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A NOTE ON LEVI-FLAT HYPERSURFACES IN CP 3CP 3CP 3
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Abstract. We investigate Levi-flat hypersurfaces in CP 3, focusing on existence results rather
than the more commonly studied non-existence theorems. We show that every Levi-flat hyper-
surface in CP 3 induces an associated Lagrangian submanifold compatible with the two standard
almost complex structures. Additionally, we demonstrate that each Levi-flat hypersurface is an
example of a hypersurface with non-constant angle function. Finally, we provide a concrete
example of a Levi-flat hypersurface to illustrate the theory.
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1. Introduction

Levi-flat hypersurfaces link real and complex geometry and are essential in the study of functions
on complex manifolds, in a sense that will become clear later. Consider an almost complex
manifold (M,J), that is, J is a (1, 1)-tensor on M that satisfies J2 = −1. Given a (real)
hypersurface H in (M,J), the holomorphic tangent space or CR-structure HpH at a point p of
H is defined to be HpH = TpH∩JTpH. Note that the term “CR” comes from Cauchy-Riemann
or Complex-Real.

Definition 1.1. A (real) hypersurfaceH of an almost complex manifold (M,J) is called Levi-flat
if its CR-structure is integrable.

In other words, a Levi-flat hypersurface is foliated with (almost) complex submanifolds of
(real) dimension dim(M)−2. We call this the Levi-foliation of H. Just as minimal submanifolds
have vanishing mean curvature, Levi-flat hypersurfaces have a vanishing complex curvature,
hence the name. We give two easy examples of such hypersurfaces from the literature [8].
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The first example is the hypersurface {im(zn) = 0} of Cn = {(z1, . . . , zn) | zi ∈ C} which
is foliated by copies of Cn−1. The second, compact, example lies inside the space CP 1 × CP 1:
for any simple smooth closed curve γ, CP 1 × γ is a Levi-flat hypersurface with Levi-foliation
{CP 1 × {p} | p ∈ γ}.

To understand the significance of Levi-flat hypersurfaces, we look at some standard results
about holomorphic functions on Cn. Recall the concept of a domain of holomorphy on a complex
manifold: a connected open set Ω such that a non-constant holomorphic function on Ω can never
be extended to an open U with U∩Ω ̸= ∅ and U \Ω ̸= ∅. In this sense, they are maximal domains
of holomorphic functions. When one wants to analytically continue a given holomorphic function,
these domains of holomorphy are the limiting factor. Unfortunately, to determine domains of
holomorphy is not easy from the definition and we therefore turn to equivalent notions that are
easier to check for Cn.

One particularly useful such notion is Levi-pseudoconvexity: given an open with boundary
{ρ = 0}, we say that it is Levi-pseudoconvex if the quadratic form

(1.1) Cn → C : w 7→
n∑

i,j=1

∂2ρ

∂zi∂zj
wiw̄j

is non-negative everywhere. This quadratic form is known as the Levi-form. A special case
occurs when the Levi-form vanishes completely, which is equivalent with the Definition 1.1 of a
Levi-flat hypersurface [3]. As such, open connected sets in Cn that have a Levi-flat hypersurface
as boundary form an important class of domains of holomorphy.

Since a complex manifold is locally Cn, we can locally view a hypersurface as the zero locus
of a function ρ : M → R. The quadratic form associated to ρ is the local description of the
so-called Levi-form on M . Again, one can show that if this Levi-form vanishes, then and only
then the hypersurface is Levi-flat. On complex manifolds, however, not all open sets with a
Levi-flat hypersurface as boundary are domains of holomorphy. Ohsawa [7] recalls examples
U of which the boundary is a Levi-flat hypersurface, and where 1) non-constant holomorphic
functions do not exist on U , or 2) where U is a Stein manifold. Note that one of the defining
properties of a Stein manifold is holomorphic seperability: for distinct points p and q, there
exists a holomorphic function f such that f(p) ̸= f(q). Clearly, on complex manifolds, Levi-flat
hypersurfaces have a richer interaction with domains of holomorphy, than on Cn. The tension
between these two types of examples motivated researchers to start studying and classifying
Levi-flat hypersurfaces [7].

There are already many (non-existence) results of Levi-flat hypersurfaces in CP 3 with its
standard complex structure. For instance, there are no closed and real analytic examples [7],
which can be generalised to the statement that there are no closed Levi-flat hypersurfaces of class
C12 [7]. Another instance is the non-existence of smooth real algebraic Levi-flat hypersurfaces
[8]. There do exist, however, non-closed smooth Levi-flat hypersurfaces, as we show in this note.

Even though the concept of a Levi-flat hypersurface is independent of any metric, a metric
can still help with the analysis. For example, we show that the existence of a strict nearly Kähler
metric on the ambient space is an obstruction to the existence of Levi-flat hypersurfaces. Given
a metric g, we may also consider the foliated 2-form

(1.2) HH×HH → R : (X,Y ) 7→ g([X,Y ], JN)

on the Levi-foliation, where N is a unit normal on the hypersurface. In other words, this object
behaves as a 2-form on the holomorphic tangent space. Checking that this foliated 2-form
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vanishes completely on HH is then equivalent to checking that H is a Levi-flat hypersurface.
Up to possible constants, this foliated real 2-form must coincide with the Levi-form evaluated
on real vector fields.

The structure of this work is as follows. We start with outlining the basic structures of the
Kähler and nearly Kähler CP 3 in Section 2. Moreover, we also recall the basic description of
hypersurfaces in the nearly Kähler CP 3 in this section. In Section 3, we collect some results
about Levi-flat hypersurfaces in CP 3 with its two standard almost complex structures. Here,
we interpret a result of the literature to see that the existence of a strictly nearly Kähler metric
obstructs the existence of Levi-flat hypersurfaces. As such, there are none in CP 3 equipped with
one of its two almost complex structures. We move to CP 3 with its complex structure inherited
from C4 and prove that any Levi-flat hypersurface must have a non-constant angle function. We
proceed by giving a specific example of a Levi-flat hypersurface in CP 3, and generalising it to
a large family of examples. We conclude by associating a family of Lagrangian immersions (for
both the Kähler and nearly Kähler CP 3) to each Levi-flat hypersurface.

2. Hypersurfaces in the nearly Kähler CP 3

We first recall some basic notions of the description of Kähler and nearly Kähler CP 3, and then
recall a local frame on hypersurfaces in CP 3.

The round S7 embedded in C4 is equipped with the Sasakian structure coming from the
multiplication with i in C4. When considering the standard projection C4 → CP 3, we can also
restrict to the seven-sphere, to obtain the Hopf fibration π : S7 → CP 3. There is a unique metric
g◦ on CP 3, called the Fubini-Study metric, such that π is a Riemannian submersion. The vertical
space is given by V (p) = Span{ip}. The Sasakian structure then induces an almost complex
structure J◦ on CP 3 which is Kähler, i.e. ∇◦J◦ = 0, with ∇◦ the Levi-Civita connection of g◦.
Concretely, the complex structure J◦ acts on a vector field X ∈ X(CP 3) by taking the unique

horizontal lift X̃ under π, multiplying by i and then projecting back to CP 3: J◦X = dπ(iX̃).
The link with the round S7 ⊂ C4 makes it easy to work with Kähler (CP 3, g◦, J◦). Finally, we
recall that the full isometry group of the Kähler CP 3 is given by PU(4)⋊ Z2.

The nearly Kähler CP 3 is defined as the twistor space τ : CP 3 → S4 over S4 ∼= HP 1.
Alternatively, yet equivalently, we [5] can define the nearly Kähler CP 3 more similar to the
Kähler CP 3. To this end, identify C4 with H2 and consider S7 ⊂ H2. The advantage of
this, is to have the extra structures j, k on S7. Consider the two dimensional distribution
D̃2

1(p) = Span{jp, kp} and let D̃4
2 be such that TS7 = V ⊕ D̃2

1 ⊕ D̃4
2 orthogonally. It was

shown [5] that D2
1 = dπ(D̃2

1) is well-defined, and similarly, D4
2 is well-defined. Define the almost

product structure P by demanding it is the identity on D4
2 and minus the identity on D2

1. Then,
J = PJ◦ = J◦P is a new almost complex structure, that together with the metric

(2.1) g(X,Y ) =
3

2
g◦(X,Y ) +

1

2
g◦(X,PY )

forms the nearly Kähler (CP 3, g, J). The full isometry group of (CP 3, g) is given [5, 1] by
PSp(2)⋊ Z2. Its concrete action is outlined in [1].

We now focus on hypersurfaces in CP 3. For later convenience (because it has the smaller
isometry group), we view them as isometrically immersed in the nearly Kähler CP 3. We recall
[4] the angle function of a hypersurface in (CP 3, g, J): the function θ such that g(JN, J◦N) =
g(PN,N) = cos(2θ) for a g-unit normal N . At any point, it can be taken to lie between 0 and
π/2, but it cannot be constant and equal to π/2. If the angle does not vanish everywhere, we
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can use the result [4, Lemma 3.5] that the following is a g-orthonormal frame of TCP 3 along
the hypersurface:
(2.2)

e1 =
JN + J◦N

2 cos θ
, e2 =

JN − J◦N

2 sin θ
, e3 =

(PN)⊤

sin 2θ
, e4 =

G(PN,N)

sin 2θ
, e5 = Je4, N,

where G = ∇J , (PN)⊤ = PN − cos(2θ)N and Je4 = J◦e4. In this frame, we will express the
second fundamental form h with respect to the nearly Kähler metric in terms of its component
functions:

(2.3) αij = g(h(ei, ej), N) = αji.

Finally, we recall that by using that the nearly Kähler CP 3 is of constant type, i.e. there is a
condition on the length of G, we find [4] the derivatives of the angle θ in terms of αij :

(2.4) ei(θ) = α3i −
1

2
δi,5,

with δ the Kronecker delta.

3. Levi-flat hypersurfaces in CP 3

There are two natural almost complex structures on CP 3: J , and J◦. These are the ones so
that CP 3 with these structure (and the correct metric) becomes a homogeneous nearly Kähler
or Kähler manifold, respectively. As such, a priori, there are two almost complex manifolds to
consider Levi-flat hypersurfaces in. However, we recall the following result.

Theorem 3.1 (Lin, Vrancken, Wijffels, 2020 [6]). Let M2n be a 2n-dimensional strictly nearly
Kähler manifold. Then there do not exist 2n− 2-dimensional almost complex submanifolds.

From this, we immediately have the following

Corollary 3.2. Let (M,J) be an almost complex manifold. If there exists a metric g such that
(M, g, J) is strictly nearly Kähler, then there are no Levi-flat hypersurfaces in (M,J).

In particular, for one of the two almost complex structures, there is a negative answer for the
existence of Levi-flat hypersurfaces.

Corollary 3.3. There is no Levi-flat hypersurface in (CP 3, J).

The non-existence of Levi-flat hypersurfaces in (CP 3, J) is a direct consequence of the manifold
admitting a nearly Kähler structure. Moreover, the structure further gives the following non-
existence result. To state it, recall that g is the metric such that (CP 3, g, J) is a homogeneous
nearly Kähler manifold.

Proposition 3.4. There is no Levi-flat hypersurface in (CP 3, g, J◦) with angle θ = 0.

Proof. We prove this via contradiction. Suppose there is a Levi-flat hypersurface H with angle
θ = 0. Then, the g-unit normal N lies in the four dimensional distribution. In other words,
JN = J◦N . Moreover, N◦ =

√
2N is a g◦-unit normal. As g◦([X,Y ], J◦N◦) = 0 for all tangent

vectors X,Y ∈ H ∩ J◦H, we find 0 = g◦([X,Y ], J◦N◦) =
√
2g◦([X,Y ], JN) =

√
2
2 g([X,Y ], JN).

In other words, H is Levi-flat for (CP 3, J), which is a contradiction with Corollary 3.3. □

With a little more work, we can extend the previous result to all constant angles. We first
note the following lemma.
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Lemma 3.5. Given a Levi-flat hypersurface in (CP 3, J◦), equipped with the induced metric of
g and the frame of Equation (2.2), then the following relations hold for αij = g(h(ei, ej), N):

α44 + α55 = 0, α34 + α25 cos θ + α15 sin θ = 0,

α35 + cos2 θ = α24 cos θ + α14 sin θ, α33 + α12 sin 2θ + α11 sin
2 θ + α22 cos

2 θ = 0.

Proof. By Proposition 3.4, we know that θ ̸= 0, so that we can take this frame. Then, this is
a simple computation of g([X,Y ], J◦N), and demanding it vanishes for all holomorphic tangent
vectors X,Y . □

Proposition 3.6. All Levi-flat hypersurfaces in any (CP 3, ga, J◦) (a ̸= 1) have non-constant
angle.

Proof. We argue by contradiction. So, suppose there is a Levi-flat hypersurface with constant
angle. From Proposition 3.4, we know θ ̸= 0, and we know θ ̸= π/4. Lemma 3.5 applies.
The conditions of having constant angle amount to α13 = α23 = 0, α25 = −α15 tan θ, α24 =
1
2(2+cos(2θ)−2α14 sin(θ))/ cos θ and α12 = − 1

sin(2θ)(α22 cos
2 θ+α11 sin

2 θ). We then look at the

Gauss equation applied to (e3, X, e4, e5) for X = e4, e5. We find α45 = α45 = 0. From the Gauss
equation applied to (e3, e5, e4, e1), we then find (1 + cos2 θ) sin θ = 0. This is never satisfied, so
that there cannot be a Levi-flat hypersurface with constant angle. □

As such, the previous result tells us that any Levi-flat hypersurface gives interesting examples
of hypersurfaces with a non-constant angle function.

Before continuing with general results, we give an example of a Levi-flat hypersurface in
(CP 3, J◦), so that we are not making claims about the empty set.

Remark 3.7. From Corollary 3.2, it follows that the following example shows that there cannot
be a metric (homogeneous or not) on CP 3 such that (CP 3, J◦) with this metric is strictly nearly
Kähler.

Denote I the open interval I = (−π/2, π/2), and consider the embedding

(3.1) i1 : I × S5 ⊂ I × C3 → S7 ⊂ C4 :

t,

u
v
w

 7→


u cos t+ iv sin t
v cos t+ iu sin t

w cos t
−iw sin t


and one of its submanifolds

(3.2) i2 : S2 ⊂ R× C → S7 ⊂ C4 :

(
a
v

)
7→


0
a
v
0

 = i1

0,

0
a
v

 .

Composing with the Hopf fibration π, we get the following embeddings into CP 3:

ι1 = π ◦ i1 : I × CP 2 → CP 3, ι2 = π ◦ i2 : CP 1 → CP 3.(3.3)

Remark 3.8. The example of ι1 comes from a general idea: 1) take an embedding U ⊂ C2 →
CP 3 : (z, w) 7→ F (z, w), 2) take a regular curve I → u(4) : t 7→ G(t), such that the curve does

not belong to su(3)×u(1) and 3) form the immersion I×U → CP 3 : (t, (z, w)) 7→ eG(t) ·F (z, w).
By regularity, the parameter t discerns the leaves, which are all copies of the image of F and
thus complex submanifolds.

15



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 15 (2025)

The unit normal on i1 in the round S7 is given by ξ0 = (0, 0,−i sin t, cos t). Choosing coor-
dinates on S5, it is straightforward to show that both iξ0 and ξ0 are orthogonal to TS5 in the
round S7. Another way to see this: take ∂i1

∂t , use Gram-Schmidt to make it orthogonal to TS5,
and observe that it lies in the span of iξ0. It follows that ι1 gives rise to a Levi-flat hypersurface
in CP 3 with CP 2 as the foliating complex manifold.

By computing G in this example, we find that with N0 = dπξ0, the vector fields G(N◦, J◦N◦)
and J◦G(N◦, J◦N◦) span the tangent space of ι2. Moreover, both these vector fields lie in D4

2, so
that they are horizontal with respect to the twistor fibration τ : CP 3 → S4. In particular, any
of the integrating surfaces of these vector fields are horizontal with respect to τ and lie in CP 2,
and are congruent to a standard CP 1. Since CP 1 is totally geodesic, the image under τ of any
of the integrating surfaces is a totally geodesic two-sphere. Being totally geodesic, they are in
particular superminimal in S4. Hence, by a theorem of Storm [9], there are unique Lagrangian
submanifolds (of both Kähler and nearly Kähler CP 3) associated with each of these surfaces in
S4. Because the surfaces are all totally geodesic, all of these Lagrangians have to be congruent
to the totally geodesic RP 3. The above all generalises for any Levi-flat hypersurface in CP 3.

Theorem 3.9. All Levi-flat hypersurfaces in (CP 3, J◦) give rise to a family (possibly with only
one member) of superminimal surfaces in the round S4. As such, each Levi-flat hypersurface
has a family of Lagrangian (with respect to both Kähler and nearly Kähler CP 3) immersions
associated to it.

Proof. Suppose a Levi-flat hypersurface H, and equip it with the frame of Equation (2.2).
Lemma 3.5 applies. Suppose H is foliated by complex manifolds as H = ⊔tMt.

Let U = G(N◦, J◦N◦) and V = J◦U . Computing in the frame, we find that {U, V } forms
an involutive distribution and that both U and V lie in D4

2. Moreover, U and V belong to
TH ∩ J◦TH. Let Σt ⊂ Mt be an integrating surface of {U

∣∣
Mt

, V
∣∣
Mt

}.
By horizontality, we find that τ(Σt) is a surface in S4. Moreover, when S4 is equipped with

the round metric, we find that τ(Σt) is superminimal in S4. From Storm’s theorem [9], we
find that there is a unique Lagrangian submanifold Lt (simultaneously for Kähler and nearly
Kähler CP 3) associated to each Σt. The family {Lt | t} is the requested family of Lagrangian
submanifolds. □

Remark 3.10. The superminimal surfaces of Remark 3.8 lie in the image of π ◦ F and are
congruent in the Kähler CP 3, and as such they descend to congruent superminimal surfaces in
S4. Therefore, the associated Lagrangian immersions of all Levi-flat hypersurfaces of Remark 3.8
will all be congruent and the family will only consist of one member.

4. Discussion and concluding remarks

In this work, we have considered Levi-flat hypersurfaces of the complex projective space CP 3.
In Cn, Levi-flat hypersurfaces bound domains of holomorphy and as such are crucial in under-
standing where analytic continuation is possible. Even though this implication does not hold
in general on complex manifolds, understanding when it does and when it does not is an active
field of research and may give new insights in the detection of regions of holomorphy. As a first
step, one currently attempts to classify Levi-flat hypersurfaces in different spaces. As a small
contribution to this initiative, we proceeded to study Levi-flat hypersurfaces in CP 3.

One key insight arising from our work is that the existence of a strictly nearly Kähler metric
(i.e. a metric that turns the ambient space with almost complex structure into a strictly nearly
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Kähler manifold) obstructs the existence of Levi-flat hypersurfaces. Since we constructed an
example of a Levi-flat hypersurface in (CP 3, J◦), this also shows that this space can never
have a metric (homogeneous or not) that turns it into a strictly nearly Kähler manifold and is
compatible with J◦. Moreover, the nearly Kähler obstruction aided us in the classification of
Levi-flat hypersurfaces in (CP 3, J◦), as the link between Kähler and nearly Kähler CP 3 prohibits
the existence of a Levi-flat hypersurface with vanishing angle function. These are examples of
how a metric can help with the classification endeavour, even though the problem itself is
independent of a metric. In a similar vein, a metric makes the Levi-form easily expressible in
real terms on a Riemannian manifold.

We finish this work with possible further research questions. We showed that with every Levi-
flat hypersurface, there is an associated family of Lagrangian immersions, and an associated
family of horizontal (lying in D4

2, horizontal for the twistor fibration τ) complex surfaces in the
leaves of the foliation (and following from this, a family of superminimal surfaces in S4). Bryant
[2] classified all possible horizontal complex surfaces in (CP 3, J◦), see also Xu’s work [10]. It
is natural to ask what kind of restrictions this classification lays on the existence of Levi-flat
hypersurfaces. Another question is whether there exist Levi-flat hypersurfaces whose associated
family of Lagrangian immersions contains the so-called Chiang Lagrangian: the Lagrangian
corresponding to the Veronese surface in S4. Apart from RP 3, this is the unique Lagrangian
whose associated surface has constant sectional curvature. A final question we pose is whether
there exist Levi-flat hypersurfaces whose associated family of Lagrangians contains both the
unique (nearly Kähler) totally geodesic Lagrangian RP 3 and the Chiang Lagrangian.
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