [-g(V,FX)g(tU,Y) + g(U,FX)g(tV,Y) \\ &+ \{g(U,fV) - g(fU,V)\}g(FX,W) + g(X,tV)g(tV,Y) \\ &+ \{g(U,fV) - g(fV,V)\}g(FX,W) + g(X,U)g(fU,W) \\ &+ \{g(X,tU) - g(FX,U)\}g(fV,W)], \\ (4.24) & g([\nabla\nabla_X,\nabla_U]V,W) - g((\nabla_UA)_XV,Y) + g(A_XU,A_Y^*W) + g(T_U^*W,A_XV), \\ &= \frac{1}{4}(c-\varepsilon) [-g(U,fV)g(FX,W) + g(X,tV)g(fU,W) \\ &+ \{g(X,tU) - g(FX,U)\}g(fV,W)], \\ (4.25) & g((\nabla_XT)_UV,Y) - g((\nabla_UA)_XV,Y) + g(A_XU,A_Y^*V) - g(T_UX,T_Y^*Y) \\ &= \frac{1}{4}(c+3\varepsilon)g(U,V)g(X,Y) \\ &+ g(X,tU)g(tU,Y) + \{g(X,tU) - g(FX,U)\}g(tV,Y) \\ &+ g(X,tV)g(tU,Y) + \{g(X,tU) - g(FX,U)\}g(tV,Y)], \\ (4.26) & g((\nabla_XT)_UY,V) - g((\nabla_UA)_XY,V) + g(T_UX,T_VY) - g(A_XU,A_YV) \\ &= -\frac{1}{4}(c+3\varepsilon)g(U,V)g(X,Y) \\ &+ g(X,tV)g(tU,Y) + \{g(X,tU) - g(FX,U)\}g(FY,V)], \\ (4.26) & g((\nabla_XT)_UY,V) - g((\nabla_UA)_XY,V) + g(T_UX,T_VY) - g(A_XU,A_YV) \\ &= -\frac{1}{4}(c-\varepsilon) [\varepsilon\eta(U)\eta(V)g(X,Y) + \varepsilon\eta(X)\eta(Y)g(U,V) - (U,FY)g(FX,V) \\ &+ g(X,PY)g(fU,V) + \{g(X,tU) - g(FX,U)\}g(FY,V)], \\ (4.27) & g((\nabla_XA)_YU,Z) - g(T_UX,A_Y^*Z) - g(T_UY,A_X^*Z) + g(A_XY,T_U^*Z) \\ &= \frac{1}{4}(c-\varepsilon) [-g(U,FY)g(PX,Z) + g(X,PY)g(U,Z) \\ &+ \{g(X,tU) - g(FX,U)\}g(PY,Z)], \\ \end{cases}$$

$$(4.28) \quad g((\nabla_X A)_Y Z, U) - g((\nabla_Y A)_X Z, U) - g(T_U Z, \theta_X Y) \\ = \frac{1}{4} (c - \varepsilon) \left[-g(Y, PZ)g(FX, U) + g(X, PZ)g(FY, U) + \{g(X, PY) - g(PX, Y)\}g(FZ, U) \right], \\ (4.29) \quad g(\widehat{R}(X, Y)Z, Z') - g(A_Y Z, A_X^* Z') + g(A_X Z, A_Y^* Z') + g(\theta_X Y, A_Z^* Z') \\ = \frac{1}{4} (c + 3\varepsilon) \left\{ g(Y, Z)g(X, Z') - g(X, Z)g(Y, Z') \right\} \\ + \frac{1}{4} (c - \varepsilon) \left[\varepsilon \eta(Z) \{\eta(X)g(Y, Z') - \eta(Y)g(X, Z') \} \right] \\ + \varepsilon \{g(X, Z)\eta(Y) - g(Y, Z)\eta(X)\}\eta(Z') - g(Y, PZ)g(PX, Z') \right] \\ + g(X, PZ)g(PY, Z') + \{g(X, PY) - g(PX, Y)\}g(PZ, Z') \right],$$

for $X, Y, Z, Z' \in \mathcal{H}(M)$ and $U, V, W, W' \in \mathcal{V}(M)$. We assume that π is with conformal fiber with respect to ∇ and ∇^* such that $\xi \in \mathcal{H}(M)$ and each fiber is anti-invariant. From (4.20), we find

 $(4.30) g(\overline{R}(U,V)W,W')$

$$= \left\{ \frac{1}{4} (c+3\varepsilon) + \frac{1}{s^2} g(N,N^*) \right\} \left\{ g(V,W)g(U,W') - g(U,W)g(V,W') \right\}$$

Hence we have

Theorem 4.16. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion with conformal fiber with respect to ∇ and ∇^* such that $\xi \in \mathcal{H}(M)$. If the total space is of constant φ -holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber satisfies (4.30).

Corollary 4.17. Let $\pi : (M, g, \nabla^*) \to (B, g_B, \widehat{\nabla}^*)$ be a Sasaki-like statistical submersion with isometric fiber with respect to ∇ or ∇^* such that $\xi \in \mathcal{H}(M)$. If the total space is of constant φ -holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber is of constant curvature $\frac{1}{4}(c+3\varepsilon)$.

Corollary 4.18. Let $\pi : (M, g, \nabla^*) \to (B, g_B, \widehat{\nabla}^*)$ be a Sasaki-like statistical submersion with conformal fiber with respect to ∇ and ∇^* such that $\xi \in \mathcal{H}(M)$. If the total space is of constant φ^* -holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber satisfies (4.30).

Corollary 4.19. Let $\pi : (M, g, \nabla^*) \to (B, g_B, \widehat{\nabla}^*)$ be a Sasaki-like statistical submersion with isometric fiber with respect to ∇ or ∇^* such that $\xi \in \mathcal{H}(M)$. If the total space is of constant φ^* -holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber is of constant curvature $\frac{1}{4}(c+3\varepsilon)$.

In the case of the Sasaki-like statistical submersion with isometric fiber with respect to ∇ , we get from (4.21)

$$(c - \varepsilon) \left[-g(V, fW)g(tU, X) + g(U, fW)g(tV, X) + \left\{ g(U, fV) - g(fU, V) \right\} g(tW, X) \right] = 0,$$

which implies that $c = \varepsilon$ or

$$t[-g(V, fW)U + g(U, fW)V + \{g(U, fV) - g(fU, V)\}W] = 0.$$

If $-g(V, fW)U + g(U, fW)V + \{g(U, fV) - g(fU, V)\}W = 0$ holds, then f = 0 ($s \ge 3$). Thus we get t = 0 if $f \ne 0$ and $s \ge 3$. From (4.22), we get $c = \varepsilon$ or

$$t^*[g(fU,W)V - g(fV,W)U - \{g(U,fV) - g(fU,V)\}W] = 0,$$

which yields that f = 0, or $t^* = 0$ if $s \ge 3$. Hence we have

Theorem 4.20. Let $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ be a Sasaki-like statistical submersion with isometric fiber with respect to ∇ . If the total space is of constant φ -holomorphic sectional curvature c, then

- (1) $c = \varepsilon$, that is, the total space and each fiber are of constant curvature ε , or
- (2) each fiber is anti-invariant if $s \ge 3$, or
- (3) each fiber is φ -invariant or φ^* -invariant of M if $s \geq 3$.

Corollary 4.21. Let $\pi : (M, g, \nabla^*) \to (B, g_B, \widehat{\nabla}^*)$ be a Sasaki-like statistical submersion with isometric fiber with respect to ∇^* . If the total space is of constant φ^* -holomorphic sectional curvature c, then

- (1) $c = \varepsilon$, that is, the total space and each fiber are of constant curvature ε , or
- (2) each fiber is anti-invariant if $s \ge 3$, or
- (3) each fiber is φ -invariant or φ^* -invariant of M if $s \geq 3$.

Next, we give two examples of Sasaki-like statistical submersion.

Example 4.22. Let π be a Sasaki-like statistical submersion. The total space is a Sasaki-like statistical manifold (M, g, ∇) with Sasaki-like structure (φ, ξ, η) of Example 2.12. For $X_1 \in \mathcal{H}(M)$ and $X_2, X_3 \in \mathcal{V}(M)$, we get

$T_{X_2}X_2 = 0,$	$\overline{\nabla}_{X_2} X_2 = -X_3,$
$T_{X_2}X_3 = T_{X_3}X_2 = -\varepsilon X_1,$	$\overline{\nabla}_{X_2}X_3 = \overline{\nabla}_{X_3}X_2 = -\varepsilon X_2,$
$T_{X_3}X_3 = 0,$	$\overline{\nabla}_{X_3}X_3 = 0,$
$\mathcal{H}\nabla_{X_2}X_1 = 0,$	$T_{X_2}X_1 = 2X_3,$
$\mathcal{H}\nabla_{X_3}X_1 = \varepsilon X_1,$	$T_{X_3}X_1 = 2\varepsilon X_2,$
$A_{X_1}X_2 = 0,$	$\mathcal{V}\nabla_{X_1}X_2 = X_3,$
$A_{X_1}X_3 = \varepsilon X_1,$	$\mathcal{V}\nabla_{X_1}X_3 = 2\varepsilon X_2,$
$\mathcal{H}\nabla_{X_1}X_1 = 0,$	$A_{X_1}X_1 = -X_3.$

Thus each fiber $(\overline{M}, \overline{g}, \overline{\nabla})$ is minimal and is of constant curvature $-\varepsilon$. Also, we find

$$PX_1 = -X_1, \quad FX_1 = -2X_2,$$

 $tX_2 = X_1, \quad fX_2 = X_2, \quad tX_3 = 0, \quad fX_3 = 0.$

Example 4.23. Let π be a Sasaki-like statistical submersion. The total space is a Sasaki-like statistical manifold (M, g, ∇) with Sasaki-like structure (φ, ξ, η) of Example 2.12. For $X_1, X_2 \in$

 $\mathcal{H}(M)$ and $X_3 \in \mathcal{V}(M)$, we get

$$\begin{split} T_{X_3}X_3 &= 0, & \overline{\nabla}_{X_3}X_3 &= 0, \\ \mathcal{H}\nabla_{X_3}X_1 &= \varepsilon(X_1 + 2X_2), & T_{X_3}X_1 &= 0, \\ \mathcal{H}\nabla_{X_3}X_2 &= -\varepsilon(X_1 + X_2), & T_{X_3}X_2 &= 0, \\ A_{X_1}X_3 &= \varepsilon(X_1 + 2X_2), & \mathcal{V}\nabla_{X_3}X_1 &= 0, \\ A_{X_2}X_3 &= -\varepsilon(X_1 + X_2), & \mathcal{V}\nabla_{X_2}X_3 &= 0, \\ \mathcal{H}\nabla_{X_1}X_1 &= \mathcal{H}\nabla_{X_2}X_2 &= 0, & A_{X_1}X_1 &= A_{X_2}X_2 &= -X_3, \\ 2\mathcal{H}\nabla_{X_1}X_2 &= \mathcal{H}\nabla_{X_2}X_1 &= 0, & 2A_{X_1}X_2 &= A_{X_2}X_1 &= 2X_3. \end{split}$$

Thus π is with isometric fiber with respect to ∇ and ∇^* , and the base space is flat. Also, we find F = 0, namely, π is φ^* -invariant. Moreover, t = 0 (φ -invariant) and f = 0 (anti-invariant) are trivial.

5. φ -invariant Sasaki-like statistical submersions

The Sasaki-like statistical submersion $\pi : (M, g, \nabla) \to (B, g_B, \widehat{\nabla})$ is called a φ -invariant if \overline{M} is a φ -invariant submanifold of M, that is, $\varphi(\mathcal{V}_p(M)) \subset \mathcal{V}_p(M)$ (see Lemma 4.4 (1)). In this section, we discuss the two cases of $\xi \in \mathcal{H}(M)$ and $\xi \in \mathcal{V}(M)$ in the φ -invariant Sasaki-like statistical submersion. And we give an example such that t = 0.

5.1. Case of $\xi \in \mathcal{H}(M)$. From Lemmas 4.1, 4.2 and 4.3, we find

Lemma 5.1. Let π be an almost contact metric submersion such that $\xi \in \mathcal{H}(M)$. If \overline{M} is φ -invariant, then we get

$$\begin{aligned} P^2 &= -I + \eta \otimes \xi, & FP + fF = 0, & f^2 &= -I, \\ (P^*)^2 &= -I + \eta \otimes \xi, & P^*t^* + t^*f^* = 0, & (f^*)^2 &= -I. \end{aligned}$$

Moreover, each fiber is of even dimension.

Lemma 5.2. Let π be an almost contact metric submersion such that $\xi \in \mathcal{H}(M)$. If \overline{M} is φ -invariant, then we obtain

$$\begin{array}{ll} P\xi = 0, & F\xi = 0, & \eta(PX) = 0, \\ P^*\xi = 0, & \eta(P^*X) = 0, & \eta(t^*V) = 0. \end{array}$$

Lemma 5.3. Let π be an almost contact metric submersion such that $\xi \in \mathcal{H}(M)$. If \overline{M} is φ -invariant, then we have $g(PX, P^*Y) = g(X, Y) - \varepsilon \eta(X)\eta(Y)$ and $g(fU, f^*V) = g(U, V)$.

Moreover, we have from Propositions 4.9, 4.10 and Lemma 4.11

Lemma 5.4. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$, we get

$$\begin{aligned} \mathcal{H}\nabla_U \xi &= 0, \qquad T_U \xi = -\varepsilon f U, \qquad \mathcal{H}\nabla_X \xi = -\varepsilon P X, \qquad A_X \xi = -\varepsilon F X, \\ \mathcal{H}\nabla_U^* \xi &= -\varepsilon t^* U, \qquad T_U^* \xi = -\varepsilon f^* U, \qquad \mathcal{H}\nabla_X^* \xi = -\varepsilon P^* X, \qquad A_X^* \xi = 0. \end{aligned}$$

Lemma 5.5. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$, we find

(5.1)
$$(\overline{\nabla}_U f)V - F(T_U V) = 0,$$

(5.2)
$$T_U(fV) - P(T_UV) = g(U,V)\xi,$$

(5.3)
$$(\mathcal{V}\nabla_U F)Y + T_U(PY) - f(T_UY) = -\varepsilon\eta(Y)U,$$

(5.4)
$$(\mathcal{H}\nabla_U P)Y + T_U(FY) = 0,$$

(5.5)
$$(\mathcal{V}\nabla_X f)V - F(A_X V) = 0,$$

(5.6)
$$A_X(fV) - P(A_XV) = 0,$$

(5.7)
$$(\mathcal{V}\nabla_X F)Y + A_X(PY) - f(A_X Y) = 0,$$

(5.8)
$$(\mathcal{H}\nabla_X P)Y + A_X(FY) = g(X,Y)\xi - \varepsilon\eta(Y)X.$$

Corollary 5.6. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$, we find

$$\begin{split} (\overline{\nabla}_{U}^{*}f^{*})V + T_{U}^{*}(t^{*}V) &= 0, \\ (\mathcal{H}\nabla_{U}^{*}t^{*})V + T_{U}^{*}(f^{*}V) - P^{*}(T_{U}^{*}V) &= g(U,V)\xi, \\ T_{U}^{*}(P^{*}Y) - f^{*}(T_{U}^{*}Y) &= -\varepsilon\eta(Y)U, \\ (\mathcal{H}\nabla_{U}^{*}P^{*})Y - t^{*}(T_{U}^{*}Y) &= 0, \\ (\mathcal{V}\nabla_{X}^{*}f^{*})V + A_{X}^{*}(t^{*}V) &= 0, \\ (\mathcal{H}\nabla_{X}^{*}t^{*})V + A_{X}^{*}(f^{*}V) - P^{*}(A_{X}^{*}V) &= 0, \\ A_{X}^{*}(P^{*}Y) - f^{*}(A_{X}^{*}Y) &= 0, \\ (\mathcal{H}\nabla_{X}^{*}P^{*})Y - t^{*}(A_{X}^{*}Y) &= g(X,Y)\xi - \varepsilon\eta(Y)X. \end{split}$$

Lemma 5.7. If the Sasaki-like statistical submersion is φ -invariant such that $\xi \in \mathcal{H}(M)$, then we find

$$\begin{split} \eta(T_U V) &= -g(U, fV), \qquad \eta(A_X V) = 0, \qquad f^* = -f, \\ \eta(T_U^* V) &= g(U, fV), \qquad \eta(A_X^* V) = -g(X, t^* V). \end{split}$$

It is easy to see from of Lemmas 5.3 and 5.7 that we find g(fU, fV) = -g(U, V), which implies that $\sum \varepsilon_{\alpha} g(fU_{\alpha}, fU_{\alpha}) = -s$. Thus we have

Proposition 5.8. If g is a positive definite, then the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$ does not exist.

Proposition 5.9. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$, if $U \in \mathcal{V}(M)$ is timelike (resp. spacelike), then $fU \in \mathcal{V}(M)$ is spacelike (resp. timelike).

We consider that the case of g is indefinite. We assume $\mathcal{V}\nabla_X F = 0$ holds. It is clear from (5.7) that $A_X(PY) = f(A_XY)$, which yields that fFX = 0, namely, F = 0. Hence we have from Lemmas 5.4 and 5.5

Theorem 5.10. In the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$, if $\mathcal{V}\nabla_X F = 0$ holds, then

(1) each fiber is φ^* -invariant, moreover, $(\overline{M}, \overline{g}, \overline{\nabla}, \overline{f})$ is a Kähler-like statistical manifold.

(2) the base space $(B, g_B, \widehat{\nabla})$ is a Sasaki-like statistical manifold with Sasaki-like structure $(\widehat{P}, \widehat{\xi}, \widehat{\eta})$.

We suppose the total space is of constant curvature ε . Changing V to fV in (4.12), we get

$$\begin{split} g((\nabla_X T)_U V, P^*Y) &- g((\nabla_U A)_X V, P^*Y) - g((\mathcal{H} \nabla_X P)(T_U V), Y) + g(T_U\{(\mathcal{V} \nabla_X f)V\}, Y) \\ &+ g((\mathcal{H} \nabla_U P)(A_X V), Y) - g(A_X\{(\overline{\nabla}_U f)V\}, Y) + \varepsilon g(U, V)g(PX, Y) + \varepsilon \eta(Y)g(S_U X, V) \\ &- g(A_X U, A_Y^*(fV)) + g(T_U X, T_{fV}^*Y) = -\varepsilon g(U, fV)g(X, Y) - \varepsilon g(U, V)g(PX, Y). \end{split}$$

Also, if we change Y to P^*Y in (4.12), then we find

$$g((\nabla_X T)_U V, P^* Y) - g((\nabla_U A)_X V, P^* Y) - g(A_X U, A_Y^*(fV)) + g(T_U X, T_{fV}^* Y)$$

+ $\varepsilon \eta(Y) g(T_U X, V) = -\varepsilon g(U, V) g(PX, Y).$

Thus we obtain from above two equations

$$g((\mathcal{H}\nabla_X P)(T_U V), Y) - g(T_U\{(\mathcal{V}\nabla_X f)V\}, Y) - g((\mathcal{H}\nabla_U P)(A_X V), Y) + g(A_X\{(\overline{\nabla}_U f)V\}, Y) - \varepsilon\eta(Y)g(T_U V, X) = \varepsilon g(U, fV)g(X, Y).$$

We assume that $\mathcal{H}\nabla P = 0$ and $\mathcal{V}\nabla f = 0$ hold. Then we have

Lemma 5.11. Let M is of constant curvature ε in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$. If $\mathcal{H}\nabla P = 0$ and $\mathcal{V}\nabla f = 0$ hold, then we find $T_U V = -g(U, fV)\xi$. Moreover, the mean curvature vector field N is parallel to the structure vector field ξ if tr $f \neq 0$.

It should be noticed that N = 0 is equivalent to tr f = 0. From (4.7) and Lemma 5.11, we get

$$\overline{R}(U,V)W = \varepsilon \{g(V,W)U - g(U,W)V - g(V,fW)fU + g(U,fW)fV\},\$$

which denotes that $\overline{\operatorname{Ric}}(V, W) = \varepsilon \{ (s-2)g(V, W) - (\operatorname{tr} f)g(V, fW) \}$. Thus we have

Lemma 5.12. Let M be of constant curvature ε in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$. If $\mathcal{H}\nabla P = 0$, $\mathcal{V}\nabla f = 0$, tr f = 0 and $s \ge 3$ hold, then each fiber is Einstein.

Next, let (M, g, ∇) be of constant φ -holomorphic sectional curvature c. Changing X to PX in (4.22), we get

$$\begin{split} g((\nabla_U T)_V X, f^*W) &- g((\nabla_V T)_U X, f^*W) + g(\nabla_U \{(\mathcal{V}\nabla_V F)X\}, W) - g((\mathcal{V}\nabla_{\overline{\nabla}_U V}F)X, W) \\ &- g((\mathcal{V}\nabla_V F)(\mathcal{H}\nabla_U X), W) - g(\nabla_V \{(\mathcal{V}\nabla_U F)X\}, W) + g((\mathcal{V}\nabla_{\overline{\nabla}_V U}F)X, W) \\ &+ g((\mathcal{V}\nabla_U F)(\mathcal{H}\nabla_V X), W) - g((\overline{\nabla}_U f)(T_V X), W) + g((\overline{\nabla}_V f)(T_U X), W) \\ &+ g(T_V \{(\mathcal{H}\nabla_U P)X\}, W) - g(T_U \{(\mathcal{H}\nabla_V P)X\}, W) + \varepsilon g(U, FX)g(V, W) - \varepsilon g(V, FX)g(U, W) \\ &= \frac{1}{4}(c - \varepsilon) \{g(V, FPX)g(fU, W) - g(U, FPX)g(fV, W)\}. \end{split}$$

Also, if we change W to f^*W in (4.22), then we obtain

$$g((\nabla_U T)_V X, f^* W) - g((\nabla_V T)_U X, f^* W) = \frac{1}{4} \{ -g(V, FX)g(U, W) + g(U, FX)g(V, W) \}.$$

Therefore we find from above two equations

$$\begin{split} g(\nabla_U \{(\mathcal{V}\nabla_V F)X\}, W) &- g((\mathcal{V}\nabla_{\overline{\nabla}_U V}F)X, W) - g((\mathcal{V}\nabla_V F)(\mathcal{H}\nabla_U X), W) \\ &- g(\nabla_V \{(\mathcal{V}\nabla_U F)X\}, W) + g((\mathcal{V}\nabla_{\overline{\nabla}_V U}F)X, W) + g((\mathcal{V}\nabla_U F)(\mathcal{H}\nabla_V X), W) \\ &- g((\overline{\nabla}_U f)(T_V X), W) + g((\overline{\nabla}_V f)(T_U X), W) \\ &+ g(T_V \{(\mathcal{H}\nabla_U P)X\}, W) - g(T_U \{(\mathcal{H}\nabla_V P)X\}, W) \\ &= \frac{1}{4}(c-\varepsilon) \{g(V, FPX)g(fU, W) - g(U, FPX)g(fV, W)\} \\ &+ \frac{1}{4}(c+3\varepsilon) \{g(V, FX)g(U, W) - g(U, FX)g(V, W)\}. \end{split}$$

If $\mathcal{H}\nabla_U P = 0$, $\mathcal{V}\nabla_U F = 0$ and $\overline{\nabla}_U f = 0$, then we get

$$(c - \varepsilon)\{g(V, FPX)g(fU, W) - g(U, FPX)g(fV, W)\} + (c + 3\varepsilon)\{g(V, FX)g(U, W) - g(U, FX)g(V, W)\} = 0;$$

moreover, if we change W and X to f^*W and PX, respectively, then above equation can be rewritten as follows:

$$\begin{split} &(c+3\varepsilon)\{g(V,FPX)g(fU,W)-g(U,FPX)g(fV,W)\}\\ &+(c-\varepsilon)\{g(V,FX)g(U,W)-g(U,FX)g(V,W)\}=0. \end{split}$$

Furthermore, it is easy to see from above two equations that

$$(c+\varepsilon)\{g(V,FX)g(U,W) - g(U,FX)g(V,W)\} = 0,$$

which implies that $c = -\varepsilon$ or g(V, FX)g(U, W) - g(U, FX)g(V, W) = 0, that is, (s-1)FX = 0. Hence we have

Theorem 5.13. Let M be of constant φ -holomorphic sectional curvature c in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$. If $\mathcal{H}\nabla_U P = 0$, $\mathcal{V}\nabla_U F = 0$ and $\overline{\nabla}_U f = 0$ hold, then

- (1) $c = -\varepsilon$ or
- (2) each fiber is φ^* -invariant if $s \ge 2$.

Next, changing V to fV in (4.25), we get

$$\begin{split} g((\nabla_X T)_U V, P^*Y) &- g((\nabla_U A)_X V, P^*Y) - g((\mathcal{H} \nabla_X P)(T_U V), Y) \\ &+ g(T_U\{(\mathcal{V} \nabla_X f)V\}, Y) + g((\mathcal{H} \nabla_U P)(A_X V), Y) - g(A_X\{(\overline{\nabla}_U f)V\}, Y) \\ &+ \varepsilon \eta(Y)g(S_U X, V) - g(A_X U, A_Y^*(fV)) + g(T_U X, T_{fV}^*Y) \\ &= \frac{\varepsilon}{4}(c - \varepsilon)\eta(X)\eta(Y)g(U, fV) - \frac{1}{4}(c + 3\varepsilon)\{g(U, fV)g(X, Y) + g(U, V)g(PX, Y)\} \end{split}$$

Also, if we change Y to P^*Y in (4.25), then we obtain

$$g((\nabla_X T)_U V, P^* Y) - g((\nabla_U A)_X V, P^* Y) - g(A_X U, A_Y^*(fV)) + g(T_U X, T_{fV}^* Y) + \varepsilon \eta(Y) g(T_U X, V) = -\frac{1}{4} (c + 3\varepsilon) g(U, V) g(PX, Y) - \frac{1}{4} (c - \varepsilon) g(U, fV) \{g(X, Y) - \varepsilon \eta(X) \eta(Y)\}.$$

It is clear from above two equations that

$$g((\mathcal{H}\nabla_X P)(T_U V), Y) - g(T_U\{(\mathcal{V}\nabla_X f)V\}, Y) - g((\mathcal{H}\nabla_U P)(A_X V), Y) + g(A_X\{(\overline{\nabla}_U f)V\}, Y) - \varepsilon\eta(Y)g(X, T_U V) = \varepsilon g(U, fV)g(X, Y).$$

We assume that $\mathcal{H}\nabla P = 0$ and $\mathcal{V}\nabla f = 0$. Then we find $\eta(Y)g(X, T_UV) = -g(U, fV)g(X, Y)$. Hence we have

Lemma 5.14. Let M be of constant φ -holomorphic sectional curvature c in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$. If $\mathcal{H}\nabla P = 0$ and $\mathcal{V}\nabla f = 0$ hold, then

$$T_U V = -g(U, fV)\xi.$$

From (4.20) and Lemma 5.14, we get

$$\overline{R}(U,V)W = \frac{1}{4}(c+3\varepsilon)\{g(V,W)U - g(U,W)V - g(V,fW)fU + g(U,fW)fV\},\$$

which yields that $\overline{\operatorname{Ric}}(V,W) = \varepsilon \{(s-2)g(V,W) - (\operatorname{tr} f)g(V,fW)\}$. Thus we have

Theorem 5.15. Let M be of constant φ -holomorphic sectional curvature c in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{H}(M)$. In the case of $\mathcal{H}\nabla P = 0$ and $\mathcal{V}\nabla f = 0$, we get

- (1) if $c = -3\varepsilon$, then each fiber is flat.
- (2) if $\operatorname{tr} f = 0$ and $s \ge 3$, then each fiber is Einstein.

5.2. Case of $\xi \in \mathcal{V}(M)$. From Lemmas 4.1, 4.2 and 4.3, we find

Lemma 5.16. Let π be an almost contact metric submersion such that $\xi \in \mathcal{V}(M)$. If \overline{M} is φ -invariant, then we get

$$\begin{aligned} P^2 &= -I, & FP + fF = 0, & f^2 &= -I + \eta \otimes \xi, \\ (P^*)^2 &= -I, & P^*t^* + t^*f^* = 0, & (f^*)^2 &= -I + \eta \otimes \xi. \end{aligned}$$

Lemma 5.17. Let π be an almost contact metric submersion such that $\xi \in \mathcal{V}(M)$. If \overline{M} is φ -invariant, then we obtain

 $\begin{aligned} f\xi &= 0, & \eta(FX) = 0, & \eta(fV) = 0, \\ t^*\xi &= 0, & f^*\xi = 0, & \eta(f^*V) = 0. \end{aligned}$

Lemma 5.18. Let π be an almost contact metric submersion such that $\xi \in \mathcal{V}(M)$. If \overline{M} is φ -invariant, then we have

$$g(PX, P^*Y) = g(X, Y), \qquad g(fU, f^*V) = g(U, V) - \varepsilon \eta(U) \eta(V).$$

Moreover, we have from Propositions 4.9, 4.10 and Lemma 4.11

Lemma 5.19. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, we get

$$T_U \xi = 0, \qquad \nabla_U \xi = -\varepsilon f U, \qquad A_X \xi = -\varepsilon P X, \qquad \mathcal{V} \nabla_X \xi = -\varepsilon F X,$$

$$T_U^* \xi = -\varepsilon t^* U, \qquad \overline{\nabla}_U^* \xi = -\varepsilon f^* U, \qquad A_X^* \xi = -\varepsilon P^* X, \qquad \mathcal{V} \nabla_X^* \xi = 0.$$

Lemma 5.20. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, we find

(5.9)
$$(\overline{\nabla}_U f)V - F(T_U V) = g(U, V)\xi - \varepsilon \eta(V)U,$$

(5.10)
$$T_U(fV) - P(T_UV) = 0,$$

(5.11)
$$(\mathcal{V}\nabla_U F)Y + T_U(PY) - f(T_UY) = 0$$

(5.12)
$$(\mathcal{H}\nabla_U P)Y + T_U(FY) = 0,$$

(5.13)
$$(\mathcal{V}\nabla_X f)V - F(A_X V) = 0,$$

(5.14)
$$A_X(fV) - P(A_XV) = -\varepsilon \eta(V)X,$$

(5.15)
$$(\mathcal{V}\nabla_X F)Y + A_X(PY) - f(A_X Y) = g(X, Y)\xi,$$

(5.16) $(\mathcal{H}\nabla_X P)Y + A_X(FY) = 0.$

Corollary 5.21. For the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, we find

(5.17) $(\overline{\nabla}_U^* f^*) V + T_U^* (t^* V) = g(U, V) \xi - \varepsilon \eta(V) U,$

(5.18)
$$(\mathcal{H}\nabla_U^* t^*) V + T_U^* (f^* V) - P^* (T_U^* V) = 0,$$

- (5.19) $T_U^*(P^*Y) f^*(T_U^*Y) = 0,$
- (5.20) $(\mathcal{H}\nabla_{U}^{*}P^{*})Y t^{*}(T_{U}^{*}Y) = 0,$
- (5.21) $(\mathcal{V}\nabla_X^* f^*) V + A_X^* (t^* V) = 0,$

(5.22)
$$(\mathcal{H}\nabla_X^* t^*)V + A_X^* (f^*V) - P^*(A_X^*V) = -\varepsilon \eta(V)X,$$

(5.23) $A_X^*(P^*Y) - f^*(A_X^*Y) = g(X,Y)\xi,$

(5.24)
$$(\mathcal{H}\nabla_X^* P^*)Y - t^*(A_X^* Y) = 0.$$

Lemma 5.22. If the Sasaki-like statistical submersion is φ -invariant such that $\xi \in \mathcal{V}(M)$, then we find

$$\eta(T_U Y) = -g(U, FY), \qquad \eta(A_X Y) = -g(X, PY), \eta(T_U^* Y) = 0, \qquad \eta(A_X^* Y) = -g(X, P^* Y).$$

From (5.13), $\mathcal{V}\nabla_X f = 0$ if and only if $F(A_X V) = 0$. If we change V to ξ , then we find FPX = 0, namely, FX = 0. Hence we have

Lemma 5.23. In the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, it is equivalent that $\mathcal{V}\nabla_X f = 0$ holds and each fiber is φ^* -invariant.

Because of (5.9), (5.16), Lemmas 5.19 and 5.23, we have

Theorem 5.24. In the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, if $\mathcal{V}\nabla_X f = 0$, then we find

- (1) each fiber $(\overline{M}, \overline{g}, \overline{\nabla})$ is a Sasaki-like statistical manifold with Sasaki-like structure $(\overline{f}, \overline{\xi}, \overline{\eta})$.
- (2) the base space $(B, g_B, \widehat{\nabla}, \widehat{P})$ is a Kähler-like statistical manifold.

We assume that $\mathcal{V}\nabla_X f = 0$ holds. It is easy to see from (5.23) that $A_Y^*(P^*X) - f^*(A_Y^*X) = g(X,Y)\xi$, which means that

$$-A_{P^*X}Y + f^*(A_XY) = g(X,Y)\xi.$$

Moreover, using (5.15), we have

$$(f+f^*)A_XY = A_X(PY) + A_{P^*X}Y.$$

Also, if PY is basic, then we get $A_{PY}U - P(A_YU) = 0$ from (5.12). Therefore we have $g(U, A_X(PY)) + g(U, A_{P^*X}Y) = 0$, which implies that $A_X(PY) + A_{P^*X}Y = 0$. Thus $(f + f^*)A_XY = 0$ holds. When rank $(f + f^*) = \dim \overline{M} - 1$ holds, we obtain $A_XY = -g(X, PY)\xi$. Hence we have

Lemma 5.25. In the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$, if $\mathcal{V}\nabla_X f = 0$ and rank $(f + f^*) = \dim \overline{M} - 1$ hold, then we get $A_X Y = -g(X, PY)\xi$.

We suppose the total space is of constant curvature ε . Because of (4.18) and Lemma 5.25, we get

$$R(X,Y)Z = \varepsilon[g(Y,Z)X - g(X,Z)Y - g(Y,PZ)PX + g(X,PZ)PY + \{g(X,PY) - g(PX,Y)\}PZ].$$

Hence we have

Theorem 5.26. Let M be of constant curvature ε in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$. If $\mathcal{V}\nabla_X f = 0$ and rank $(f + f^*) = \dim \overline{M} - 1$ hold, then the base space $(B, g_B, \widehat{\nabla}, \widehat{P})$ is of constant holomorphic sectional curvature 4ε .

Next, when the total space is of constant φ -holomorphic sectional curvature c, equation (4.31) can be rewritten as follows from Lemma 5.25:

$$\widehat{R}(X,Y)Z = \frac{1}{4}(c+3\varepsilon)[g(Y,Z)X - g(X,Z)Y - g(Y,PZ)PX + g(X,PZ)PY - \{g(X,PY) - g(PX,Y)\}PZ].$$

Thus we have

Theorem 5.27. Let M be of constant φ -holomorphic sectional curvature c in the φ -invariant Sasaki-like statistical submersion such that $\xi \in \mathcal{V}(M)$. If $\mathcal{V}\nabla_X f = 0$ and rank $(f + f^*) = \dim \overline{M} - 1$ hold, then the base space $(B, g_B, \widehat{\nabla}, \widehat{P})$ is of constant holomorphic sectional curvature $c + 3\varepsilon$.

Example 5.28. Let π be a Sasaki-like statistical submersion of Example 4.23. It is easy to see from

$$\begin{split} PX_1 &= -X_1 - 2X_2, \qquad PX_2 &= X_1 + X_2, \\ P^*X_1 &= X_1 + X_2, \qquad P^*X_2 &= -2X_1 - X_2 \end{split}$$

that Theorems 4.6 (2) and 5.24 (2) holds. Moreover, we find $A_{X_i}X_j = -g(X_i, PX_j)\xi$ (i, j = 1, 2) (see Lemma 5.25).

References

- N. Abe and K. Hasegawa, An affine submersion with horizontal distribution and its applications, Differential Geom. Appl. 14 (2001), 235–250.
- [2] P. Alegre and A. Carriazo, Semi-Riemannian Sasakian space forms, Bull. Malays. Math. Sci. Soc. 41 (2018), 1–14.
- [3] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, 28 Springer-Verlag, 1985.
- [4] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS & Oxford University Press, 2000.
- [5] H. Aytimur and C. Özgür, On cosymplectic-like statistical submersions, Mediterranean J. Math. 16(3) (2024), 70.
- [6] A. Besse, *Einstein Manifolds*, Springer-Verlag, 1987.
- [7] E. Erkan, K. Takano and M. Gülbahar, Locally product-like statistical manifolds and their hypersurfaces, International Electronic Journal of Geometry 16(2) (2023), 435-450.
- [8] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in Geometry of Cauchy-Riemann Submanifolds, Springer, Singapore, 2016, 179–215.
- [9] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715– 738.
- [10] S. Kazan and K. Takano, Anti-invariant holomorphic statistical submersions, Results Math. 78(4) (2023), 128.
- [11] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
- [12] B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.
- [13] M. Noguchi, *Geometry of statistical manifolds*, Differential Geom. Appl. 2 (1992), 197–222.
- [14] M. D. Siddiqi, A. N. Siddiqui, F. Mofarreh and H. Aytimur, A study of Kenmotsu-like statistical submersions, Symmetry 14 (2022), 1681.
- [15] K. Takano, Statistical manifolds with almost complex structures and its statistical submersions, Tensor, N. S. 65 (2004), 128–142.
- [16] K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J. Geom. 85 (2006), 171–187.
- [17] K. Takano, E. Erkan and M. Gülbahar, Locally product-like statistical submersions, Turkish J. Math. 47(2) (2023), 846–869.
- [18] K. Takano and S. Kazan, Statistical submersions with parallel almost complex structures, Mediterranean J. Math. 21 (2024), 109.
- [19] A. D. Vîlcu and G. E. Vîlcu, Statistical manifolds with almost quaterninonic structures and quaternionic Kähler-like statistical submersions, Entropy 17 (2015), 6213–6228.
- [20] G. E. Vilcu, Almost product structures on statistical manifolds and para-Kähler-like statistical submersions, Bull. Sci. Math. 171 (2021), 103018.
- [21] B. Watson, Almost Hermitian submersion, J. Differential Geometry 11 (1976), 147–165.
- [22] K. Yano and M. Kon, Structures on Manifolds, World Scientific, 1984.

DEPARTMENT OF MATHEMATICS, INSTITUTE OF HUMANITIES, SHINSHU UNIVERSITY, MATSUMOTO, JAPAN *Email address*: ktakano@shinshu-u.ac.jp