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Abstract. In this paper, the structured pseudospectra of matrices with entries in the non-
Archimedean field K and the structured pseudospectra of matrix pencils with entries in the
non-Archimedean field K are introduced. Many results are proved about them and we give a
few examples.

Mathematics Subject Classification (2010): 47A10, 47S10.
Key words: Non-Archimedean matrices, matrix pencils, pseudospectra.

Article history:

Received: March 27, 2025

Received in revised form: May 26, 2025

Accepted: June 22, 2025

1. Introduction and preliminaries

In the classical setting, L. N. Trefethen [18] developed the pseudospectra of matrices with
entries in C where C is the field of complex numbers. The pseudospectra of matrices is useful in
many fields in applied mathematics such as control theory, Markov chains, structural analysis,
numerical solution of differential equations, matrix iterations and economics. For more details,
we refer to [12, 13, 16, 17]. Recently, C. R. Johnson [12] studied the numerical determination
of the field of values of a general complex matrix. On the other hand, T. Kailath [13] collected
several results on linear systems. The concept of approximate eigenvalues and the integral
equation of laser theory were studied by H. J. Landau [14].

In non-Archimedean operator theory, J. Ettayb [8] studied the determinant spectrum of ma-
trices with entries in the complex Levi-Civita field C. The pseudospectrum of matrix pencils
with entries in K (where K is a non-Archimedean field) was studied by [7] and he proved that
the intersection of all pseudospectra of a matrix pencil with entries in K is the spectrum of this
matrix pencil and the pseudospectrum of the matrix pencil (A,B) is the collection of numbers
in K that are eigenvalues of some perturbed matrix A+ C with ∥C∥ < ε.

Throughout this paper, K is a non-Archimedean complete valued field with a nontrivial val-
uation | · |, Mn(K) denotes the space of all n × n matrices over K, Qp is the field of p-adic
numbers, X is non-Archimedean finite dimensional Banach space, X∗ denotes the dual space of
X and L(X) is the set of all bounded linear operators on X.
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In this article, we introduce and study the structured pseudospectra and the structured con-
dition pseudospectra of matrices with entries in K. We give several results about them and some
examples are supplied. We start by remembering some needed results.

Definition 1.1. [5] A field K is said to be non-Archimedean if it is endowed with an application
| · | : K → R+ such that

(i) |µ| = 0 if, and only if, µ = 0;
(ii) For all α, µ ∈ K, |αµ| = |α||µ|;
(iii) For each α, µ ∈ K, |α+ µ| ≤ max{|α|, |µ|}.

Definition 1.2. [5] Let X be a vector space over K. A mapping ∥ · ∥ : X → R+ is called a
non-Archimedean norm if

(i) For each x ∈ X, ∥x∥ = 0 if and only if x = 0;
(ii) For all x ∈ X and α ∈ K, ∥αx∥ = |α|∥x∥;
(iii) For any x, y ∈ X, ∥x+ y∥ ≤ max(∥x∥, ∥y∥).

Definition 1.3. [5] We have
(i) A non-Archimedean normed space X is a vector space X endowed with a non-Archimedean
norm ∥ · ∥.
(ii) A non-Archimedean Banach space is a complete non-Archimedean normed space.

Lemma 1.4. [5] Let X be a non-Archimedean Banach space over K. Let A ∈ L(X) such that
∥A∥ < 1, then (I −A)−1 ∈ L(X) and ∥(I −A)−1∥ ≤ 1.

Definition 1.5. [15] A non-Archimedean field K is said to be spherically complete if each
decreasing sequence of closed balls (Bn)n has nonempty intersection.

Theorem 1.6. [15] Suppose that K is spherically complete. Let X be a non-Archimedean Banach
space over K. For all x ∈ X\{0}, there exists x∗ ∈ X∗ such that x∗(x) = 1 and ∥x∗∥ = ∥x∥−1.

Definition 1.7. [7] Let A ∈ Mn(K), the spectrum σ(A) of a matrix A is defined by

σ(A) = {λ ∈ K : det(A− λI) = 0}.

The resolvent set ρ(A) of a matrix A is the complement of σ(A) in K given by

ρ(A) = {λ ∈ K : Rλ(A) = (A− λI)−1 exists in Mn(K)}.

Rλ(A) is called the resolvent of the matrix A.

Proposition 1.8. [9] Let X be a non-Archimedean Banach space over K. If A,B ∈ L(X), then
−1 ̸∈ σ(AB) if, and only if, −1 ̸∈ σ(BA).

We introduce the following definitions.

Definition 1.9. [7] Let A,B ∈ Mn(K), the spectrum σ(A,B) of a matrix pencil (A,B) of the
form A− λB is defined by

σ(A,B) = {λ ∈ K : det(A− λB) = 0}.

The resolvent set ρ(A,B) of a matrix pencil (A,B) is the complement of σ(A,B) in K given by

ρ(A,B) = {λ ∈ K : Rλ(A,B) = (A− λB)−1 exists in Mn(K)}.

Rλ(A,B) is called the resolvent of the matrix pencil (A,B).
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Definition 1.10. [7] Let A,B ∈ Mn(K) and ε > 0. The ε-pseudospectrum of the matrix pencil
(A,B) of the form A− λB is defined by

σε(A,B) = σ(A,B) ∪ {λ ∈ K : ∥(A− λB)−1∥ > ε−1}.

The ε-pseudoresolvent of the matrix pencil (A,B) is denoted by

ρε(A,B) = ρ(A,B) ∩ {λ ∈ K : ∥(A− λB)−1∥ ≤ ε−1},

by convention ∥(A− λB)−1∥ = ∞ if, and only if, λ ∈ σ(A,B).

2. Main Results

As a generalization of ε-condition pseudospectra given in the paper [2] for the matrix case,
we introduce the following definition.

Definition 2.1. Let A,B,C ∈ Mn(K) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0, the structured
condition pseudospectrum of a matrix A, relative to the pair (B,C) is defined by

Λε(A,B,C) = σ(A) ∪
{
λ ∈ K : ∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ >

1

ε

}
.

The structured condition pseudoresolvent of a matrix A is given by

ρ(A) ∩
{
λ ∈ K : ∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ ≤ 1

ε

}
.

By convention ∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ = ∞ if and only if λ ∈ σ(A).

From Definition 2.1, we conclude the following remark.

Remark 2.2. Let A,B,C ∈ Mn(K) such that 0 ∈ ρ(B) ∩ ρ(C), we have:
(i) If C = B = I, hence for each ε > 0,Λε(A, I, I) = Λε(A) is the condition pseudospectrum of
the matrix A.
(ii) One can see that for any ε > 0,Λε(A,B,C) ⊂ Λεk(A) in which k = ∥B∥∥C∥∥B−1∥∥C−1∥.

We have the following results.

Proposition 2.3. Let A,B,C ∈ Mn(K) such that 0 ∈ ρ(B) ∩ ρ(C), then

(i) σ(A) =
⋂

ε>0 Λε(A,B,C).
(ii) If 0 < ε1 < ε2, then σ(A) ⊂ Λε1(A,B,C) ⊂ Λε2(A,B,C).

Proof. (i) By Definition 2.1, for all ε > 0, σ(A) ⊂ Λε(A,B,C). Conversely, if λ ∈⋂
ε>0

Λε(A,B,C), then for all ε > 0, λ ∈ Λε(A,B,C). If λ ̸∈ σ(A), then λ ∈ {λ ∈

K : ∥C−1(A − λI)B−1∥∥B(A − λI)−1C∥ > ε−1}, taking limits as ε → 0+, we get
∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ = ∞. Then λ ∈ σ(A).

(ii) For 0 < ε1 < ε2. Let λ ∈ Λε1(A,B,C), then ∥C−1(A − λI)B−1∥∥B(A − λI)−1C∥ >
ε−1
1 > ε−1

2 . Hence λ ∈ Λε2(A,B,C).
□

The following lemma is true for any Banach space over a complete field with a nontrivial
valuation, in particular see Remark 2.17.
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Lemma 2.4. Let X be a non-Archimedean finite dimensional Banach space over K, let A,B,C ∈
L(X) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then λ ∈ Λε(A,B,C) \ σ(A) if, and only if, there
is x ∈ X\{0} such that

∥C−1(A− λI)B−1x∥ < ε∥C−1(A− λI)B−1∥∥x∥.

Proof. If λ ∈ Λε(A,B,C) \ σ(A), then

∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ > ε−1.

Thus

∥B(A− λI)−1C∥ >
1

ε∥C−1(A− λI)B−1∥
.

Hence

sup
y∈X\{0}

∥B(A− λI)−1Cy∥
∥y∥

>
1

ε∥C−1(A− λI)B−1∥
.

Then, there is y ∈ X\{0} such that ∥B(A − λI)−1Cy∥ > ∥y∥
ε∥C−1(A−λI)B−1∥ . Setting x = B(A −

λI)−1Cy, hence y = C−1(A− λI)B−1x. Consequently

∥x∥ >
∥C−1(A− λI)B−1x∥
ε∥C−1(A− λI)B−1∥

.

Hence,
∥C−1(A− λI)B−1x∥ < ε∥C−1(A− λI)B−1∥∥x∥.

Conversely, suppose that there is x ∈ X\{0} such that

(2.1) ∥C−1(A− λI)B−1x∥ < ε∥C−1(A− λI)B−1∥∥x∥.
If λ ̸∈ σ(A) and x = B(A − λI)−1Cy, then ∥x∥ ≤ ∥B(A − λI)−1C∥∥y∥. From (2.1), we have
∥x∥ < ε∥B(A− λI)−1C∥∥C−1(A− λI)B−1∥∥x∥. Then

∥B(A− λI)−1C∥∥C−1(A− λI)B−1∥ >
1

ε
.

Consequently, λ ∈ Λε(A,B,C)\σ(A). □

Theorem 2.5. Let K be a non-Archimedean complete field. Let A,B,C ∈ Mn(K) such that
0 ∈ ρ(A) ∩ ρ(B) ∩ ρ(C), AC = CA, k = ∥A−1∥∥A∥ and ε > 0. We have

(i) If λ ∈ Λε(A
−1, B,C)\{0}, then 1

λ ∈ Λεk(A,B,C)\{0}.
(ii) If 1

λ ∈ Λεk(A,B,C)\{0}, then λ ∈ Λεk2(A
−1, B,C)\{0}.

Proof.
(i) If λ ∈ Λε(A

−1, B,C)\{0}, then
1

ε
< ∥C−1(A−1 − λI)B−1∥∥B(A−1 − λI)−1C∥ = ∥λA−1C−1

( I
λ
−A

)
B−1∥ ×

∥λ−1B
( I
λ
−A

)−1
CA∥

≤ ∥A−1∥∥A∥∥C−1
( I
λ
−A

)
B−1∥ ×

∥B
( I
λ
−A

)−1
C∥.

Hence, 1
λ ∈ Λεk(A,B,C)\{0}.
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(ii) If 1
λ ∈ Λεk(A,B,C)\{0}, hence

1

εk
< ∥C−1(A− λ−1I)B−1∥∥B(A− λ−1I)−1C∥ = ∥λ−1AC−1

(
λI −A−1

)
B−1∥ ×

∥λB
(
λI −A−1

)−1
CA−1∥

≤ ∥A−1∥∥A∥∥C−1(λI −A−1)B−1∥ ×

∥B
(
λI −A−1

)−1
C∥.

Then
1

εk2
< ∥C−1(λI −A−1)B−1∥∥B

(
λI −A−1

)−1
C∥.

Consequently, λ ∈ Λεk2(A
−1, B,C)\{0}. □

Theorem 2.6. Let K be a non-Archimedean complete field. Let A,B,C ∈ Mn(K) such that
0 ∈ ρ(B)∩ρ(C), λ ∈ K and ε > 0. If there is D ∈ Mn(K) such that ∥D∥ < ε∥C−1(A−λI)B−1∥
and λ ∈ σ(A+ CDB). Then, λ ∈ Λε(A,B,C).

Proof. Suppose that there exists D ∈ Mn(K) such that ∥D∥ < ε∥C−1(A − λI)B−1∥. Let λ ̸∈
Λε(A,B,C), thus λ ∈ ρ(A) and ∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ ≤ ε−1.
Consider F defined on Mn(K) by

F =
∞∑
n=0

(A− λI)−1C

(
−DB(A− λI)−1C

)n

C−1.

From Lemma 1.4, we get F = (A− λI)−1C
(
C + CDB(A− λI)−1C

)−1
. Then A+ CDB − λI

is invertible which is a contradiction (with λ ∈ σ(A+ CDB)). Thus λ ∈ Λε(A,B,C). □

Remark 2.7. If X is non-Archimedean finite dimensional Banach space over K, Theorem 2.6
remains valid.

We put Dε(X) = {D ∈ L(X) : ∥D∥ < ε∥C−1(A− λI)B−1∥}.
Theorem 2.8. Let X be a non-Archimedean finite dimensional Banach space over a spherically
complete field K such that ∥X∥ ⊆ |K|, let A,B,C ∈ L(X) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0.
Then

Λε(A,B,C) =
⋃

D∈Dε(X)

σ(A+ CDB).

Proof. From Theorem 2.6, we get
⋃

D∈Dε(X)

σ(A+CDB) ⊆ Λε(A,B,C). Conversely, assume that

λ ∈ Λε(A,B,C). If λ ∈ σ(A), we may put D = 0. If λ ∈ Λε(A,B,C) and λ ̸∈ σ(A). By
Lemma 2.4 and ∥X∥ ⊆ |K|, there is x ∈ X such that ∥x∥ = 1 and ∥C−1(A − λI)B−1x∥ <
ε∥C−1(A− λI)B−1∥.
By Theorem 1.6, there is φ ∈ X∗ such that φ(x) = 1 and ∥φ∥ = ∥x∥−1 = 1. Consider D on X
defined by for all y ∈ X, Dy = −φ(y)C−1(A−λI)B−1x. Then ∥D∥ < ε∥C−1(A−λI)B−1∥. For
x ∈ X\{0}, (A−λI)B−1x+CDx = 0. Set z = B−1x ∈ X\{0}, we have (A+CDB−λI)z = 0,
hence A+ CDB − λI is not injective, then A+ CDB − λI is not invertible. Consequently,

λ ∈
⋃

D∈Dε(X)

σ(A+ CDB).
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□

Proposition 2.9. Let A,B,C ∈ Mn(K), ε > 0 such that 0 ∈ ρ(B) ∩ ρ(C) and ∥C−1(A −
λI)B−1∥ ≠ 0. We have

(i) λ ∈ Λε(A,B,C) if and only if λ ∈ σε∥C−1(A−λI)B−1∥(A,B,C).
(ii) λ ∈ σε(A,B,C) if and only if λ ∈ Λ ε

∥C−1(A−λI)B−1∥
(A,B,C).

Proof. (i) Let λ ∈ Λε(A,B,C), then λ ∈ σ(A) and ∥C−1(A − λI)B−1∥∥B(A − λI)−1C∥ >
ε−1. Hence λ ∈ σ(A) and ∥B(A − λI)−1C∥ > 1

ε∥C−1(A−λI)B−1∥ . Consequently, λ ∈
σε∥C−1(A−λI)B−1∥(A). The converse is similar.

(ii) Let λ ∈ σε(A,B,C), then λ ∈ σ(A) and ∥B(A− λI)−1C∥ > ε−1. Thus

λ ∈ σ(A) and ∥C−1(A− λI)B−1∥B(A− λI)−1C∥ >
∥C−1(A− λI)B−1∥

ε
.

Then, λ ∈ Λ ε
∥C−1(A−λI)B−1∥

(A,B,C). The converse is similar.

□

Theorem 2.10. Let A,B,C,U ∈ Mn(K) such that 0 ∈ ρ(B) ∩ ρ(C) ∩ ρ(U), UC = CU and
BU = UB. If V = U−1AU and k = ∥U−1∥∥U∥, then for all ε > 0, we have

Λ ε
k2
(A,B,C) ⊆ Λε(V,B,C) ⊆ Λk2ε(A,B,C).

Proof. Let λ ∈ Λ ε
k2
(A,B,C), hence λ ∈ σ(A)

(
= σ(V )

)
and

k2

ε
< ∥C−1(A− λI)B−1∥∥B(A− λI)−1C∥ = ∥C−1U

(
V − λI

)
U−1B−1∥ ×

∥BU
(
V − λI

)−1
U−1C∥

≤
(
∥U∥∥U−1∥

)2
∥C−1

(
V − λI

)
B−1∥ ×

∥B
(
V − λI

)−1
C∥

≤ k2∥C−1
(
V − λI

)
B−1∥∥B

(
V − λI

)−1
C∥.

Or, k2 > 0, then λ ∈ Λε(V,B,C). Hence, Λ ε
k2
(A,B,C) ⊆ Λε(V,B,C).

Let λ ∈ Λε(V,B,C). Then

1

ε
< ∥C−1(V − λI)B−1∥∥B(V − λI)−1C∥ = ∥C−1U−1

(
A− λI

)
UB−1∥ ×

∥BU−1
(
A− λI

)−1
UC∥

≤
(
∥U∥∥U−1∥

)2
∥C−1

(
A− λI

)
B−1∥ ×

∥B
(
A− λI

)−1
C∥

≤ k2∥B
(
A− λI

)
C∥∥C−1

(
A− λI

)−1
B−1∥.

Hence, λ ∈ Λk2ε(A,B,C). Consequently Λε(V,B,C) ⊆ Λk2ε(A,B,C). □
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As a generalization of pseudospectra of a matrix pencil introduced in the paper [9], we intro-
duce the following definition.

Definition 2.11. Let A,B,C,M ∈ Mn(K) and ε > 0, the (B,C)-structured pseudospectrum of
a matrix pencil (A,M) is defined by

σε(A,M,B,C) = σ(A,M) ∪
{
λ ∈ K : ∥B(A− λM)−1C∥ >

1

ε

}
.

The (B,C)-structured pseudoresolvent of a matrix pencil (A,M) is given by

ρ(A,M) ∩
{
λ ∈ K : ∥B(A− λM)−1C∥ ≤ 1

ε

}
.

By convention ∥B(A− λM)−1C∥ = ∞ if and only if λ ∈ σ(A,M).

By Definition 2.11, we get the following remark.

Remark 2.12.
(i) If C = B = I, then σε(A,M, I, I) = σε(A,M) is the pseudospectrum of the matrix pencil
(A,M).
(ii) One can see that for any ε > 0, σε(A,M,B,C) ⊂ σεk(A,M) in which k = ∥B∥∥C∥.

Theorem 2.13. Let A,B,C,M ∈ Mn(K). Then,
(i) For all ε1, ε2 > 0 such that ε1 ≤ ε2, σε1(A,M,B,C) ⊂ σε2(A,M,B,C).

(ii) σ(A,M) =
⋂
ε>0

σε(A,M,B,C).

Proof.
(i) If λ ∈ σε1(A,M,B,C), then ∥B(A− λM)−1C∥ > ε−1

1 ≥ ε−1
2 . Hence λ ∈ σε2(A,M,B,C).

(ii) Since for all ε > 0, σ(A,M) ⊆ σε(A,M,B,C), then σ(A,M) ⊆
⋂
ε>0

σε(A,M,B,C). Con-

versely, if λ ∈
⋂
ε>0

σε(A,M,B,C), then for each ε > 0, λ ∈ σε(A,M,B,C), if λ ̸∈ σ(A,M),

hence λ ∈ {λ ∈ K : ∥B(A− λM)−1C∥ > ε−1}, for ε → 0+, we obtain ∥B(A− λM)−1C∥ = ∞.
Consequently λ ∈ σ(A,M). □

Since the Hahn-Banach theorem does not hold in a general field only if it is spherically
complete, see [10], we obtain:

Theorem 2.14. Let X be a non-Archimedean finite dimensional Banach space over a spherically
complete field K such that ∥X∥ ⊆ |K|, let A,B,C,M ∈ L(X) such that 0 ∈ ρ(B) ∩ ρ(C) and
ε > 0. Then

σε(A,M,B,C) =
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M).

Proof. Firstly, we show that
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M) ⊆ σε(A,M,B,C).

Let λ ∈
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M). If D = 0, hence

σ(A,M) ⊆ σε(A,M,B,C).

7
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If D ̸= 0. We argue by contradiction, if λ ∈ ρ(A,M) and ∥B(A−λM)−1C∥ ≤ ε−1. Then for each
D ∈ L(X) such that ∥D∥ < ε, we have ∥DB(A − λM)−1C∥ < 1. Thus, DB(A − λM)−1C + I
is invertible. From Proposition 1.8, for any D ∈ L(X) such that ∥D∥ < ε, −1 ̸∈ σ(DB(A −
λM)−1C) if and only if −1 ̸∈ σ(CDB(A− λM)−1). Thus

A+ CDB − λM = (I + CDB(A− λM)−1)(A− λM).

Hence (A+ CDB − λM)−1 ∈ L(X) which is a contradiction. Then⋃
D∈L(X):∥D∥<ε

σ(A+ CDB,M) ⊆ σε(A,M,B,C).

For the converse inclusion, if λ ̸∈ σ(A,M), then ∥B(A− λM)−1C∥ > ε−1. Hence

∥B(A− λM)−1C∥ >
1

ε
.

Then

sup
x∈X\{0}

∥B(A− λM)−1Cx∥
∥x∥

>
1

ε
.

Consequently, there exists x ∈ X\{0} such that

(2.2) ∥B(A− λM)−1Cx∥ >
∥x∥
ε

.

Set y = B(A− λM)−1Cx, then C−1(A− λM)B−1y = x. From (2.2), we have

(2.3) ∥C−1(λM −A)B−1y∥ < ε∥y∥.
Since ∥X∥ ⊆ |K|, there is c ∈ K\{0} such that ∥y∥ = |c|, set z = c−1y, thus ∥z∥ = 1. By (2.3),

∥(C−1(λM −A)B−1)z∥ < ε.

By Theorem 1.6, there is φ ∈ X∗ such that φ(z) = 1 and ∥φ∥ = ∥z∥−1 = 1. Set for each x ∈ X,
Dx = φ(x)(C−1(λM −A)B−1)z. Then for all x ∈ X,

∥Dx∥ = |φ(x)|∥(C−1(A− λM)B−1)z∥
≤ ∥φ∥∥x∥∥(C−1(A− λM)B−1)z∥
< ε∥x∥.

Hence D ∈ L(X) and ∥D∥ < ε. Moreover for z ̸= 0, Dz + (C−1(A − λM)B−1)z = 0. Set
v = B−1z ∈ X\{0}. One can see that for v ̸= 0, (CDB +A− λM)v = 0. Thus

λ ∈
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M).

Consequently,

σε(A,M,B,C) =
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M).

□

Theorem 2.15. Let X be a non-Archimedean finite dimensional Banach space over a spherically
complete field K such that ∥X∥ ⊆ |K|, let A,B,C ∈ Mn(K) such that 0 ∈ ρ(B)∩ρ(C) and ε > 0.
Then,

σε(A,M,B,C) = σ(A,M) ∪ {λ ∈ K : ∃ x ∈ X, ∥x∥ = 1, ∥C−1(A− λM)B−1x∥ < ε}.
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Proof. If λ ∈ σε(A,M,B,C)\σ(A,M), then ∥B(A− λM)−1C∥ > ε−1. Thus

sup
x∈X\{0}

∥B(A− λM)−1Cx∥
∥x∥

>
1

ε
.

Hence there exists x ∈ X\{0} such that

(2.4) ∥B(A− λM)−1Cx∥ >
∥x∥
ε

.

Set y = B(A− λM)−1Cx ∈ X\{0}, then C−1(A− λM)B−1y = x. By (2.4), we get

(2.5) ∥C−1(A− λM)B−1y∥ < ε∥y∥.
Since ∥X∥ ⊆ |K|, there exists c ∈ K\{0} such that ∥y∥ = |c|, put z = c−1y, hence ∥z∥ = 1.

By (2.5), we have

∥C−1(A− λM)B−1z∥ < ε.

Let λ ∈ K such that there exists z ∈ X with ∥z∥ = 1 and

∥C−1(A− λM)B−1z∥ < ε.

From Theorem 1.6, there exists φ ∈ X∗ such that φ(z) = 1 and ∥φ∥ = ∥z∥−1 = 1. Set for each
y ∈ X, Dy = φ(y)(C−1(λM −A)B−1)z. Hence for any y ∈ X,

∥Dy∥ = |φ(y)|∥(C−1(A− λM)B−1)z∥
≤ ∥φ∥∥y∥∥(C−1(A− λM)B−1)z∥
< ε∥y∥.

Thus D ∈ L(X) and ∥D∥ < ε. Moreover for z ̸= 0, Dz + (C−1(A − λM)B−1)z = 0. Set
v = B−1z ∈ X\{0}. One can see that for v ̸= 0, (CDB +A− λM)v = 0. Thus

λ ∈
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB,M).

By Theorem 2.14, λ ∈ σε(A,M,B,C). □

We have the following example.

Example 2.16. Suppose that K = Qp.
(i) If

A =

(
1 1
0 1

)
, M =

(
2 0
0 1

)
, B =

(
−1 0
0 1

)
and C =

(
1 0
0 −1

)
∈ M2(Qp).

Then, for all λ ∈ Qp, det(A− λM) = (λ− 1)(2λ− 1), hence σ(A,M) = {1
2 , 1}. Moreover

B(A− λM)−1C =

(
−1

1−2λ
1

(1−λ)(1−2λ)

0 −1
1−λ

)
.

Hence

∥B(A− λM)−1C∥ = max

{
1

|(1− 2λ)(1− λ)|
,

1

|1− 2λ|
,

1

|λ− 1|

}
.

Consequently, for each ε > 0,

σε(A,M,B,C) = σ(A,M) =

{
1

2
, 1

}
∪
{
λ ∈ Qp : ∥B(A− λM)−1C∥ >

1

ε

}
.
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(ii) If

A =

(
1 0
1 0

)
and M =

(
2 0
0 1

)
, B =

(
0 1
0 0

)
and C =

(
1 0
0 0

)
∈ M2(Qp).

Then σ(A,M) = {0, 12} and

∥B(A− λM)−1C∥ =
1

|λ(2λ− 1)|
.

Thus, the structured pseudospectrum of the matrix pencil (A,M) is

σε(A,M,B,C) =

{
0,

1

2

}
∪
{
λ ∈ Qp : |λ(1− 2λ)| < ε

}
.

(iii) If

A =

(
1 1
0 2

)
, M =

(
1 0
0 2

)
, B =

(
1 0
0 0

)
and C =

(
0 1
0 0

)
∈ M2(Qp).

Then σ(A,M) = {1} and

∥B(A− λM)−1C∥ =
1

|λ− 1|
.

Thus, the structured pseudospectrum of the matrix pencil (A,M) is

σε(A,M,B,C) = {1} ∪
{
λ ∈ Qp : |λ− 1| < ε

}
.

As a generalization of condition pseudospectra of operators in complex Banach spaces [3], we
finish with the following remark.

Remark 2.17. If X is an Archimedean Banach space over C and 0 < ε < 1, the notion of the
structured condition pseudospectrum introduced above and the results about it remain valid.
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