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Abstract. In this article, we first discuss certain curvature features of perfect fluid space-
times and some known findings of perfect fluid space-times. For a Lorentzian manifold to be a
perfect fluid space-time, we give two criteria. Furthermore, we discover that a conharmonically
flat perfect fluid space-time characterizes the radiation era. We then demonstrate that a stiff
matter fluid’s vorticity disappears if it complies with Yang’s equations. Furthermore, we discover
that the perfect fluid space-time is shear-free, vorticity-free, and µ and p are constant if the
Ricci tensor is Killing. In addition, we prove that Ricci symmetric or Ricci semi-symmetric
perfect fluid space-times are either phantom era or dark matter era. Lastly, we conclude that a
perfect fluid space-time that is Ricci symmetric either represents a static space-time or a dark
matter era.
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1. Introduction

The most significant difference between Riemannian and semi-Riemannian geometry is the
presence of a null vector, that is, a vector v obeying gjkv

jvk = 0. For an n-dimensional Rie-
mannian manifold the signature of the metric tensor is (+,+,+, . . . ,+,+,+), whereas for a
semi-Riemannian manifold the signature is (−,−,−, . . . ,+,+,+). Lorentzian manifold is a spe-
cial class of a semi-Riemannian manifold whose signature is (−,+,+, . . . ,+), that is, index is
one.

For instance, in a 4-dimensional semi-Riemannian manifold with the metric

ds2 = −
(
dx1
)2 − (dx2)2 − (dx3)2 + c2

(
dx4
)2

,
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(
−1,−1, 1,

√
3

c

)
is a null vector and in a 4-dimensional Lorentzian manifold with the metric

ds2 = −
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+ c2
(
dx4
)2

,(
1, 0, 0,

1

c

)
is a null vector.

Some of the most significant ideas in contemporary physics, including string theory and general
relativity, are based on Lorentzian geometry.

From an exclusively mathematical perspective, a Lorentzian manifold M is a smooth mani-
fold endowed with a symmetric non-degenerate bilinear form g, called the metric of signature
(−,+,+,+, . . . ,+), that is, index of g is 1.

In general, a Lorentzian manifold (M, g) may not have a globally time-like vector field. If
(M, g) admits a globally time-like vector field, it is named time oriented Lorentzian manifold,
physically known as space-time.

SupposeM is a semi-Riemannian manifold of dimension n ≥ 2 with a semi-Riemannian metric
g of signature (m, p), where m + p = n. If g is a Lorentzian metric of signature (1, n − 1) or
(n − 1, 1), then M equipped with g is said to be an n-dimensional Lorentzian manifold [18].
If M = −I ×f M, where I is an open interval of real numbers R, M indicates a Riemannian
manifold of dimension n− 1 and f > 0 stands for a smooth function, named as warping function
or scale factor, then M is said to be a generalized Robertson-Walker (GRW ) space-time [1]. In
particular, if we suppose that M is a Riemannian manifold of dimension 3 and is of constant
sectional curvature, then the GRW space-time becomes a Robertson-Walker (RW ) space-time.
This states that GRW space-times are the natural extension of RW space-times. It is well-
known that the Lorentzian Minkowski space-time, the static Einstein space-time, the Friedmann
cosmological models, the Einstein-de Sitter space-time, the de Sitter space-time are included in
the GRW space-times [21].

In general relativity, idealized distributions of matter, like the interior of a star or an isotropic
cosmos, are modeled using perfect fluids. In the latter scenario, the perfect fluid’s equation of
state might be applied to the Friedman-Lemaitre-Robertson-Walker (FLRW) equations, which
characterize the universe’s evaluation. A fluid that has no viscosity and is incompressible is
referred to as an perfect fluid. The energy momentum tensor’s perfect fluid form is widely used
and very significant. The energy momentum tensor Thk is given by

(1.1) Tjk = (µ+ p)ujuk + pgjk,

where g is the Lorentzian metric and p and µ denote the perfect fluid’s isotropic pressure
and energy density, respectively [18]. In the last equation, the velocity vector is defined by
gjku

juk = −1 and uj = gjku
k.

For a gravitational constant κ, the Einstein’s field equations without a cosmological constant
is described by

(1.2) Rjk −
R

2
gjk = κTjk,

where Rl
jki is the curvature tensor of type (1,3), Rjk = Ri

jki and R = gjkRjk denote the Ricci
tensor and the Ricci scalar, respectively.
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A space-time M is named a perfect fluid space-time if the non-vanishing Ricci tensor Rjk

obeys

(1.3) Rjk = αgjk + βujuk,

where α and β are smooth functions. The foregoing equation is obtained from the equations
(1.1) and (1.2) (see, [15]).

Combining the equations (1.1), (1.2) and (1.3), we acquire

(1.4) β = k2(p+ µ), α =
k2(p− µ)

2− n
.

Moreover, an equation of state with the form p = p(µ) connects p and µ, and the perfect fluid
space-time is known as isentropic. Furthermore, if p = µ, the perfect fluid space-time is referred
to as stiff matter [2]. The perfect fluid space-time is named the dark matter era if p + µ = 0,
the dust matter fluid if p = 0, and the radiation era if p = µ

3 [2]. The universe is represented as

accelerating phase when p
µ < −1

3 . It covers the quintessence phase if −1 < p
µ < 0 and phantom

era if p
µ < −1.

It is well-known that every RW-space-time is a perfect fluid space-time [18]. Also, a 4-
dimensional GRW-space-time is a perfect fluid space-time if and only if it is a RW-space-time
[9]. In [24], Shepley and Taub established that a 4-dimensional perfect fluid space-time with
∇hC

h
ijk = 0 , in which ∇ denotes the covariant differentiation and subject to a state equation

p = p(µ) is conformally flat, and the metric is RW, the flow is irrotational, shear-free, and
geodesic. Any perfect fluid solution of Einstein’s field equation with p = p(µ), p + µ ̸= 0,
admitting a conformal Killing vector parallel to the velocity vector uj , is locally a FRW model[4].
In [22], Sharma established that if a perfect fluid space-time with divergence free weyl tensor
admits a proper conformal symmetry, then it is conformally flat. The existence of a concircular
vector field in a conformally flat perfect fluid space-time with closed uh was established by De
and Ghosh in [6]. The characteristics of perfect fluid space-times have been found in ([15], [16]).

In local coordinates, the conformal curvature tensor, represented by C, is given by

Chijk = Rhijk −
1

n− 2
(ghkRij − ghjRik + gijRhk − gikRhj)(1.5)

+
R

(n− 1)(n− 2)
(ghkgij − ghjgik),

where Rhijk indicates the curvature tensor of type (0,4).
If the metric of a Lorentzian manifold satisfies the relation

(1.6) £ugjk + 2Rjk + 2λgjk = 0,

then it is called a Ricci soliton [11], where £u is the Lie derivative operator and λ denotes a real
constant. Here, u is named the potential vector field of the solitons. The solitons are known as
almost Ricci solitons if λ is a function [19].

For a non vanishing 1-form ωk and a scalar function ϕ if the relation ∇kuh = ωkuh + ϕgkh
holds, then the vector field u is called torse-forming. This notion was introduced by Yano
[29] on a Riemannian manifold. It is noted that the foregoing torse-forming condition becomes
∇kuh = ϕ(ukuh + gkh), for a unit time-like vector.

3



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 15 (2025)

To investigate a conformally flat hypersurfaces of a Euclidean space, Chen [3] acquire the
ensuing expression of the curvature tensor

Rhijk = γ(ghkgij − ghjgik)(1.7)

+µ(ghkuiuj + gijuhuk − ghjuiuk − gikuhuj),

where ui is a unit vector, named the generator and γ, µ are scalars. An n-dimensional conformally
flat space obeying (1.7) is called a space of quasi-constant sectional curvature and denoted by
(QC)n. However, if the equation (1.7) of the curvature tensor holds, then it can be easily verified
that the space is conformally flat. So in the definition conformally flatness is not required. A
Lorentzian manifold is said to be a space-time of quasi constant sectional curvature if uj is a
unit time-like vector.

The tensor Djk is named Killing [28] if it satisfies the following condition

∇lDjk +∇kDlj +∇jDkl = 0.

Hall described Ricci recurrent (∇lRjk = AlRjk, Al is a covariant vector.) space-times in [12].
The Ricci semi-symmetry is well known to be weaker than the Ricci recurrent space-time. In
this article, we are interested in looking into the Ricci semi-symmetric perfect fluid space-times.

A space-time is said to be semi-symmetric [26] if it obeys the relation

(1.8) ∇l∇mRh
ijk −∇m∇lR

h
ijk = 0,

where ∇ indicates the covariant differentiation. Semi-symmetric space-times have been consid-
ered in [13]. It is to be noted that the class of locally symmetric spaces (∇lR

h
ijk = 0) due to

Cartan is a proper subset of semi-symmetric spaces.
A space-time is called Ricci semi-symmetric [17] if it satisfies the relation

(1.9) ∇l∇mRij −∇m∇lRij = 0.

If a Lorentzian manifold admits a time-like Killing vector field ρ, it is referred to as a stationary
space-time and static ([20], [25], p. 283) if, additionally, ρ is irrotational. We will refer to ρ in
this context as the static vector field, where it is assumed that space-time is time-oriented. The
product R× S is called a static space-time if it is equipped with the metric

(1.10) g[(t, y)] = −β(y)dt2 + gS [y],

where gS denotes a Riemannian metric on S. Any static space-time behaves like a standard one
locally, with ρ identifiable to ∂t. A spherically symmetric vacuum solution is necessarily static,
according to Birkhoff’s theorem [14].

2. Examples of perfect fluid space-times

1. In [18], O’Neill established that every RW-space-time represents a perfect fluid space-time.
Dark matter era refers to perfect fluid space-time with the equation of state p + σ = 0 [2].
However, so far, according to [10] a four-dimensional perfect fluid space-time with p+ σ ̸= 0 is
RW-space-time if and only if it is a Yang Pure space-time.

2. Any GRW-space-time of dimension four is also a perfect fluid space-time if the space-time
is a RW-space-time [9].

3. Multiplying (1.7) with gij , we acquire

Rhk = γ(4ghk − ghk) + µ(−ghk + 4AhAk −AhAk −AhAk)(2.1)

= (3γ − µ)ghk + 2µAhAk,
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which represents a perfect fluid space-time. Hence, a space-time of quasi constant sectional
curvature is a perfect fluid space-time.

4. In [15], Mantica et al established that with the condition Cm
jkl,m = 0, GRW-space-times

represent perfect fluid space-times.
5. Zhao et al [30] proved that every pseudo-symmetric GRW-space-time is a perfect fluid

space-time.

3. Proof of the Theorems

In this paper, we find two necessary criterion for a Lorentzian manifold to be a perfect fluid
space-time and prove the following:

Theorem 3.1. If in a Lorentzian manifold the Ricci tensor Rhk satisfies the relation

(3.1) RijRhk −RhjRik = f [gijghk − ghjgik],

for a smooth function f , then the space-time becomes a perfect fluid space-time.

Proof. Multiplying (3.1) with uiuj , we acquire

(3.2) uiujRijRhk − uiujRhjRik = f [−ghk − uiujghjgik].

Let σ = uiujRij and putting this value in the foregoing equation, we infer

(3.3) σRhk − uiRiku
jRhj = f [−ghk − uhuk].

Choose Bh = ujRhj and σ̃ = 1
σ . Then the above equation yields

(3.4) Rhk = σ̃[BhBk − fghk − fuhuk].

Again, multiplying (3.1) with ui, we obtain

uiRijRhk − uiRhjRik = f [ujghk − ukghj ]

which implies

(3.5) BjRhk −BkRhj = f [ujghk − ukghj ].

Using (3.4) in (3.5), we get

(3.6) σ̃Bj [BhBk − fghk − fuhuk]− σ̃Bk[BhBj − fghj − fuhuj ] = f [ujghk − ukghj ].

Multiplying both sides by ghk gives

σ̃Bj [−4f + f ]− σ̃Bk[−fδkj − fukuj ] = f [4uj − uj ].

which yields

(3.7) (−3f + f)σ̃Bj + fσ̃Bku
kuj = f [4uj − uj ].

Since Bh = ujRhj , we acquire Bhu
h = uhujRhj = σ. Hence, the last equation produces

(3.8) −2fσ̃Bj + fσ̃σuj = 3fuj .

Since σσ̃ = σ 1
σ = 1, we acquire from the previous equation

−2fσ̃Bj + fuj = 3fuj ,

which implies

(3.9) σ̃Bj = −uj ,
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Using (3.9) in (3.4), we infer

Rhk = − 1

σ̃
uhuk − fσ̃ghk − fσ̃uhuk.

which implies

(3.10) Rhk = −(fσ̃ +
1

σ̃
)uhuk − fσ̃ghk.

Therefore, the spacetime becomes a PF-spacetime.
Hence, the proof is complete. □

In order to arrive to the following conclusion, we examine a Lorentzian manifold that obeys
an almost Ricci solitons.

Theorem 3.2. If a Lorentzian manifold admits an almost Ricci soliton whose potential vector
field is a unit time-like torse-forming vector field, then it becomes a perfect fluid space-time.

Proof. Suppose that a Lorentzian manifold admits an almost Ricci soliton. Therefore the equa-
tion (1.6) reveals

(3.11) ∇huk +∇kuh + 2Rhk + 2λghk = 0.

If u is a unit time-like torse-forming vector field, then we infer ∇kuh = ϕ(ukuh + gkh). Using
this result in (3.11), we get

ϕ(ukuh + gkh) + ϕ(uhuk + ghk) + 2Rhk + 2λghk = 0,

which implies

(3.12) Rhk = −(ϕ+ λ)ghk − ϕuhuk.

Then, the space-time becomes a perfect fluid space-time.
Thus, the proof is complete. □

Here, we have established a number of theorems on perfect fluid space-times in dimension 4.
A space-time of quasi constant sectional curvature is a perfect fluid space-time. Is the converse

true? Here, we prove that the converse is not true, in general. Also, we know that every RW-
space-time represents a perfect fluid space-time. Is the converse valid? In this article, we
establish that the converse is usually not valid and state the following result:

Theorem 3.3. A conformally flat perfect fluid space-time is a space-time of quasi constant
sectional curvature and a RW-space-time with p+ µ ̸= 0.

Proof. In a conformally flat space-time, the curvature tensor Rhijk is written by

Rhijk =
1

2
(ghkRij − ghjRik + gijRhk − gikRhj)(3.13)

−R

6
(ghkgij − ghjgik).

Let us consider a conformally flat perfect fluid space-time. Then using (1.3) in (3.13), we acquire

Rhijk =

(
R

6
+ α

)
(ghkgij − ghjgik)(3.14)

+
β

2
(ghkuiuj + gijuhuk − ghjuiuk − gikuhuj).
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Therefore, the space-time represents a space-time of quasi constant sectional curvature.
We know that in a conformally flat space-time divC = 0 (‘div’ denotes the divergence). In

[16], it is established that perfect fluid space-times with p + µ ̸= 0 and div C = 0, represent
GRW-space-times.

Again, in four dimensions, every GRW-space-time is a perfect fluid space-time if and only if
it is a RW-space-time [9] and thus the space-time becomes RW.

Hence, the proof is complete. □

Remark 3.4. One example of a conformally flat perfect fluid solution is the generalized interior
Schwarzschild solutions with zero expansion [25]. The equation of state with the shape p = p(µ)
is only accepted by the FRW models.

In [10], Yang Pure Space is defined as a Lorentzian manifold of dimension four whose metric
tensor solves Yang’s equations: ∇lRhk−∇kRhl = 0. In dimension four, a perfect fluid space-time
with µ+ p ̸= 0 represents a RW space-time if and only if it is a Yang pure space, according to
Guilfoyle and Nolan’s proof in their paper [10], whereas here we acquired absolutely different
result.

Theorem 3.5. If a stiff matter fluid obeys Yang’s equations, then the vorticity of the fluid
vanishes.

Proof. Let the perfect fluid space-time obey the Yang’s equations, which entails

(3.15) ∇lRhk = ∇kRhl.

Differentiating (1.3) covariantly gives

(3.16) ∇lRhk = (∇lα)ghk + (∇lβ)uhuk + β(uk∇luh + uh∇luk).

Similarly, we infer

(3.17) ∇kRhl = (∇kα)ghl + (∇kβ)uhul + β(ul∇kuh + uh∇kul).

Hence, using the foregoing equations in (3.15), we acquire

0 = ∇lRhk −∇kRhl(3.18)

= (∇lα)ghk + (∇lβ)uhuk + β(uk∇luh + uh∇luk)

−(∇kα)ghl − (∇kβ)uhul − β(ul∇kuh + uh∇kul).

Multiplying the last equation by ghk yields

4(∇lα)− (∇lβ) + β(uh∇luh + uk∇luk)

= (∇lα) + (∇kβ)u
kul + β(ul∇hu

h + uk∇hul),

which entails

3(∇lα)− (∇lβ) = (∇kβ)u
kul + β(ul∇hu

h + uk∇hul).(3.19)

Multiplying (3.19) by ul, we get

[3(∇lα)− (∇lβ)]u
l = −(∇kβ)u

k − β∇hu
h,

which implies

(3.20) 3(∇lα)u
l = −β∇hu

h.
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We assume the perfect fluid space-time satisfies the stiff matter fluid, that is, p = µ. Then we
have ∇lα = 0, where we have used the equation (1.4). Then the previous equation tells that
either β = 0, or div uh = 0.

If β = 0, then p+ µ = 0 which implies µ = 0, since p = µ. Hence, the fluid is vacuum. This
is not a physically significant scenario bearing in mind that the universe contains matter.

If div uh = 0, then the velocity vector field is conservative. The nature of a conservative
vector field is always irrotational, thus we conclude that the perfect fluid has zero vorticity.

This concludes the proof. □

Here, we address the influence of Killing Ricci tensor in a perfect fluid space-time and prove
the following theorem:

Theorem 3.6. If in a perfect fluid space-time the Ricci tensor is Killing, then the perfect fluid
space-time is vorticity-free, shear-free, and p and µ are constant.

To establish the theorem we first state the following Lemma:

Lemma 3.7. In a space-time obeying Einstein’s field equations the Ricci tensor Rhk is Killing
if and only if the energy momentum tensor is Killing.

Proof of Theorem 3.6. In [23], Sharma and Ghosh established that in a perfect fluid space-time
if Thk is Killing, then the perfect fluid space-time is vorticity-free, shear-free, and p and µ are
constant. Now applying this result and the above Lemma, we can state that the perfect fluid
space-time is vorticity-free, shear-free, and p and µ are constant.

This accomplishes the proof. □

Now we consider a Ricci semi-symmetric perfect fluid space-time and state the subsequent
result:

Theorem 3.8. If a perfect fluid space-time is Ricci semi-symmetric, then the space-time repre-
sents either dark matter era, or phantom era.

The proof of the above theorem is given in [5].
A space-time is called conformally semi-symmetric if it fulfills the relation

(3.21) ∇l∇mCh
ijk −∇m∇lC

h
ijk = 0.

In [8], it is established that in dimension 4, conformally semi-symmetric space-times are Ricci
semi-symmetric space-times. Hence, we state the following:

Corollary 3.9. If a perfect fluid space-time is conformally semi-symmetric, then either the
space-time represents dark matter era, or phantom era.

Again, the class of Ricci symmetric spaces (∇lRij = 0) is a proper subset of Ricci semi-
symmetric spaces. Every semi-symmetric space is known to be Ricci semi-symmetric, but the
converse is not usually true. In a Riemannian space they are equivalent for dimension three.
In [27], it has been shown that for n ≥ 3, the foregoing stated relations are equivalent for
hypersurfaces having non negative Ricci scalar in a Euclidean space En+1.

We derive the following conclusion from the preceding studies:

Corollary 3.10. A Ricci symmetric perfect fluid space-time represents either phantom era, or
dark matter era.

Here, we also consider a Ricci symmetric perfect fluid space-time to state a different result.

8
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Theorem 3.11. If a perfect fluid space-time is Ricci symmetric, then either the space-time
represents a dark matter era, or a static space-time.

The above theorem’s proof may be found in [5].

It is well-known ([7], Section 10.7) that any static space-time is everywhere of Petrov type I,
D or O. As a result, the space-time under consideration is of Petrov type I, D or O.

Hence, we write:

Corollary 3.12. If a perfect fluid space-time is Ricci symmetric, then either the space-time
represents a dark matter era, or the space-time is of Petrov type I, D or O.

Acknowledgement. I would like to express my gratitude to Prof. Adela Mihai and Prof. Ion
Mihai for their invitation in RIGA 2025 as an invited speaker.
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