
Romanian Journal of Mathematics and Computer Science
available online at https://rjm-cs.utcb.ro

Issue 2, Vol. 15 (2025)

Proceedings of the International Conference Riemannian Geometry and Applications - RIGA 2025

Bucharest, Romania, May 23-25, 2025

ON φ-INVARIANT SASAKI-LIKE STATISTICAL SUBMERSIONS

KAZUHIKO TAKANO

Abstract. We discuss Sasaki-like statistical submersions such that the structure vector ξ is
horizontal or vertical, and each fiber is φ-invariant. We give some examples of Sasaki-like
statistical manifolds and Sasaki-like statistical submersions.

Mathematics Subject Classification (2020): 53B05, 53B12, 53C15.
Key words: Almost contact manifold, statistical manifold, Sasaki-like statistical manifold,
statistical submersion, Sasaki-like statistical submersion.

Article history:

Received: June 3, 2025

Received in revised form: June 30, 2025

Accepted: July 1, 2025

1. Introduction

Statistical models in information geometry have a Fisher metric as a Riemannian metric, and
admit a torsion-free affine connection which is constructed from expectations of derivatives of a
probability density ([3], [4]). This affine connection is called an α-connection, denoted by ∇(α),
where α is a real number, and conjugate relative to the Fisher metric is a (−α)-connection. The

0-connection is a Levi-Civita connection with respect to the Fisher metric. Particularly, ∇(1)

(resp. ∇(−1)) is said to be an exponential connection (resp. mixture connection) or e-connection

(resp. m-connection) simply and denoted by ∇(e) (resp. ∇(m)). The statistical model of an
exponential family (resp. mixture family) is 1-flat (resp. (−1)-flat). The e-connection and m-
connection are dual with respect to the Fisher metric. The concept of dual connection is very
important in information geometry.

Let (M, g) and ∇ be a (semi-)Riemannian manifold and a torsion-free affine connection. A
statistical manifold is a smooth manifold with a statistical structure (g,∇), and denoted by
(M, g,∇). We define another affine connection ∇∗ with respect to g, and said to be conjugate
(or dual). Then (g,∇∗) is a statistical structure, and (M, g,∇∗) is a statistical manifold, too.
In [13], Noguchi studied statistical manifolds.

Let M and B be two (semi-)Riemannian manifolds of class C∞. A (semi-)Riemannian sub-
mersion π : M → B is a mapping of M onto B such that π has maximal rank and π∗ preserves
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lengths of horizontal vectors ([6], [9], [11]). A (semi-)Riemannian submersion π is said to be
an almost Hermitian submersion, if M and B are almost Hermitian manifolds and commutes
with almost complex structures. Especially, we say that π is a Kählerian submersion if M is a
Kählerian manifold [21].

There are many studies of manifolds with geometric structures such as almost complex struc-
tures and almost contact structures. In a sense, we can define dual another geometric structures
with respect to these geometric structures. In [15], we defined a Kähler-like statistical mani-
fold similar to Kählerian manifold and studied statistical submersion which the total space is
a Kähler-like statistical manifold (M, g,∇, J) and each fiber is J-invariant submanifold of M .
The concept of statistical submersion was defined by Abe and Hasegawa [1]. Also, we defined
an analogy of a Sasakian structure on the statistical manifold [16]. We studied the Sasaki-like
statistical submersion that the total space is a Sasaki-like statistical manifold (M, g,∇) with
geometric structure (φ, ξ, η), each fiber is φ-invariant submanifold of M and tangent to the
vector ξ.

In [8], Furuhata and Hasegawa studied submanifolds of holomorphic statistical manifolds.
Recently, we considered anti-holomorphic statistical submersion [10]. Also, we studied locally
product-like statistical manifolds and their hypersurfaces [7], locally product-like statistical sub-
mersions [17], and generalized Kähler-like statistical submersion [18]. Moreover, the following
papers study statistical submersions with other geometric structures: cosymplectic-like sta-
tistical submersions [5], quaternionic Kähler-like statistical submersions [19], para-Kähler-like
statistical submersions [20], Kenmotsu-like statistical submersions [14], etc.

2. Preliminaries

An m-dimensional semi-Riemannian manifold is a smooth manifold Mm furnished with a
metric tensor g, where g is a symmetric nondegenerate tensor field on M of constant index.
The common value ν of index g on M is called the index of M (0 ≤ ν ≤ m) and we denote
a semi-Riemannian manifold by Mm

ν . If ν = 0, then M is a Riemannian manifold. For each
p ∈ M , a tangent vector E to M is spacelike (resp. null, timelike) if g(E,E) > 0 or E = 0 (resp.
g(E,E) = 0 and E ̸= 0, g(E,E) < 0). Let Rm

ν be an m-dimensional real vector space with an
inner product of signature (ν,m− ν) given by

(2.1) ⟨x, x⟩ = −
ν∑

i=1

x2i +

m∑
i=ν+1

x2i ,

where x = (x1, . . . , xm) is the natural coordinate of Rm
ν . Rm

ν is called an m-dimensional semi-
Euclidean space. If ν = 0 (resp. ν = 1), then Rm (resp. Rm

1 ) is an Euclidean space (resp. a
Lorentzian space).

Let M be a semi-Riemannian manifold. Denote a torsion-free affine connection by ∇. The
triple (M, g,∇) is called a statistical manifold if ∇g is symmetric. For the statistical manifold
(M, g,∇), we define another affine connection ∇∗ by

(2.2) Eg(F,G) = g(∇EF,G) + g(F,∇∗
EG),

for vector fields E,F and G on M . The affine connection ∇∗ is called conjugate (or dual) to
∇ with respect to g. The affine connection ∇∗ is torsion-free, ∇∗g is symmetric and satisfies
(∇∗)∗ = ∇. Clearly, the triple (M, g,∇∗) is statistical. We denote by R and R∗ the curvature
tensors on M with respect to the affine connection ∇ and its conjugate ∇∗, respectively. Then
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we find

(2.3) g(R(E,F )G,H) = −g(G,R∗(E,F )H),

for any vector fields E,F,G and H on M , where R(E,F )G = [∇E ,∇F ]G−∇[E,F ]G. Therefore R
vanishes identically if and only if so is R∗. We call flat if R vanishes identically. If the curvature
tensor R with respect to the affine connection ∇ satisfies

(2.4) R(E,F )G = c { g(F,G)E − g(E,G)F },

then the statistical manifold (M, g,∇) is called a space of constant curvaure c. The triple
(M, g,∇) is of constant curvature c if and only if so is (M, g,∇∗).

We denote by the local orthonomal basis of TpM for each p ∈ M by {E1, . . . , Em}. We define
the Ricci tensor of the affine connection ∇ by

Ric(E,F ) =

m∑
A=1

εAg(R(EA, E)F,EA),

where εA = g(EA, EA) = −1 or +1 according as EA is timelike or spacelike. If the Ricci tensor
satisfies

(2.5) Ric(E,F ) = k g(E,F ),

where k is a constant, then (M, g,∇) is called Einstein.
Let M be a smooth manifold with a tensor field J of type (1, 1) on M such that

(2.6) J2 = −I,

where I stands for the identity transformation. Then we say that M is an almost complex
manifold with almost complex structure J . An almost complex manifold is necessarily orientable
and must have an even dimension. We consider the semi-Riemannian manifold on the almost
complex manifold M . If J preserves the metric g, that is,

(2.7) g(JE, JF ) = g(E,F )

for vector fields E and F on M , then (M, g, J) is called an almost Hermitian manifold. Now,
we consider the semi-Riemannian manifold (M, g) with the almost complex structure J which
has another tensor field J∗ of type (1, 1) satisfying

(2.8) g(JE, F ) + g(E, J∗F ) = 0

for any vector fields E and F . Then the triple (M, g, J) is called an almost Hermite-like manifold.
We see that (J∗)∗ = J, (J∗)2 = −I and

(2.9) g(JE, J∗F ) = g(E,F ).

Lemma 2.1. [15] The triple (M, g, J) is an almost Hermite-like manifold if and only if so is
(M, g, J∗).

Next, if J is parallel with respect to the affine connection ∇, then (M, g,∇, J) is called a
Kähler-like statistical manifold. From (2.8), we get

(2.10) g((∇GJ)E,F ) + g(E, (∇∗
GJ

∗)F ) = 0,

for any vector fields E,F and G on M . Hence we have (see [15]) the following

Lemma 2.2. (M, g,∇, J) is a Kähler-like statistical manifold if and only if so is (M, g,∇∗, J∗).
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Remark 2.3. Let (M, g,∇, J) be a Kähler-like statistical manifold. IfM is of constant curvature
c with respect to the affine connection ∇, then c = 0 (dimM ≥ 4), that is, M is flat [22].

We put

SEF = ∇EF −∇∗
EF,

for E,F ∈ TM . Then SEF = SFE and g(SEF,G) = g(F, SEG) hold. If the curvature tensor R
satisfies

R(E,F )G =
c

4
[ g(F,G)E − g(E,G)F − g(F, JG)JE + g(E, JG)JF(2.11)

+{ g(E, JF )− g(JE, F )}JG ],

then the Kähler-like statistical manifold is called a space of constant holomorphic sectional
curvature c. The curvature tensor R satisfies R(E,F )JG = JR(E,F )G and the Bianchi’s 1st
identitiy. We put

(∇DR)(E,F )G = ∇D{R(E,F )G} −R(∇DE,F )G−R(E,∇DF )G−R(E,F )∇DG.

Then it is easy to see from (2.11) that

(∇DR)(E,F )G = − c

4
[ g(SDF,G)E − g(SDE,G)F − g(SDF, JG)JE + g(SDE, JG)JF

+{ g(SDE, JF )− g(JE, SDF )}JG ]

holds, which implies that the curvature tensor R satisfies the Bianchi’s 2nd identity. Moreover,
we have from (2.3)

R∗(E,F )G =
c

4
[ g(F,G)E − g(E,G)F − g(F, J∗G)J∗E + g(E, J∗G)J∗F(2.12)

+{ g(E, J∗F )− g(J∗E,F )}J∗G ].

Then the Kähler-like statistical manifold (M, g,∇∗, J∗) is called a space of constant holomor-
phic sectional curvature c. (M, g,∇, J) is a space of constant holomorphic sectional curvature c
if and only if so is (M, g,∇∗, J∗).

Remark 2.4. If M is a Kählerian manifold, then M satisfying (2.11) is a space of constant
holomorphic sectional curvature c (see [22]).

Next, let M be a (2n+ 1)-dimensional manifold and φ, ξ, η be a tensor field of type (1, 1), a
vector field, a 1-form on M respectively. If φ, ξ and η satisfy the following conditions

(2.13) η(ξ) = 1, φ2E = −E + η(E)ξ,

for any vector field E on M , then M is said to have an almost contact structure (φ, ξ, η) and is
called an almost contact manifold. We find

(2.14) φξ = 0, η(φE) = 0.

Example 2.5. Let R3 be a smooth manifold with local coordinate system (x1, x2, x3) and

φ =

 0 1 0

−1 0 0

0 x2 0

 , ξ =

 0

0

1

 , η = (−x2, 0, 1).

Then R3 is an almost contact manifold with an almost contact structure (φ, ξ, η). It is easy
to see that η ∧ dη = dx1 ∧ dx2 ∧ dx3 (̸= 0), which means that η is a contact structure.
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Example 2.6. Let R5 be a smooth manifold with local coordinate system (x1, x2, x3, x4, x5)
and

φ =



0 0 1 0 0

0 0 0 1 0

−1 0 0 0 0

0 −1 0 0 0

x2 0 x4 0 0

 , ξ =



0

0

0

0

1

 , η = (−x4, 0, x2, 0, 1).

Then R5 is an almost contact manifold with an almost contact structure (φ, ξ, η). It is easy
to see that

η ∧ (dη)2 = 2dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ̸= 0,

which means that η is a contact structure.

Moreover, if we put

(2.15) η(E) = εg(ξ, E),

then we get g(ξ, ξ) = ε, where ε = −1 or +1 according as ξ is timelike or spacelike, respectively.
Now, we consider the semi-Riemannian manifold (M, g) with the almost contact structure

(φ, ξ, η) which has another tensor field φ∗ of type (1, 1) satisfying

(2.16) g(φE,F ) + g(E,φ∗F ) = 0,

for any vector fields E and F . Then the pair (M, g) is called an almost contact metric manifold
with almost contact structure (φ, ξ, η). We see that (φ∗)∗ = φ, (φ∗)2E = −E + η(E)ξ, φ∗ξ =
0, η(φ∗E) = 0 and

(2.17) g(φE,φ∗F ) = g(E,F )− εη(E)η(F ).

Lemma 2.7. [16] The pair (M, g) is an almost contact metric manifold with almost contact
structure (φ, ξ, η) if and only if so is (M, g) with (φ∗, ξ, η).

Next, we give two examples of the almost contact metric manifold.

Example 2.8. We put M3 = {(x1, x2, x3) | − ∞ < xi < ∞ (i = 1, 2, 3)} = R3 with an almost
contact structure (φ, ξ, η) of Example 2.5 and

g =

 εx22 1 −εx2

1 1 0

−εx2 0 ε

 ,

then (M, g) is an almost contact metric manifold with almost contact structure (φ, ξ, η) and
(M, g) is with almost contact structure (φ∗, ξ, η), where

φ∗ =

 −1 −2 0

1 1 0

−x2 −2x2 0

 .

We notice that det g = −ε, and the signature of g is (1, 2) if ξ is spacelike, is (2, 1) if ξ is
timelike.
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Example 2.9. We put M5 = {(x1, x2, x3, x4, x5) |x2 > 0, x4 > 0} ⊂ R5 with an almost contact
structure (φ, ξ, η) of Example 2.6 and

g =



εx24 0 0 0 −εx4

0 −1 0 0 0

0 0 εx22 1 εx2

0 0 1 1 0

−εx4 0 εx2 0 ε

 ,

then (M, g) is an almost contact metric manifold with almost contact structure (φ, ξ, η) and
(M, g) is with almost contact structure (φ∗, ξ, η), where

φ∗ =



ε
x2x4

− ε
x2x4

−1 1
x2
2x

2
4

0

0 0 −1 −1 0

1 0 0 ε
x2x4

0

−1 1 0 − ε
x2x4

0

− x2
2−ε
x2

− ε
x2

−x4 − εx2
2−1

x2
2x4

0


.

Also, we find det g = εx22x
2
4.

The triple (M, g,∇) is called a Sasaki-like statistical manifold with Sasaki-like structure
(φ, ξ, η) satisfying

∇Eξ = −εφE,(2.18)

(∇Eφ)F = g(E,F )ξ − εη(F )E.(2.19)

It is clear from η(φF ) = 0 and (2.19) that g(∇∗
Eξ, φF ) + εg(E,F ) − η(E)η(F ) = 0, which

yields that ∇∗
Eξ = −εφ∗E. From (2.16), we get

(2.20) g((∇Gφ)E,F ) + g(E, (∇∗
Gφ

∗)F ) = 0,

which means that (∇∗
Gφ

∗)F = g(G,F )ξ − εη(F )G. Hence we have

Lemma 2.10. The triple (M, g,∇) is a Sasaki-like statistical manifold with Sasaki-like structure
(φ, ξ, η) if and only if (M, g,∇∗) is with Sasaki-like structure (φ∗, ξ, η).

We give two examples of Sasaki-like statistical manifold.

Example 2.11. Let (M, g) be an almost contact metric manifold with almost contact structure
(φ, ξ, η) of Example 2.8. We put the affine connection ∇ as follows:

∇∂1∂1 = −2εx2∂2 + ∂3,

∇∂1∂2 = ∇∂2∂1 = εx2∂1 + εx22∂3,

∇∂1∂3 = ∇∂3∂1 = ε∂2,

∇∂2∂2 = −∂3,

∇∂2∂3 = ∇∂3∂2 = −ε∂1 − εx2∂3,

∇∂3∂3 = 0,
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where ∂i = ∂/∂xi (i = 1, 2, 3) and ξ = ∂3. Then we find

∇∗
∂1∂1 = −2εx2∂1 + 2εx2∂2 − (2εx22 + 1)∂3,

∇∗
∂1∂2 = ∇∗

∂2∂1 = −2εx2∂1 + εx2∂2 − (2εx22 + 1)∂3,

∇∗
∂1∂3 = ∇∗

∂3∂1 = ε∂1 − ε∂2 + εx2∂3,

∇∗
∂2∂2 = ∂3,

∇∗
∂2∂3 = ∇∗

∂3∂2 = 2ε∂1 − ε∂2 + 2εx2∂3,

∇∗
∂3∂3 = 0.

Therefore (M, g,∇) is a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) and
(M, g,∇∗) is with Sasaki-like structure (φ∗, ξ, η).

In a Sasaki-like statistical manifold (M, g,∇) of Example 2.11, if we put

X1 = ∂1 − ∂2 + x2∂3, X2 = ∂2, X3 = ξ = ∂3,

then {X1, X2, X3} is an orthonormal basis such that g(X1, X1) = −1, g(X2, X2) = 1, g(X3, X3) =
ε, that is, X1 is timelike and X2 is spacelike. Thus we have

Example 2.12. The affine connections ∇ and ∇∗ are rewritten as follows:

∇X1X1 = ∇X2X2 = −X3,

2∇X1X2 = ∇X2X1 = 2X3,

∇X1X3 = ∇X3X1 = ε(X1 + 2X2),

∇X2X3 = ∇X3X2 = −ε(X1 +X2),

∇X3X3 = 0

and

∇∗
X1

X1 = ∇∗
X2

X2 = X3,

∇∗
X1

X2 = 2∇∗
X2

X1 = −2X3,

∇∗
X1

X3 = ∇∗
X3

X1 = −ε(X1 +X2),

∇∗
X2

X3 = ∇∗
X3

X2 = ε(2X1 +X2),

∇∗
X3

X3 = 0.

Also, we get φX1 = −X1 − 2X2, φX2 = X1 +X2 and φX3 = 0.
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Example 2.13. Let (M, g) be an almost contact metric manifold with almost contact structure
(φ, ξ, η) of Example 2.9. We put the affine connection ∇ as follows:

∇∂1∂1 = −εx2∂1 − εx4∂3 − εx4∂4 + εx2x4∂5,

∇∂1∂2 = ∇∂2∂1 = −εx4∂4,

∇∂1∂3 = ∇∂3∂1 = ∇∂1∂4 = ∇∂4∂1 = εx4∂2,

∇∂1∂5 = ∇∂5∂1 = ε∂3 − εx2∂5,

∇∂2∂2 = ∇∂4∂4 = ∇∂5∂5 = 0,

∇∂2∂3 = ∇∂3∂2 = εx2∂4 + ∂5,

∇∂2∂4 = ∇∂4∂2 = ∂5,

∇∂2∂5 = ∇∂5∂2 = ε∂4,

∇∂3∂3 = −εx2∂1 − εx4∂3 + εx4∂4 − εx2x4∂5,

∇∂3∂4 = ∇∂4∂3 = −εx2∂2,

∇∂3∂5 = ∇∂5∂3 = −ε∂1 − εx4∂5,

∇∂4∂5 = ∇∂5∂4 = −ε∂2,

where ∂i = ∂/∂xi (i = 1, 2, 3, 4, 5) and ξ = ∂5. Then we find

∇∗
∂1∂1 =

ε(x22 + ε)

x2
∂1 + εx4∂3 − εx4∂4 −

εx4(x
2
2 − ε)

x2
∂5,

∇∗
∂1∂2 = ∇∗

∂2∂1 = εx4∂4,

∇∗
∂1∂3 = ∇∗

∂3∂1 =
ε

x22x4
∂1 − εx4∂2 +

1

x2
∂3 −

1

x2
∂4 −

x22 − ε

x22
∂5,

∇∗
∂1∂4 = ∇∗

∂4∂1 =
x22 + ε

x22x4
∂1 − εx4∂2 +

1

x2
∂3 −

1

x2
∂4 −

x22 − ε

x22
∂5,

∇∗
∂1∂5 = ∇∗

∂5∂1 = − 1

x2x4
∂1 − ε∂3 + ε∂4 +

ε(x22 − ε)

x2
∂5,

∇∗
∂2∂2 = ∇∗

∂4∂4 = ∇∗
∂5∂5 = 0,

∇∗
∂2∂3 = ∇∗

∂3∂2 =
x22 + ε

x22x4
∂1 +

1

x2
∂3 −

ε(x22 + ε)

x2
∂4 +

ε

x22
∂5,

∇∗
∂2∂4 = ∇∗

∂4∂2 = −∂5,

∇∗
∂2∂5 = ∇∗

∂5∂2 =
1

x2x4
∂1 − ε∂4 +

1

x2
∂5,

∇∗
∂3∂3 = εx2∂1 + 2εx2∂2 + εx4∂3 − εx4∂4 + εx2x4∂5,
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∇∗
∂3∂4 = ∇∗

∂4∂3 = εx2∂2,

∇∗
∂3∂5 = ∇∗

∂5∂3 = ε∂1 + ε∂2 + εx4∂5,

∇∗
∂4∂5 = ∇∗

∂5∂4 = − ε

x22x
2
4

∂1 + ε∂2 −
1

x2x4
∂3 +

1

x2x4
∂4 +

x22 − ε

x22x4
∂5.

Therefore (M, g,∇) is a Sasaki-like statistical manifold with Sasaki-like structure (φ, ξ, η) and
(M, g,∇∗) is with Sasaki-like structure (φ∗, ξ, η).

For any vector fields E,F,G on the Sasaki-like statistical manifold, we obtain

R(E,F )ξ = η(F )E − η(E)F,(2.21)

R(E,F )φG− φR(E,F )G = ε{g(F,φG)E − g(E,φG)F − g(F,G)φE + g(E,G)φF},(2.22)

where we used η(SEF ) = −g(φE,F )− g(E,φF ). From (2.21) or (2.22), we have

Lemma 2.14. Let (M, g,∇) be a Sasaki-like statistical manifold with Sasaki-like structure
(φ, ξ, η). If (M, g,∇) is of constant curvature c, then c = ε, that is,

R(E,F )G = ε{g(F,G)E − g(E,G)F}.

On the Sasaki-like statistical manifold, we consider

R(E,F )G =
1

4
(c+ 3ε) {g(F,G)E − g(E,G)F}(2.23)

+
1

4
(c− ε)[ εη(G){η(E)F − η(F )E}+ {g(E,G)η(F )− g(F,G)η(E)}ξ

−g(F,φG)φE + g(E,φG)φF + {g(E,φF )− g(φE,F )}φG ],

where c is a constant [2]. If the curvature tensor R satisfies (2.24), then the Sasaki-like statistical
manifold (M, g,∇) with Sasaki-like structure (φ, ξ, η), or (M, g,∇) simply is called a space of
constant φ-holomorphic sectional curvature c. The curvature tensor R satisfies (2.21), (2.22)
and the Bianchi’s 1st identity. If c = ε, then the Sasaki-like statistical manifold is of constant
curvature ε. It is easy to see from (2.23) and η(SDE) = −g(φD,E)− g(D,φE) that

(∇DR)(E,F )G

=
1

4
(c+ 3ε){g(SDE,G)F − g(SDF,G)E}

+
1

4
(c− ε)[ εg(D,φG){η(E)F − η(F )E}+ ε{g(F,φG)η(E)− g(E,φG)η(F )}D

+εη(G){g(D,φE)F − g(D,φF )E − g(E,φF )D + g(F,φE)D}

+εg(D,G){η(E)φF − η(F )φE}+ ε{g(F,G)η(E)− g(E,G)η(F )}φD

+εη(G){g(D,F )φE − g(D,E)φF}+ 2ε{g(D,F )η(E)− g(D,E)η(F )}φG

+{g(E,G)g(D,φF )− g(F,G)g(D,φE) + g(D,G)g(E,φF )

−g(D,G)g(F,φE)− g(D,E)g(F,φG) + g(D,F )g(E,φG)}ξ

−g(SDE,φG)φF + g(SDF,φG)φE − {g(SDE,φF )− g(SDF,φE)}φG

−{g(SDE,G)η(F )− g(SDF,G)η(E)}ξ ]

26



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 15 (2025)

holds, which denotes that the curvature tensor R satisfies the Bianchi’s 2nd identity. Also, we
obtain from (2.3)

R∗(E,F )G =
1

4
(c+ 3ε) {g(F,G)E − g(E,G)F}(2.24)

+
1

4
(c− ε)[ εη(G){η(E)F − η(F )E}+ {g(E,G)η(F )− g(F,G)η(E)}ξ

−g(F,φ∗G)φ∗E + g(E,φ∗G)φ∗F

+{g(E,φ∗F )− g(φ∗E,F )}φ∗G ].

Then the Sasaki-like statistical manifold (M, g,∇∗) with Sasaki-like structure (φ∗, ξ, η), or
(M, g,∇∗) simply is called a space of constant φ∗-holomorphic sectional curvature c. The triple
(M, g,∇) is of constant φ-holomorphic sectional curvature c if and only if so is (M, g,∇∗).

Example 2.15. Let (M, g,∇) be a Sasaki-like statistical manifold with Sasaki-like structure
(φ, ξ, η) of Example 2.11. Then (M, g,∇) is a space of constant φ-holomorphic sectional curva-
ture c = −3ε.

Remark 2.16. If M is a Sasakian manifold and ε = 1, then M satisfying (2.23) is a space of
constant φ-holomorphic sectional curvature c [22].

Remark 2.17. Let H(X) = K(X,φX) = g(R(X,φX)φX,X) be a φ-sectional curvature for
φ-section in the Sasakian manifold. If M is a Sasakian, then we get H(X) = c for (2.23).

3. Statistical submersions

Let M and B be semi-Riemannian manifolds. A surjective mapping π : M → B is called
a semi-Riemannian submersion if π has maximal rank and π∗ preserves lengths of horizontal
vectors. Let π : M → B be a semi-Riemannian submersion. We put dimM = m and dimB = n.
For each point x ∈ B, semi-Riemannian submanifold π−1(x) with the induced metric g is called
a fiber and denoted by Mx or M simply. We notice that the dimension of each fiber is always
m− n (= s). A vector field on M is vertical if it is always tangent to fibers, horizontal if always
orthogonal to fibers. We denote the vertical and horizontal subspace in the tangent space TpM
of the total space M by Vp(M) and Hp(M) for each point p ∈ M , and the vertical and horizontal
distributions in the tangent bundle TM of M by V(M) and H(M), respectively. Then TM is
the direct sum of V(M) and H(M). The projection mappings are denoted V : TM → V(M)
and H : TM → H(M) respectively. We call a vector field X on M projectable if there exists
a vector field X∗ on B such that π∗(Xp) = X∗π(p) for each p ∈ M , and say that X and X∗ are
π-related. Also, a vector field X on M is called basic if it is projectable and horizontal. Then
we have ([6], [9], [11], [12], [22], etc.)

Lemma 3.1. If X and Y are basic vector fields on M which are π-related to X∗ and Y∗ on B,
then

(1) g(X,Y ) = gB(X∗, Y∗) ◦ π, where g is the metric on M and gB the metric on B,

(2) H[X,Y ] is basic and is π-related to [X∗, Y∗],

(3) H∇′
XY is basic and π-related to ∇̂′

X∗
Y∗, where ∇′ and ∇̂′ are the Levi-Civita connections

of M and B, respectively.
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Let (M, g,∇) be a statistical manifold and π : M → B be a semi-Riemannian submersion.

We denote the affine connections of M be ∇ and ∇∗
. Notice that ∇UV and ∇∗

UV are well-
defined vertical vector fields on M for vertical vector fields U and V on M , more precisely
∇UV = V∇UV and ∇∗

UV = V∇∗
UV . Moreover, ∇ and ∇∗

are torsion-free and conjugate to each

other with respect to g. The triple (M, g,∇) is a statistical manifold and so is (M, g,∇∗
).

We call that π : (M, g,∇) → (B, gB, ∇̂) is a statistical submersion [1] if π : M → B satisfies

(3.1) π∗(∇XY )p = (∇̂X∗Y∗)π(p)

for basic vector fields X, Y and p ∈ M . The tensor fields T and A of type (1,2) defined by

(3.2) TEF = H∇VEVF + V∇VEHF, AEF = H∇HEVF + V∇HEHF

for any vector fields E and F on M . Changing ∇ to ∇∗ in the above equations, we set T ∗ and
A∗, respectively. Then we find T ∗∗ = T and A∗∗ = A. For vertical vector fields, T and T ∗ have
the symmetry property. For X,Y ∈ H(M) and U, V ∈ V(M), we obtain

(3.3) g(TUV,X) = −g(V, T ∗
UX), g(AXY,U) = −g(Y,A∗

XU).

Thus TUV (resp. TUX) vanishes identically if and only if T ∗
UX (resp. T ∗

UV ) vanishes identi-
cally. If TUV (resp. T ∗

UV ) vanishes identically, then π is called with isometric fiber with respect
to ∇ (resp. ∇∗). It is known that

Theorem 3.2. [1] Let π : M → B be a semi-Riemannian submersion. Then (M, g,∇) is a
statistical manifold if and only if the following conditions hold:

(1) HSV X = AXV −A∗
XV ,

(2) VSXV = TV X − T ∗
V X,

(3) (M, g,∇) is a statistical manifold for each x ∈ B,

(4) (B, gB, ∇̂) is a statistical manifold.

For the statistical submersion π : (M, g,∇) → (B, gB, ∇̂), we have the following Lemmas:.

Lemma 3.3. [15] If X and Y are horizontal vector fields, then AXY = −A∗
Y X.

From (3.3) and Lemma 3.3, the tensor field A vanishes identically if and only if A∗ vanishes
identically. Since A is related to the integrability of H(M), it is identically zero if and only if
H(M) is integrable.

Lemma 3.4. [15] For X,Y ∈ H(M) and U, V ∈ V(M) we have

∇UV = TUV +∇UV, ∇∗
UV = T ∗

UV +∇∗
UV,

∇UX = H∇UX + TUX, ∇∗
UX = H∇∗

UX + T ∗
UX,

∇XU = AXU + V∇XU, ∇∗
XU = A∗

XU + V∇∗
XU,

∇XY = H∇XY +AXY, ∇∗
XY = H∇∗

XY +A∗
XY.

Furthermore, if X is basic, then H∇UX = AXU and H∇∗
UX = A∗

XU .

We define the covariant derivatives ∇T and ∇A by

(∇ET )FG = ∇E(TFG)− T∇EFG− TF (∇EG),

(∇EA)FG = ∇E(AFG)−A∇EFG−AF (∇EG)
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for any E,F,G ∈ TM . We change ∇ to ∇∗, then the covariant derivatives ∇∗T ∗ and ∇∗A∗

are defined simiraly. We consider the curvature tensor on the statistical submersion. Let R
(resp. R

∗
) be the curvature tensor with respect to the induced affine connection ∇ (resp.

∇∗
) of each fiber. Also, let R̂(X,Y )Z (resp. R̂∗(X,Y )Z) be horizontal vector field such that

π∗(R̂(X,Y )Z) = R̂(π∗X,π∗Y )π∗Z (resp. π∗(R̂
∗(X,Y )Z) = R̂∗(π∗X,π∗Y )π∗Z) at each p ∈ M ,

where R̂ (resp. R̂∗) is the curvature tensor on B of the affine connection ∇̂ (resp. ∇̂∗). Then
we have

Theorem 3.5. [15] If π : (M, g,∇) → (B, gB, ∇̂) is a statistical submersion, then we get for
X,Y, Z, Z ′ ∈ H(M) and U, V,W,W ′ ∈ V(M)

g(R(U, V )W,W ′) = g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′),

g(R(U, V )W,X) = g((∇UT )V W,X)− g((∇V T )UW,X),

g(R(U, V )X,W ) = g((∇UT )V X,W )− g((∇V T )UX,W ),

g(R(U, V )X,Y ) = g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )− g(TV X,T ∗

UY )

−g(AXU,A∗
Y V ) + g(AXV,A∗

Y U),

g(R(X,U)V,W ) = g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW ) + g(T ∗

UW,AXV ),

g(R(X,U)V, Y ) = g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y ),

g(R(X,U)Y, V ) = g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V ),

g(R(X,U)Y,Z) = g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ),

g(R(X,Y )U, V ) = g([V∇X ,V∇Y ]U, V )− g(∇[X,Y ]U, V ) + g(AXU,A∗
Y V )− g(AY U,A

∗
XV ),

g(R(X,Y )U,Z) = g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ),

g(R(X,Y )Z,U) = g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ),

g(R(X,Y )Z,Z ′) = g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′),

where we put θXY = AXY +A∗
XY = V[X,Y ].

For each p ∈ M , we denote by {E1, . . . , Em}, {X1, . . . , Xn} and {U1, . . . , Us} local orthonormal
bases of TpM , Hp(M) and Vp(M), respectively such that Ei = Xi (i = 1, . . . , n) and En+α =

Uα (α = 1, . . . , s). Denote respectively by ωb
a and ω∗

a
b the connection forms in terms of local

coordinates with respect to {E1, . . . , Em} of the affine connection ∇ and its conjugate ∇∗,
where a, b run over the range {1, . . . ,m}. Set εa = g(Ea, Ea) = −1 or +1 according as Ea is
timelike or spacelike. Also, mean curvature vectors of the affine connections are given by the
horizontal vector field N =

∑
εαTUαUα and N∗ =

∑
εαT

∗
Uα

Uα. If TUV = 1
s g(U, V )N (resp.

T ∗
UV = 1

s g(U, V )N∗) holds, then π is called with conformal fiber with respect to ∇ (resp. ∇∗).
Moreover, we put σ =

∑
εiAXiXi.

Lemma 3.6. [15] g(N,N) and g(N,N∗) are constants on each fiber.

Next, we define the Ricci tensor Ric(E,F ) of the affine connection ∇ for E, F ∈ TM by

Ric(E,F ) =
n∑

i=1

εig(R(Xi, E)F,Xi) +
s∑

α=1

εαg(R(Uα, E)F,Uα),
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moreover, we put for X,Y ∈ H(M) and U, V ∈ V(M)

R̂ic(X,Y ) =
n∑

i=1

εig(R̂(Xi, X)Y,Xi), Ric(U, V ) =
s∑

α=1

εαg(R(Uα, U)V,Uα).

Changing R (resp. R̂, R) to R∗ (resp. R̂∗, R
∗
) in the above equations, we set Ric∗ (resp.

R̂ic
∗
,Ric

∗
). Then R̂ic (resp. R̂ic

∗
) is the horizontal 2-form on M such that R̂ic(X,Y ) =

R̂ic(π∗X,π∗Y ) (resp. R̂ic
∗
(X,Y ) = R̂ic

∗
(π∗X,π∗Y )), and Ric (resp. Ric

∗
) is the Ricci tensor of

each fiber with respect to the induced affine connection ∇ (resp. conjugate ∇∗
of ∇).

4. Sasaki-like statistical submersions

Let (M, g) be an almost contact metric manifold with almost contact structure (φ, ξ, η), and
(B, gB) be a semi-Riemannian manifold. The semi-Riemannian submersion π : (M, g) → (B, gB)
is called an almost contact metric submersion. For X ∈ H(M), we put ([22])

(4.1) φX = PX + FX, φ∗X = P ∗X + F ∗X,

where PX,P ∗X ∈ H(M) and FX,F ∗X ∈ V(M). For V ∈ V(M) we set

(4.2) φV = tV + fV, φ∗V = t∗V + f∗V,

where tV, t∗V ∈ H(M) and fV, f∗V ∈ V(M). From (φ∗)∗ = φ, we find (P ∗)∗ = P, (F ∗)∗ =
F, (t∗)∗ = t and (f∗)∗ = f . Because of φ2 = −I + η ⊗ ξ, we get

Lemma 4.1. In an almost contact metric submersion, we find

(1) if ξ ∈ H(M), then

P 2 = −I − tF + η ⊗ ξ, FP + fF = 0, P t+ tf = 0, f2 = −I − Ft.

(2) if ξ ∈ V(M), then

P 2 = −I − tF, FP + fF = 0, P t+ tf = 0, f2 = −I − Ft+ η ⊗ ξ.

From φξ = 0 and η(φE) = 0, we have

Lemma 4.2. In an almost contact metric submersion, we find

(1) if ξ ∈ H(M), then Pξ = 0, F ξ = 0, η(PX) = 0 and η(tV ) = 0.

(2) if ξ ∈ V(M), then tξ = 0, fξ = 0, η(FX) = 0 and η(fV ) = 0.

Because of g(φE,F ) + g(E,φ∗F ) = 0 for any vector fields E and F on M , we find

g(PX, Y ) + g(X,P ∗Y ) = 0,(4.3)

g(FX, V ) + g(X, t∗V ) = 0,(4.4)

g(tV, Y ) + g(V, F ∗Y ) = 0,(4.5)

g(fV,W ) + g(V, f∗W ) = 0.(4.6)

Thus P (resp. F ) vanishes idenitically if and only if so is P ∗ (resp. t∗), and t (resp. f)
vanishes identically is and only if so is F ∗ (resp. f∗). Thus we get
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Lemma 4.3. In an almost contact metric submersion, we find
(1) if ξ ∈ H(M), then

g(PX,P ∗Y ) = g(X,Y )− g(FX,F ∗Y )− εη(X)η(Y ),

g(fU, f∗V ) = g(U, V )− g(tU, t∗V ).

(2) if ξ ∈ V(M), then

g(PX,P ∗Y ) = g(X,Y )− g(FX,F ∗Y ),

g(fU, f∗V ) = g(U, V )− g(tU, t∗V )− εη(U)η(V ).

Lemma 4.4. In an almost contact metric submersion, we find for each p ∈ M

(1) φ(Vp(M)) ⊂ Vp(M) if and only if φ∗(Hp(M)) ⊂ Hp(M).

(2) φ(Hp(M)) ⊂ Hp(M) if and only if φ∗(Vp(M)) ⊂ Vp(M).

(3) φ(Vp(M)) ⊂ Hp(M) if and only if φ∗(Vp(M)) ⊂ Hp(M).

(4) φ(Hp(M)) ⊂ Vp(M) if and only if φ∗(Hp(M)) ⊂ Vp(M).

If φ(Vp(M)) ⊂ Vp(M) (resp. φ∗(Vp(M)) ⊂ Vp(M)) for each p ∈ M , then M is said to be
a φ-invariant (resp. φ∗-invariant) submanifold of M . Then t and F ∗ (resp. F and t∗) vanish
identically. If φ(Vp(M)) ⊂ Hp(M) for each p ∈ M , then M is said to be a φ-anti-invariant

submanifold of M . Since f = 0 is equivalent to f∗ = 0, M is φ-anti-invariant if and only if
M is φ∗-anti-invariant. Thus, in this paper, it is simply referred to as anti-invariant. Let f, ξ
and η be a tensor field of type (1, 1), vector field and 1-form such that f = f |M , ξ = ξ|M and

η = η|M , where f |M denote the restriction of f to M . Also, let P̂ , ξ̂ and η̂ be a tensor field of

type (1, 1), vector field and 1-form such that π∗P = P̂ π∗, π∗ξ = ξ̂ and η(π∗X) = η̂(X∗) for basic
vector field X. From Lemmas 4.1∼4.3, we obtain

Theorem 4.5. Let π be an almost contact metric submersion, and M be φ-invariant or φ∗-
invariant of M . If ξ ∈ H(M), then

(1) each fiber (M, g, f) is an almost Hermite-like manifold.

(2) the base space (B, gB) ia an almost contact metric manifold with almost contact structure

(P̂ , ξ̂, η̂).

Theorem 4.6. Let π be an almost contact metric submersion, and M be φ-invariant or φ∗-
invariant of M . If ξ ∈ V(M), then

(1) each fiber (M, g) is an almost contact metric manifold with almost contact structure
(f, ξ, η).

(2) the base space (B, gB, P̂ ) is an almost Hermite-like manifold.

Let (M, g,∇) be a Sasaki-like statistical manifold with a Sasaki-like structure (φ, ξ, η) and

(B, gB, ∇̂) be a statistical manifold. The statistical submersion π : (M, g,∇) → (B, gB, ∇̂) is
called a Sasaki-like statistical submersion. We put

(H∇XP )Y = H∇X(PY )− P (H∇XY ), (H∇UP )Y = H∇U (PY )− P (H∇UY ),

(V∇XF )Y = V∇X(FY )− F (H∇XY ), (V∇UF )Y = ∇U (FY )− F (H∇UY ),

(H∇Xt)V = H∇X(tV )− t(V∇XV ), (H∇U t)V = H∇U (tV )− t(∇UV ),

(V∇Xf)V = V∇X(fV )− f(V∇XV ), (∇Uf)V = ∇U (fV )− f(∇UV ),
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also, we set (H∇∗
XP ∗)Y = H∇∗

X(P ∗Y )− P ∗(H∇∗
XY ), etc. Then we have from (4.3)∼(4.6)

Lemma 4.7. If π : (M, g,∇) → (B, gB, ∇̂) is a Sasaki-like statistical submersion, then we find

g((H∇XP )Y, Z) + g(Y, (H∇∗
XP ∗)Z) = 0, g((H∇UP )X,Y ) + g(X, (H∇∗

UP
∗)Y ) = 0,

g(V∇XF )Y, V ) + g(Y, (H∇∗
Xt∗)V ) = 0, g((V∇UF )Y, V ) + g(Y, (H∇∗

U t
∗)V ) = 0,

g((H∇Xt)V, Y ) + g(V, (V∇∗
XF ∗)Y ) = 0, g((H∇U t)V, Y ) + g(V, (V∇∗

UF
∗)Y ) = 0,

g((V∇Xf)V,W ) + g(V, (V∇∗
Xf∗)W ) = 0, g((∇Uf)V,W ) + g(V, (∇∗

Uf
∗)W ) = 0.

Hence we have

Corollary 4.8. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion. We get

(1) H∇P = 0 is equivalent to H∇∗P ∗ = 0.

(2) V∇F = 0 is equivalent to H∇∗t∗ = 0.

(3) H∇t = 0 is equivalent to V∇∗F ∗ = 0.

(4) V∇f = 0 is equivalent to V∇∗f∗ = 0, where V∇Uf = ∇Uf and V∇∗
Uf = ∇∗

Uf .

Because of ∇Eξ = −εφE and (∇Eφ)G = g(E,G)ξ − εη(G)E, we get

Proposition 4.9. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion. We
get for any U ∈ V(M) and X ∈ H(M)

(1) if ξ ∈ H(M), then

H∇Uξ = −εtU, TUξ = −εfU, H∇Xξ = −εPX, AXξ = −εFX.

(2) if ξ ∈ V(M), then

TUξ = −εtU, ∇Uξ = −εfU, AXξ = −εPX, V∇Xξ = −εFX.

Proposition 4.10. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion. We
get for any U, V ∈ V(M) and X,Y ∈ H(M)

(1) if ξ ∈ H(M), then

(H∇U t)V + TU (fV )− P (TUV ) = g(U, V )ξ,

(∇Uf)V + TU (tV )− F (TUV ) = 0,

(H∇UP )Y + TU (FY )− t(TUY ) = 0,

(V∇UF )Y + TU (PY )− f(TUY ) = −εη(Y )U,

(H∇Xt)V +AX(fV )− P (AXV ) = 0,

(V∇Xf)V +AX(tV )− F (AXV ) = 0,

(H∇XP )Y +AX(FY )− t(AXY ) = g(X,Y )ξ − εη(Y )X,

(V∇XF )Y +AX(PY )− f(AXY ) = 0.
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(2) if ξ ∈ V(M), then

(H∇U t)V + TU (fV )− P (TUV ) = 0,

(∇Uf)V + TU (tV )− F (TUV ) = g(U, V )ξ − εη(V )U,

(H∇UP )Y + TU (FY )− t(TUY ) = 0,

(V∇UF )Y + TU (PY )− f(TUY ) = 0,

(H∇Xt)V +AX(fV )− P (AXV ) = −εη(V )X,

(V∇Xf)V +AX(tV )− F (AXV ) = 0,

(H∇XP )Y +AX(FY )− t(AXY ) = 0,

(V∇XF )Y +AX(PY )− f(AXY ) = g(X,Y )ξ.

By virtue of Lemmas 4.1, 4.2 and Propositions 4.9, 4.10, we have

Lemma 4.11. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion. We get

(1) If ξ ∈ H(M), then η(TUV ) = −g(U, fV ) and η(AXV ) = −g(X, tV ) hold. Moreover, we
find f∗ = −f .

(2) If ξ ∈ V(M), then η(TUY ) = −g(U,FY ) and η(AXY ) = −g(X,PY ) hold.

Theorem 4.12. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion with
isometric fiber with respect to ∇

(1) If ξ ∈ H(M), then each fiber is anti-invariant.

(2) If ξ ∈ V(M), then each fiber is φ-invariant. Moreover, each fiber (M, g,∇) is a Sasaki-like
statistical manifold with Sasaki-like structure (f, ξ, η).

Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion. If the total space
(M, g,∇) is of constant curvature ε, then we get from Lemma 2.14 and Theorem 3.5

g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′)(4.7)

= ε { g(V,W )g(U,W ′)− g(U,W )g(V,W ′) },

g((∇UT )V W,X)− g((∇V T )UW,X) = 0,(4.8)

g((∇UT )V X,W )− g((∇V T )UX,W ) = 0,(4.9)

g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )− g(TV X,T ∗

UY )(4.10)

−g(AXU,A∗
Y V ) + g(AXV,A∗

Y U) = 0,

g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW ) + g(T ∗

UW,AXV ) = 0,(4.11)

g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y ) = ε g(U, V )g(X,Y ),(4.12)

g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V )(4.13)

= −ε g(U, V )g(X,Y ),

g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ) = 0,(4.14)
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g([V∇X ,V∇Y ]U, V )− g(∇[X,Y ]U, V ) + g(AXU,A∗
Y V )− g(AY U,A

∗
XV ) = 0,(4.15)

g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ) = 0,(4.16)

g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ) = 0,(4.17)

g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′)(4.18)

= ε { g(Y,Z)g(X,Z ′)− g(X,Z)g(Y,Z ′)},

for X,Y, Z, Z ′ ∈ H(M) and U, V,W,W ′ ∈ V(M). We discuss a Sasaki-like statistical submersion
with conformal fiber with respect to ∇ and ∇∗, that is,

TUV =
1

s
g(U, V )N, T ∗

UV =
1

s
g(U, V )N∗.

Then we get TUX = − 1
s g(N

∗, X)U and T ∗
UX = − 1

s g(N,X)U . It is easy to see from (4.7)
that we find

(4.19) R(U, V )W =

{
ε+

1

s2
g(N,N∗)

}
{ g(V,W )U − g(U,W )V }.

Because of Lemma 3.6, it should be noticed that ε+ 1
s2
g(N,N∗) is a constant on each fiber.

Thus we have

Theorem 4.13. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion with
conformal fiber with respect to ∇ and ∇∗. If the total space (M, g,∇) is of constant curvature
ε, then each fiber satisfies (4.19).

Corollary 4.14. Let π be a Sasaki-like statistical submersion with isometric fiber with respect
to ∇ or ∇∗. If the total space (M, g,∇) is of constant curvature ε, then each fiber is of constant
curvature ε.

By virtue of (4.8), we have

Lemma 4.15. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion with con-
formal fiber with respect to ∇. If the total space (M, g,∇) is of constant curvature ε and s ≥ 2,
then H∇UN = 0 holds.

If the total space (M, g,∇) is of constant φ-holomorphic sectional curvature c, then we find
from (2.23) and Theorem 3.5 If the total space (M, g,∇) is of constant φ-holomorphic sectional
curvature c, then we find from (2.23) and Theorem 3.5:
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g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′)(4.20)

=
1

4
(c+ 3ε) { g(V,W )g(U,W ′)− g(U,W )g(V,W ′) }

+
1

4
(c− ε) [ εη(W ){η(U)g(V,W ′)− η(V )g(U,W ′)}

+ε{g(U,W )η(V )− g(V,W )η(U)}η(W ′)− g(V, fW )g(fU,W ′)

+g(U, fW )g(fV,W ′) + {g(U, fV )− g(fU, V )}g(fW,W ′) ],

g((∇UT )V W,X)− g((∇V T )UW,X)(4.21)

=
1

4
(c− ε) [−g(V, fW )g(tU,X) + g(U, fW )g(tV,X) + { g(U, fV )− g(fU, V )}g(tW,X) ],

g((∇UT )V X,W )− g((∇V T )UX,W )(4.22)

=
1

4
(c− ε) [−g(V, FX)g(fU,W ) + g(U,FX)g(fV,W ) + { g(U, fV )− g(fU, V )}g(FX,W ) ],

g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )− g(TV X,T ∗

UY )(4.23)

−g(AXU,A∗
Y V ) + g(AXV,A∗

Y U)

=
1

4
(c− ε) [−g(V, FX)g(tU, Y ) + g(U,FX)g(tV, Y )

+{g(U, fV )− g(fU, V )}g(PX, Y ) ],

g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW ) + g(T ∗

UW,AXV ),(4.24)

=
1

4
(c− ε) [−g(U, fV )g(FX,W ) + g(X, tV )g(fU,W )

+{g(X, tU)− g(FX,U)}g(fV,W ) ],

g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y )(4.25)

=
1

4
(c+ 3ε)g(U, V )g(X,Y )

+
1

4
(c− ε) [−εη(U)η(V )g(X,Y )− εη(X)η(Y )g(U, V )− g(U, fV )g(PX, Y )

+g(X, tV )g(tU, Y ) + {g(X, tU)− g(FX,U)}g(tV, Y ) ],

g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V )(4.26)

= − 1

4
(c+ 3ε)g(U, V )g(X,Y )

+
1

4
(c− ε) [ εη(U)η(V )g(X,Y ) + εη(X)η(Y )g(U, V )− (U,FY )g(FX, V )

+g(X,PY )g(fU, V ) + {g(X, tU)− g(FX,U)}g(FY, V ) ],

g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ)(4.27)

=
1

4
(c− ε) [−g(U,FY )g(PX,Z) + g(X,PY )g(tU, Z)

+{g(X, tU)− g(FX,U)}g(PY,Z) ],
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g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY )(4.28)

=
1

4
(c− ε) [−g(Y, PZ)g(FX,U) + g(X,PZ)g(FY,U) + {g(X,PY )− g(PX, Y )}g(FZ,U) ],

g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′)(4.29)

=
1

4
(c+ 3ε) { g(Y,Z)g(X,Z ′)− g(X,Z)g(Y, Z ′)}

+
1

4
(c− ε) [ εη(Z){η(X)g(Y,Z ′)− η(Y )g(X,Z ′)}

+ε{g(X,Z)η(Y )− g(Y, Z)η(X)}η(Z ′)− g(Y, PZ)g(PX,Z ′)

+g(X,PZ)g(PY,Z ′) + {g(X,PY )− g(PX, Y )}g(PZ,Z ′) ],

for X,Y, Z, Z ′ ∈ H(M) and U, V,W,W ′ ∈ V(M). We assume that π is with conformal fiber with
respect to ∇ and ∇∗ such that ξ ∈ H(M) and each fiber is anti-invariant. From (4.20), we find

(4.30) g(R(U, V )W,W ′)

=

{
1

4
(c+ 3ε) +

1

s2
g(N,N∗)

}
{ g(V,W )g(U,W ′)− g(U,W )g(V,W ′) }.

Hence we have

Theorem 4.16. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion with
conformal fiber with respect to ∇ and ∇∗ such that ξ ∈ H(M). If the total space is of constant
φ-holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber satisfies
(4.30).

Corollary 4.17. Let π : (M, g,∇∗) → (B, gB, ∇̂∗) be a Sasaki-like statistical submersion with
isometric fiber with respect to ∇ or ∇∗ such that ξ ∈ H(M). If the total space is of constant φ-
holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber is of constant
curvature 1

4 (c+ 3ε).

Corollary 4.18. Let π : (M, g,∇∗) → (B, gB, ∇̂∗) be a Sasaki-like statistical submersion with
conformal fiber with respect to ∇ and ∇∗ such that ξ ∈ H(M). If the total space is of constant
φ∗-holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber satisfies
(4.30).

Corollary 4.19. Let π : (M, g,∇∗) → (B, gB, ∇̂∗) be a Sasaki-like statistical submersion with
isometric fiber with respect to ∇ or ∇∗ such that ξ ∈ H(M). If the total space is of constant φ∗-
holomorphic sectional curvature c and each fiber is anti-invariant, then each fiber is of constant
curvature 1

4 (c+ 3ε).

In the case of the Sasaki-like statistical submersion with isometric fiber with respect to ∇, we
get from (4.21)

(c− ε) [−g(V, fW )g(tU,X) + g(U, fW )g(tV,X) + { g(U, fV )− g(fU, V )}g(tW,X) ] = 0,

which implies that c = ε or

t [−g(V, fW )U + g(U, fW )V + { g(U, fV )− g(fU, V )}W ] = 0.
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If −g(V, fW )U +g(U, fW )V +{ g(U, fV )−g(fU, V )}W = 0 holds, then f = 0 (s ≥ 3). Thus
we get t = 0 if f ̸= 0 and s ≥ 3. From (4.22), we get c = ε or

t∗[ g(fU,W )V − g(fV,W )U − { g(U, fV )− g(fU, V )}W ] = 0,

which yields that f = 0, or t∗ = 0 if s ≥ 3. Hence we have

Theorem 4.20. Let π : (M, g,∇) → (B, gB, ∇̂) be a Sasaki-like statistical submersion with
isometric fiber with respect to ∇. If the total space is of constant φ-holomorphic sectional
curvature c, then

(1) c = ε, that is, the total space and each fiber are of constant curvature ε, or

(2) each fiber is anti-invariant if s ≥ 3, or

(3) each fiber is φ-invariant or φ∗-invariant of M if s ≥ 3.

Corollary 4.21. Let π : (M, g,∇∗) → (B, gB, ∇̂∗) be a Sasaki-like statistical submersion with
isometric fiber with respect to ∇∗. If the total space is of constant φ∗-holomorphic sectional
curvature c, then

(1) c = ε, that is, the total space and each fiber are of constant curvature ε, or

(2) each fiber is anti-invariant if s ≥ 3, or

(3) each fiber is φ-invariant or φ∗-invariant of M if s ≥ 3.

Next, we give two examples of Sasaki-like statistical submersion.

Example 4.22. Let π be a Sasaki-like statistical submersion. The total space is a Sasaki-like
statistical manifold (M, g,∇) with Sasaki-like structure (φ, ξ, η) of Example 2.12. For X1 ∈
H(M) and X2, X3 ∈ V(M), we get

TX2X2 = 0, ∇X2X2 = −X3,

TX2X3 = TX3X2 = −εX1, ∇X2X3 = ∇X3X2 = −εX2,

TX3X3 = 0, ∇X3X3 = 0,

H∇X2X1 = 0, TX2X1 = 2X3,

H∇X3X1 = εX1, TX3X1 = 2εX2,

AX1X2 = 0, V∇X1X2 = X3,

AX1X3 = εX1, V∇X1X3 = 2εX2,

H∇X1X1 = 0, AX1X1 = −X3.

Thus each fiber (M, g,∇) is minimal and is of constant curvature −ε. Also, we find

PX1 = −X1, FX1 = −2X2,

tX2 = X1, fX2 = X2, tX3 = 0, fX3 = 0.

Example 4.23. Let π be a Sasaki-like statistical submersion. The total space is a Sasaki-like
statistical manifold (M, g,∇) with Sasaki-like structure (φ, ξ, η) of Example 2.12. For X1, X2 ∈
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H(M) and X3 ∈ V(M), we get

TX3X3 = 0, ∇X3X3 = 0,

H∇X3X1 = ε(X1 + 2X2), TX3X1 = 0,

H∇X3X2 = −ε(X1 +X2), TX3X2 = 0,

AX1X3 = ε(X1 + 2X2), V∇X3X1 = 0,

AX2X3 = −ε(X1 +X2), V∇X2X3 = 0,

H∇X1X1 = H∇X2X2 = 0, AX1X1 = AX2X2 = −X3,

2H∇X1X2 = H∇X2X1 = 0, 2AX1X2 = AX2X1 = 2X3.

Thus π is with isometric fiber with respect to ∇ and ∇∗, and the base space is flat. Also, we
find F = 0, namely, π is φ∗-invariant. Moreover, t = 0 (φ-invariant) and f = 0 (anti-invariant)
are trivial.

5. φ-invariant Sasaki-like statistical submersions

The Sasaki-like statistical submersion π : (M, g,∇) → (B, gB, ∇̂) is called a φ-invariant if M
is a φ-invariant submanifold of M , that is, φ(Vp(M)) ⊂ Vp(M) (see Lemma 4.4 (1)). In this
section, we discuss the two cases of ξ ∈ H(M) and ξ ∈ V(M) in the φ-invariant Sasaki-like
statistical submersion. And we give an example such that t = 0.

5.1. Case of ξ ∈ H(M). From Lemmas 4.1, 4.2 and 4.3, we find

Lemma 5.1. Let π be an almost contact metric submersion such that ξ ∈ H(M). If M is
φ-invariant, then we get

P 2 = −I + η ⊗ ξ, FP + fF = 0, f2 = −I,

(P ∗)2 = −I + η ⊗ ξ, P ∗t∗ + t∗f∗ = 0, (f∗)2 = −I.

Moreover, each fiber is of even dimension.

Lemma 5.2. Let π be an almost contact metric submersion such that ξ ∈ H(M). If M is
φ-invariant, then we obtain

Pξ = 0, F ξ = 0, η(PX) = 0,

P ∗ξ = 0, η(P ∗X) = 0, η(t∗V ) = 0.

Lemma 5.3. Let π be an almost contact metric submersion such that ξ ∈ H(M). If M is
φ-invariant, then we have g(PX,P ∗Y ) = g(X,Y )− εη(X)η(Y ) and g(fU, f∗V ) = g(U, V ).

Moreover, we have from Propositions 4.9, 4.10 and Lemma 4.11

Lemma 5.4. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ H(M), we get

H∇Uξ = 0, TUξ = −εfU, H∇Xξ = −εPX, AXξ = −εFX,

H∇∗
Uξ = −εt∗U, T ∗

Uξ = −εf∗U, H∇∗
Xξ = −εP ∗X, A∗

Xξ = 0.
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Lemma 5.5. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ H(M), we
find

(∇Uf)V − F (TUV ) = 0,(5.1)

TU (fV )− P (TUV ) = g(U, V )ξ,(5.2)

(V∇UF )Y + TU (PY )− f(TUY ) = −εη(Y )U,(5.3)

(H∇UP )Y + TU (FY ) = 0,(5.4)

(V∇Xf)V − F (AXV ) = 0,(5.5)

AX(fV )− P (AXV ) = 0,(5.6)

(V∇XF )Y +AX(PY )− f(AXY ) = 0,(5.7)

(H∇XP )Y +AX(FY ) = g(X,Y )ξ − εη(Y )X.(5.8)

Corollary 5.6. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ H(M), we
find

(∇∗
Uf

∗)V + T ∗
U (t

∗V ) = 0,

(H∇∗
U t

∗)V + T ∗
U (f

∗V )− P ∗(T ∗
UV ) = g(U, V )ξ,

T ∗
U (P

∗Y )− f∗(T ∗
UY ) = −εη(Y )U,

(H∇∗
UP

∗)Y − t∗(T ∗
UY ) = 0,

(V∇∗
Xf∗)V +A∗

X(t∗V ) = 0,

(H∇∗
Xt∗)V +A∗

X(f∗V )− P ∗(A∗
XV ) = 0,

A∗
X(P ∗Y )− f∗(A∗

XY ) = 0,

(H∇∗
XP ∗)Y − t∗(A∗

XY ) = g(X,Y )ξ − εη(Y )X.

Lemma 5.7. If the Sasaki-like statistical submersion is φ-invariant such that ξ ∈ H(M), then
we find

η(TUV ) = −g(U, fV ), η(AXV ) = 0, f∗ = −f,

η(T ∗
UV ) = g(U, fV ), η(A∗

XV ) = −g(X, t∗V ).

It is easy to see from of Lemmas 5.3 and 5.7 that we find g(fU, fV ) = −g(U, V ), which implies
that

∑
εαg(fUα, fUα) = −s. Thus we have

Proposition 5.8. If g is a positive definite, then the φ-invariant Sasaki-like statistical submer-
sion such that ξ ∈ H(M) does not exist.

Proposition 5.9. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ H(M),
if U ∈ V(M) is timelike (resp. spacelike), then fU ∈ V(M) is spacelike (resp. timelike).

We consider that the case of g is indefinite. We assume V∇XF = 0 holds. It is clear from
(5.7) that AX(PY ) = f(AXY ), which yields that fFX = 0, namely, F = 0. Hence we have
from Lemmas 5.4 and 5.5

Theorem 5.10. In the φ-invariant Sasaki-like statistical submersion such that ξ ∈ H(M), if
V∇XF = 0 holds, then
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(1) each fiber is φ∗-invariant, moreover, (M, g,∇, f) is a Kähler-like statistical manifold.

(2) the base space (B, gB, ∇̂) is a Sasaki-like statistical manifold with Sasaki-like structure

(P̂ , ξ̂, η̂).

We suppose the total space is of constant curvature ε. Changing V to fV in (4.12), we get

g((∇XT )UV, P
∗Y )− g((∇UA)XV, P ∗Y )− g((H∇XP )(TUV ), Y ) + g(TU{(V∇Xf)V }, Y )

+g((H∇UP )(AXV ), Y )− g(AX{(∇Uf)V }, Y ) + εg(U, V )g(PX, Y ) + εη(Y )g(SUX,V )

−g(AXU,A∗
Y (fV )) + g(TUX,T ∗

fV Y ) = −εg(U, fV )g(X,Y )− εg(U, V )g(PX, Y ).

Also, if we change Y to P ∗Y in (4.12), then we find

g((∇XT )UV, P
∗Y )− g((∇UA)XV, P ∗Y )− g(AXU,A∗

Y (fV )) + g(TUX,T ∗
fV Y )

+εη(Y )g(TUX,V ) = −εg(U, V )g(PX, Y ).

Thus we obtain from above two equations

g((H∇XP )(TUV ), Y )− g(TU{(V∇Xf)V }, Y )− g((H∇UP )(AXV ), Y )

+g(AX{(∇Uf)V }, Y )− εη(Y )g(TUV,X) = εg(U, fV )g(X,Y ).

We assume that H∇P = 0 and V∇f = 0 hold. Then we have

Lemma 5.11. Let M is of constant curvature ε in the φ-invariant Sasaki-like statistical sub-
mersion such that ξ ∈ H(M). If H∇P = 0 and V∇f = 0 hold, then we find TUV = −g(U, fV )ξ.
Moreover, the mean curvature vector field N is parallel to the structure vector field ξ if tr f ̸= 0.

It should be noticed that N = 0 is equivalent to tr f = 0. From (4.7) and Lemma 5.11, we
get

R(U, V )W = ε{g(V,W )U − g(U,W )V − g(V, fW )fU + g(U, fW )fV },
which denotes that Ric(V,W ) = ε{(s− 2)g(V,W )− (tr f)g(V, fW )}. Thus we have

Lemma 5.12. Let M be of constant curvature ε in the φ-invariant Sasaki-like statistical sub-
mersion such that ξ ∈ H(M). If H∇P = 0, V∇f = 0, tr f = 0 and s ≥ 3 hold, then each fiber
is Einstein.

Next, let (M, g,∇) be of constant φ-holomorphic sectional curvature c. Changing X to PX
in (4.22), we get

g((∇UT )V X, f∗W )− g((∇V T )UX, f∗W ) + g(∇U{(V∇V F )X},W )− g((V∇∇UV F )X,W )

−g((V∇V F )(H∇UX),W )− g(∇V {(V∇UF )X},W ) + g((V∇∇V UF )X,W )

+g((V∇UF )(H∇V X),W )− g((∇Uf)(TV X),W ) + g((∇V f)(TUX),W )

+g(TV {(H∇UP )X},W )− g(TU{(H∇V P )X},W ) + εg(U,FX)g(V,W )− εg(V, FX)g(U,W )

=
1

4
(c− ε){g(V, FPX)g(fU,W )− g(U,FPX)g(fV,W )}.

Also, if we change W to f∗W in (4.22), then we obtain

g((∇UT )V X, f∗W )− g((∇V T )UX, f∗W ) =
1

4
{−g(V, FX)g(U,W ) + g(U,FX)g(V,W )}.
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Therefore we find from above two equations

g(∇U{(V∇V F )X},W )− g((V∇∇UV F )X,W )− g((V∇V F )(H∇UX),W )

−g(∇V {(V∇UF )X},W ) + g((V∇∇V UF )X,W ) + g((V∇UF )(H∇V X),W )

−g((∇Uf)(TV X),W ) + g((∇V f)(TUX),W )

+g(TV {(H∇UP )X},W )− g(TU{(H∇V P )X},W )

=
1

4
(c− ε){g(V, FPX)g(fU,W )− g(U,FPX)g(fV,W )}

+
1

4
(c+ 3ε){g(V, FX)g(U,W )− g(U,FX)g(V,W )}.

If H∇UP = 0, V∇UF = 0 and ∇Uf = 0, then we get

(c− ε){g(V, FPX)g(fU,W )− g(U,FPX)g(fV,W )}
+(c+ 3ε){g(V, FX)g(U,W )− g(U,FX)g(V,W )} = 0;

moreover, if we change W and X to f∗W and PX, respectively, then above equation can be
rewritten as follows:

(c+ 3ε){g(V, FPX)g(fU,W )− g(U,FPX)g(fV,W )}
+(c− ε){g(V, FX)g(U,W )− g(U,FX)g(V,W )} = 0.

Furthermore, it is easy to see from above two equations that

(c+ ε){g(V, FX)g(U,W )− g(U,FX)g(V,W )} = 0,

which implies that c = −ε or g(V, FX)g(U,W )− g(U,FX)g(V,W ) = 0, that is, (s− 1)FX = 0.
Hence we have

Theorem 5.13. Let M be of constant φ-holomorphic sectional curvature c in the φ-invariant
Sasaki-like statistical submersion such that ξ ∈ H(M). If H∇UP = 0, V∇UF = 0 and ∇Uf = 0
hold, then

(1) c = −ε or

(2) each fiber is φ∗-invariant if s ≥ 2.

Next, changing V to fV in (4.25), we get

g((∇XT )UV, P
∗Y )− g((∇UA)XV, P ∗Y )− g((H∇XP )(TUV ), Y )

+g(TU{(V∇Xf)V }, Y ) + g((H∇UP )(AXV ), Y )− g(AX{(∇Uf)V }, Y )

+εη(Y )g(SUX,V )− g(AXU,A∗
Y (fV )) + g(TUX,T ∗

fV Y )

=
ε

4
(c− ε)η(X)η(Y )g(U, fV )− 1

4
(c+ 3ε){g(U, fV )g(X,Y ) + g(U, V )g(PX, Y )}.

Also, if we change Y to P ∗Y in (4.25), then we obtain

g((∇XT )UV, P
∗Y )− g((∇UA)XV, P ∗Y )− g(AXU,A∗

Y (fV ))

+g(TUX,T ∗
fV Y ) + εη(Y )g(TUX,V )

= − 1

4
(c+ 3ε)g(U, V )g(PX, Y )− 1

4
(c− ε)g(U, fV ){g(X,Y )− εη(X)η(Y )}.
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It is clear from above two equationa that

g((H∇XP )(TUV ), Y )− g(TU{(V∇Xf)V }, Y )− g((H∇UP )(AXV ), Y )

+g(AX{(∇Uf)V }, Y )− εη(Y )g(X,TUV ) = εg(U, fV )g(X,Y ).

We assume that H∇P = 0 and V∇f = 0. Then we find η(Y )g(X,TUV ) = −g(U, fV )g(X,Y ).
Hence we have

Lemma 5.14. Let M be of constant φ-holomorphic sectional curvature c in the φ-invariant
Sasaki-like statistical submersion such that ξ ∈ H(M). If H∇P = 0 and V∇f = 0 hold, then

TUV = −g(U, fV )ξ.

From (4.20) and Lemma 5.14, we get

R(U, V )W =
1

4
(c+ 3ε){g(V,W )U − g(U,W )V − g(V, fW )fU + g(U, fW )fV },

which yields that Ric(V,W ) = ε{(s− 2)g(V,W )− (tr f)g(V, fW )}. Thus we have

Theorem 5.15. Let M be of constant φ-holomorphic sectional curvature c in the φ-invariant
Sasaki-like statistical submersion such that ξ ∈ H(M). In the case of H∇P = 0 and V∇f = 0,
we get

(1) if c = −3ε, then each fiber is flat.

(2) if tr f = 0 and s ≥ 3, then each fiber is Einstein.

5.2. Case of ξ ∈ V(M). From Lemmas 4.1, 4.2 and 4.3, we find

Lemma 5.16. Let π be an almost contact metric submersion such that ξ ∈ V(M). If M is
φ-invariant, then we get

P 2 = −I, FP + fF = 0, f2 = −I + η ⊗ ξ,

(P ∗)2 = −I, P ∗t∗ + t∗f∗ = 0, (f∗)2 = −I + η ⊗ ξ.

Lemma 5.17. Let π be an almost contact metric submersion such that ξ ∈ V(M). If M is
φ-invariant, then we obtain

fξ = 0, η(FX) = 0, η(fV ) = 0,

t∗ξ = 0, f∗ξ = 0, η(f∗V ) = 0.

Lemma 5.18. Let π be an almost contact metric submersion such that ξ ∈ V(M). If M is
φ-invariant, then we have

g(PX,P ∗Y ) = g(X,Y ), g(fU, f∗V ) = g(U, V )− εη(U)η(V ).

Moreover, we have from Propositions 4.9, 4.10 and Lemma 4.11

Lemma 5.19. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), we
get

TUξ = 0, ∇Uξ = −εfU, AXξ = −εPX, V∇Xξ = −εFX,

T ∗
Uξ = −εt∗U, ∇∗

Uξ = −εf∗U, A∗
Xξ = −εP ∗X, V∇∗

Xξ = 0.
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Lemma 5.20. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), we
find

(∇Uf)V − F (TUV ) = g(U, V )ξ − εη(V )U,(5.9)

TU (fV )− P (TUV ) = 0,(5.10)

(V∇UF )Y + TU (PY )− f(TUY ) = 0,(5.11)

(H∇UP )Y + TU (FY ) = 0,(5.12)

(V∇Xf)V − F (AXV ) = 0,(5.13)

AX(fV )− P (AXV ) = −εη(V )X,(5.14)

(V∇XF )Y +AX(PY )− f(AXY ) = g(X,Y )ξ,(5.15)

(H∇XP )Y +AX(FY ) = 0.(5.16)

Corollary 5.21. For the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), we
find

(∇∗
Uf

∗)V + T ∗
U (t

∗V ) = g(U, V )ξ − εη(V )U,(5.17)

(H∇∗
U t

∗)V + T ∗
U (f

∗V )− P ∗(T ∗
UV ) = 0,(5.18)

T ∗
U (P

∗Y )− f∗(T ∗
UY ) = 0,(5.19)

(H∇∗
UP

∗)Y − t∗(T ∗
UY ) = 0,(5.20)

(V∇∗
Xf∗)V +A∗

X(t∗V ) = 0,(5.21)

(H∇∗
Xt∗)V +A∗

X(f∗V )− P ∗(A∗
XV ) = −εη(V )X,(5.22)

A∗
X(P ∗Y )− f∗(A∗

XY ) = g(X,Y )ξ,(5.23)

(H∇∗
XP ∗)Y − t∗(A∗

XY ) = 0.(5.24)

Lemma 5.22. If the Sasaki-like statistical submersion is φ-invariant such that ξ ∈ V(M), then
we find

η(TUY ) = −g(U,FY ), η(AXY ) = −g(X,PY ),

η(T ∗
UY ) = 0, η(A∗

XY ) = −g(X,P ∗Y ).

From (5.13), V∇Xf = 0 if and only if F (AXV ) = 0. If we change V to ξ, then we find
FPX = 0, namely, FX = 0. Hence we have

Lemma 5.23. In the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), it is
equivalent that V∇Xf = 0 holds and each fiber is φ∗-invariant.

Because of (5.9), (5.16), Lemmas 5.19 and 5.23, we have

Theorem 5.24. In the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), if
V∇Xf = 0, then we find

(1) each fiber (M, g,∇) is a Sasaki-like statistical manifold with Sasaki-like structure (f, ξ, η).

(2) the base space (B, gB, ∇̂, P̂ ) is a Kähler-like statistical manifold.
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We assume that V∇Xf = 0 holds. It is easy to see from (5.23) that A∗
Y (P

∗X)− f∗(A∗
Y X) =

g(X,Y )ξ, which means that

−AP ∗XY + f∗(AXY ) = g(X,Y )ξ.

Moreover, using (5.15), we have

(f + f∗)AXY = AX(PY ) +AP ∗XY.

Also, if PY is basic, then we get APY U − P (AY U) = 0 from (5.12). Therefore we have
g(U,AX(PY )) + g(U,AP ∗XY ) = 0, which implies that AX(PY ) + AP ∗XY = 0. Thus (f +
f∗)AXY = 0 holds. When rank (f + f∗) = dimM − 1 holds, we obtain AXY = −g(X,PY )ξ.
Hence we have

Lemma 5.25. In the φ-invariant Sasaki-like statistical submersion such that ξ ∈ V(M), if
V∇Xf = 0 and rank (f + f∗) = dimM − 1 hold, then we get AXY = −g(X,PY )ξ.

We suppose the total space is of constant curvature ε. Because of (4.18) and Lemma 5.25, we
get

R̂(X,Y )Z = ε[ g(Y, Z)X − g(X,Z)Y − g(Y, PZ)PX + g(X,PZ)PY

+{g(X,PY )− g(PX, Y )}PZ ].

Hence we have

Theorem 5.26. Let M be of constant curvature ε in the φ-invariant Sasaki-like statistical
submersion such that ξ ∈ V(M). If V∇Xf = 0 and rank (f + f∗) = dimM − 1 hold, then the

base space (B, gB, ∇̂, P̂ ) is of constant holomorphic sectional curvature 4ε.

Next, when the total space is of constant φ-holomorphic sectional curvature c, equation (4.31)
can be rewritten as follows from Lemma 5.25:

R̂(X,Y )Z =
1

4
(c+ 3ε)[ g(Y,Z)X − g(X,Z)Y − g(Y, PZ)PX + g(X,PZ)PY

−{ g(X,PY )− g(PX, Y ) }PZ ].

Thus we have

Theorem 5.27. Let M be of constant φ-holomorphic sectional curvature c in the φ-invariant
Sasaki-like statistical submersion such that ξ ∈ V(M). If V∇Xf = 0 and rank (f + f∗) =

dimM −1 hold, then the base space (B, gB, ∇̂, P̂ ) is of constant holomorphic sectional curvature
c+ 3ε.

Example 5.28. Let π be a Sasaki-like statistical submersion of Example 4.23. It is easy to see
from

PX1 = −X1 − 2X2, PX2 = X1 +X2,

P ∗X1 = X1 +X2, P ∗X2 = −2X1 −X2

that Theorems 4.6 (2) and 5.24 (2) holds. Moreover, we find AXiXj = −g(Xi, PXj)ξ (i, j = 1, 2)
(see Lemma 5.25).
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