
Romanian Journal of Mathematics and Computer Science
available online at https://rjm-cs.utcb.ro

Issue x, Vol. xx (20xx)

SOLVING LINEAR SYSTEMS USING MONTE CARLO METHODS

DANIEL CIUIU

Abstract. In this paper we solve linear systems with positive definite matrices using Monte
Carlo methods. We first estimate the minimum and maximum eigenvalues of the matrix of the
system to determine the region of the solution. Then, we simulate a large number of vectors in
this region and estimate the minimum of the quadratic function involved in relaxation methods.
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1. Introduction

In the relaxation methods a key result is the following theorem [9, 11].

Theorem 1.1. Solving the linear system Ax = b, where the matrix A is symmetric and positive
definite is equivalent to finding the minimum of F (x) = 1

2⟨x,Ax⟩ − ⟨x, b⟩.

The minimum/ maximum of a function Ψ on the domain D is obtained as follows [12].

(1) Simulate nrsim uniform random variables on D or on another domain D1 such that
there exists a one-to-one continuous function ϕ : D1 → D.

(2) If we generate Yi uniformly in D1 we compute Xi = ϕ (Yi).
(3) Compute Ψ (Xi) and determine the minimum if we solve a minimization problem, re-

spectively maximum if we solve a maximization problem.

In our paper we solve a minimization problem, hence we compute the minimum.
Suppose that the theoretical minimum of Ψ is m∗, and m = m∗+ε2 is the minimum obtained

by Monte Carlo methods after nrsim simulations. Then the probabilistic error is

(1.1) P
(
Ψ(X) < m∗ + ε2

)
= G

(
m∗ + ε2

)
,

where G is the cumulative distribution function of Ψ (X).
Because G is given by a geometrical probability, we obtain

(1.2) G
(
m∗ + ε2

)
=

Vε

V
,
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where Vε is the volume of sub-domain of D given by Ψ (X) ≤ m∗ + ε2 and V is the volume of
D. While V is a constant of the Monte Carlo model, Vε tends to zero when ε → 0.

In [4] it is shown how the minimum eigenvalue of a symmetric positive definite matrix can
be computed using the Monte Carlo methods. We have simulated normal vectors with zero
expectation and the matrix as variance-covariance matrix, and points on the unit sphere as
orthogonal regression coefficients. The minimum eigenvalue is the minimum variance of errors.

A special case is when matrix A is a Toeplitz matrix. This is the case of Yule—Walker
algorithm for determining the coefficients of AR (p) time series [3, 7].

If the linear system arrises from linear regression the multicolinearity can be detected [6]. It
means that the we have a strong dependence between explanatory variables and the determinant
of matrix is close to zero. One of the method to detect multicolinearity is the BKW=Belsley—
Kuh—Welsch test [1], which detects the ill conditioned linear system. We compute the square
root of the condition number, the condition index

(1.3) CI =

√
λn

λ1
.

The above condition number is defined in [8] as

(1.4) κ (A) = ∥A∥ · ∥A−1∥,
where A is the matrix of linear system.

If CI is between 10 and 30 we have moderate multicolinearity, while for CI > 30 we have
severe multicolinearity.

Let Xt, t = 1, n be a time series. This time series is stationary if the expectation E (Xt) and
the variance V ar (Xt) do not depend on t, and the covariance γk = Cov (Xt, Xt−k) does not
depend on t.

Definition 1.2. The function γ : N∗ → R, γ (k) = γk defined above is called the autocovariance
function.

The autocorrelation function is the Pearson correlation between Xt and Xt−k.

In the case of stationary time series the autocorrelation function is defined by:

(1.5) ρk =
γk
γ0

,

where γ0 = V ar (Xt) is the variance of time series.
A test for the stationarity of a time series is the Dickey–Fuller unit root test [5]. We determine

the linear regressions

(1.6) ∆Xt = ΦXt−1 + at for model 1,

(1.6’) ∆Xt = β +ΦXt−1 + at for model 2,

(1.6”) ∆Xt = β +ΦXt−1 + γt+ at for model 3,

where at is the white noise (error). Therefore at is a zero expectation time series that does not
depend on Xt.

The three above models check the dependence of Xt (current value) on the previous value,
Xt−1. Φ non significant in model 1 means that the difference between the current and the
previous value of X is the error, hence Xt is random walk. This model is tested when we know
that Xt has constant zero expectation. For instance, if we want to test if a time series has the
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same variance (volatility in finance) we determine the (eventually not constant) expectation of
Xt and we subtract it. If the new time series is stationary the variance is constant.

Two methods to stationarize time series are presented in [3, 7, 10]: the differentiation method
and the moving average method. The first one consists in computing ∆Xt = Xt −Xt−1 first for
Xt, next for ∆Xt until we obtain stationarity.

The second method consists in computing the moving average of order q

(1.7) Mt =

t+q∑
i=t−q

Xi

2q + 1
,

and Xt −Mt is stationary.
If in the model 3 Φ is not significant we determine the linear regression without Φ: ∆Xt in

terms of t.
If Φ and γ are significant the time series has a trend, which is removed by moving average

method or by exponential smooth method [10]. If both are not significant we study the other
two models.

If Φ is not significant the time series is not stationary and we stationarize it by differentiation.
Otherwise the time series is stationary with zero/ nonzero expectation if β from model 2 is non
significant/ significant.

For a stationary time series one model is the autoregressive model AR (p) [2, 3, 10]

(1.8) Xt =

p∑
i=1

ϕiXt−i + at,

where at is independent identically distributed time series (noise). White noise means zero
expectation for X and a.

If L is the lag operator (LXt = Xt−1), we denote by

(1.9) ϕ (L) = 1−
p∑

i=1

ϕiL
i,

and formula (1.8) becomes

(1.8’) ϕ (L)Xt = at.

Another model for stationary time series is [3, 10] the moving average model MA (q)

(1.10) Xt = θ (L) at = at −
q∑

i=1

θiat−i.

A mixture between the two above models is the ARMA (p, q) time series model

(1.11) Xt =

p∑
i=1

ϕiXt−i + at −
q∑

i=1

θiat−i, or

(1.11’) ϕ (L)Xt = θ (L) at.

In the stationary case ϕ (L) and θ (L) have roots greater than one in absolute values.
The AR (p) model is solved by the Yule—Walker algorithm [3, 7, 10]. We solve a linear

system with the symmetric matrix given by the variance on diagonal and Aij = γ|i−j| for i ̸= j
(autocovariance function). The right side is given by the values of the autocovariance function
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with lags between one and p. We have also the version of autocorrelation function, dividing by
the variance γ0. The key of this algorithm is to write at from (1.8′) and to take into account
that the covariance between at and Xt−i, i = 1, p is zero (current error does not depend on past
values of time series).

For the ARMA (p, q) model we apply the Hannan—Rissanen algorithm [3, 7, 10]. We solve
the AR (m) model with m > p and m > q. After we compute the white noise bt of the AR (m)
model, we perform the linear regression of Xt in terms of Xt−1,..., Xt−p and bt−1, ..., bt−q without
intercept, or zero intercept. The coefficients are ϕi and −θj .

2. Methodology

If the matrix of the linear system, A, is symmetric and positive definite, then it is diagonal-
izable and the eigenvalues are positive. Given U the orthogonal matrix of the corresponding
eigenvectors as columns, we have

(2.1) D = U ′AU,

hence

(2.1’) A = UDU ′,

where D = diag (λ1, λ2, ..., λn), and U ′ is the transposed matrix of U .
The linear system Ax = b can be written as

(2.2) UDU ′x = b, or

(2.2’) Dy = c,

where y = U ′x and c = U ′b.
Because U is a rotation, the Euclidean norm is the same:

(2.3)

{
∥y∥ = ∥x∥
∥c∥ = ∥b∥.

Solving the linear system (2.2′) we obtain

(2.4) yi =
ci
λi

,

where λi are the eigenvalues of A. It follows that

(2.5) ∥y∥ ≤ ∥c∥
λ1

,

where λ1 is the minimum eigenvalue.
Therefore we generate feasible solutions in the cube that contains the sphere with center zero

and radius ∥c∥
λ1

, and we compute the minimum of the function from Theorem 1.1.

Remark 2.1. We can substitute the above radius ∥c∥
λ1

by any value ∥c∥
λ̃

such that λ̃ ≤ λ1.

In the same manner we conclude that

(2.5’) ∥y∥ ≥ ∥c∥
λn

,
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where λn is the maximum eigenvalue. In this way we can simulate the feasible solution on the
spherical shell

(2.5”)
∥b∥
λn

≤ ∥x∥ ≤ ∥b∥
λ1

.

In [4] the minimum eigenvalue is computed as the minimum of sum of squares of distances
between the n points and the hyper-plane through the center of gravity (the origin in the
mentioned paper).

We can simulate feasible solutions inside the sphere of radius R = ∥b∥
λ1

according to (2.5), or

in the spherical shell of radii r = ∥b∥
λn

and R = ∥b∥
λ1

according (2.5”). To simplify the simulation

of the feasible solutions we can replace the sphere of radius ∥b∥
λ1

by its circumscribed cube, and

the sphere of radius ∥b∥
λn

by its inscribed cube.
Therefore we have defined four domains Di on which we simulate the possible solutions. D1

is the hypercube [−R,R]n, D2 is the hypersphere of radius R, D3 is the region between the

hypercubes [−R,R]n and
[
− r√

n
, r√

n

]n
and D4 is the spherical shell of radii r and R. For each

i = 1, 4, we denote by Vi the volume of the domain Di. We have

(2.6) V1 = 2nRn,

(2.7) V2 =
2π

n
2 Rn

nΓ
(
n
2

) ,
(2.8) V3 = 2n

(
Rn − rn

n
n
2

)
,

(2.9) V4 =
2π

n
2

nΓ
(
n
2

) (Rn − rn) .

We compute now the volume Vε of the region F (x) ≤ F (x∗) + ε2

2 .
The frontier of this domain is

(2.10) ⟨x,Ax⟩ − 2⟨x, b⟩ = −⟨x∗, b⟩+ ε2.

Passing the right side to left, we obtain the hyper-quadric given by the matrix of the system
A for the first n rows and columns, bi on row i column n+1, and ⟨x∗, b⟩+ε2 on row and column
n + 1. Because if ε = 0 the quadric is degenerated into the solution of the system, x∗, the
invariants are the Viète sums of the characteristic polynomial of A, including δ = det (A) > 0.
The last invariant is ∆ = −δε2. Therefore the hyper-quadric is a hyper-ellipsoid of canonical
form

(2.11)
n∑

i=1

λi

(
X ′

i

)2
= ε2,

where λi are the eiganvalues of A. The semi-axes are

(2.12) ai =
ε√
λi

.

Of course, from the above formula a1 is the longest semi-axis and an the shortest one.
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The volume Vε is the volume of hyper-ellipsoid:

(2.13) Vε =
2π

n
2

nΓ
(
n
2

) · εn√
n∏

i=1
λi

=
2π

n
2

nΓ
(
n
2

) · εn√
detA

,

i.e. the volume of unit hyper-sphere Vs = 2π
n
2

nΓ(n
2 )

multiplied by the semi-axes of the hyper-

ellipsoid.
We conclude that the probability of error is

(2.14) P

(
F (X) ≤ minF +

ε2

2

)
=

Vε

Vi
=



Vs
2nRn · εn√

detA
for hyper-cube

1
Rn · εn√

detA
for hyper-sphere

Vs

2n
(
Rn− rn

n
n
2

) · εn√
detA

for region between cubes

1
Rn−rn · εn√

detA
for spherical shell.

If A is diagonally dominant, we can consider λ̃1 as the minimum difference between the
absolute value of the diagonal element Aii and the sum of absolute values of the other elements
in the corresponding line:

(2.15) λ̃1 = min
i=1,n

|Aii| −
∑
j ̸=i

|Aij |

.

The maximum eigenvalue is less than

(2.15’) λ̃n = Tr (A)− (n− 1) λ̃1,

where Tr (A) is the trace of matrix A.
We compute the characteristic polynomial

(2.16) P (λ) = λn − Sn−1λ
n−1 + Sn−2λ

n−2 + ....+ (−1)n−1 S1λ+ (−1)n S0,

where Si are the sums of Viète. These sums are computed as in classical manner:

(1) Sn−1 is the trace of matrix.
(2) S0 is the determinant of the matrix.
(3) The other sums, Sn−j for j = 2, n− 1, are computed as sums of principal minors of

order j.

We obtain

(2.17) λ̃1 =
S0

S1
,

and

(2.18) λ̃n = Sn−1 − (n− 1) λ̃1.

If we simulate the feasible solutions in the spherical shell or in the region between the inscribed

cube in the small sphere, with radius ∥b∥
λn

and the circumscribed cube of big sphere, with radius
∥b∥
λ1

, the ratio between the volume of this region and the entire sphere/ cube is

(2.19) ratio = 1−
(
λ1

λn

)n

.
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Therefore if the multicolinearity is found by the BKW test, we have no improvement from
cube/ sphere case to ”between cubes”/ spherical shell: we subtract a very small number from
one. Due to the exponent n it follows that for the same ratio of eigenvalues (hence the same
condition number) the above improvement decreases with the dimension of the system n.

For ARMA (p, q) time series, after we have solved the AR (m) model with m > p, q we
compute the white noise. Next we solve the linear regression of Xt in terms of Xt−i, i = 1, p
and at−j , j = 1, q, with intercept zero. We obtain a linear regression with p+q coefficients. The
involved linear system has p + q lines and p + q columns. The first p lines/ columns are given
by autocovariance function with lags between 0 and p − 1. When we compute the covariance
between Xt−i and at−j we have value zero for i > j (in Yule—Walker algorithm these values
are set to zero). For i < j we compute the covariance between Xt and at+i−j = at−k, where
k = j − i. We obtain

(2.20) Cov (Xt, at−k) = γt−k −
m∑
i=1

ϕiγt−k−i = ϕ (L) γt−k.

Dividing by γ0 (variance) we obtain

(2.20’)
Cov (Xt, at−k)

γ0
= ρt−k −

m∑
i=1

ϕiρt−k−i = ϕ (L) ρt−k,

i.e. we replace in (2.20) the autocovariance function by autocorrelation function.
Therefore in the above matrix of ARMA (p, q) time series in the last q rows and first p

columns we have an L matrix: only the covariance between current X and past errors are not
zero. Symmetrically, in the first p rows and last q columns we have the transpose of L.

We notice that (2.20) is true also for k = 0, as the variance of at is the covariance between at
and ϕ (L)Xt, and from the last one we maintain Xt. The right side in (2.20) is the variance of
errors in AR (m) model [3, 6, 10]. Dividing by the variance of X we obtain

(2.21)
V ar (at)

V ar (Xt)
= 1−

m∑
i=1

ϕiρi = 1− ⟨ϕ, ρ⟩

When we compute the last q lines/ columns of the matrix we have the variance of errors on

the diagonal if we use (2.20), and V ar(at)
V ar(Xt)

if we use (2.20′).

3. Applications

Example 3.1. Solve the linear system 9x+ 3y − z = 2
3x+ 7y + 2z = 1
−x+ 2y + 8z = 3

.

The solution of above system obtained with Excel is x = 0.31034, y = −0.11671 and z =
0.44297. With simple relaxation method for given maximal error max |ri| = 0.001 we obtain
after 18 steps x = 0.31025, y = −0.11664 and z = 0.44287. The real error is 0.000587.

The matrix is symmetric, diagonally dominant, and has positive values on the main diagonal,
hence it is positive definite.

Using the over-relaxation method with ω = 1.07977 we obtain in the same conditions as above
x = 0.31028, y = −0.11665 and z = 0.44287

7



Romanian Journal of Mathematics and Computer Science Issue x, Vol. xx (20xx)

The eigenvalues of A are λ1 = 3.70017, λ2 = 9.0852 and λ3 = 11.21463. The condition index
is CI = 1.74093.

With our C ++ program we obtain the results presented in Table 1

Table 1. Results for the system in Example 3.1 by Monte Carlo methods

Values method Monte Carlo Diagonal dominance Viète
λ1 3.63408 2 2.12994
λ3 11.29358 20 19.74011

Max radius 1.0296 1.87083 1.7567
Min radius 0.3313 0.18708 0.18955

Solution on cube

 0.304
−0.10175
0.43433

  0.31302
−0.10637
0.46313

  0.29159
−0.10104
0.41714


Solution on sphere

 0.31338
−0.11431
0.45005

  0.32619
−0.10968
0.43419

  0.29627
−0.11431
0.45005


Solution between cubes

 0.32674
−0.16568
0.45521

  0.30922
−0.12265
0.45948

  0.34273
−0.19388
0.44636


Solution on spherical shell

 0.30255
−0.1154
0.44722

  0.30056
−0.13112
0.43377

  0.32217
−0.12088
0.46151


Minimum F on cube −0.91578 −0.91397 −0.91351
Minimum F on sphere −0.91615 −0.91307 −0.91562

Minimum F between cubes −0.91005 −0.91538 −0.89897
Minimum F on spherical shell −0.91608 −0.91435 −0.91498

We have simulated 10000 normal vectors with variance-covariance matrix A, 10000 points
on unit sphere and 1 million feasible solutions. The possible solutions are simulated inside the

following 4 regions: sphere with radius
√
14
λ1

; the circumscribed cube of this sphere; between the

spheres of radius
√
14
λ3

and
√
14
λ1

(spherical shell); between the inscribed cube in the sphere of

radius
√
14
λ3

and the circumscribed cube of the sphere of radius
√
14
λ1

.
Because Fmin = −0.9164456233 we obtain the following values of ε and of probabilistic errors.

Table 2. Errors for the Monte Carlo methods in Example 3.1

Model\ method for λi Monte Carlo Diagonal dominance Viète

Cube
0.0586

1.34012 · 10−6
0.30181

2.34542 · 10−7
0.13203

1.48068 · 10−5

Sphere
0.04443

1.43568 · 10−6
0.30492

7.92164 · 10−7
0.04993

9.82342 · 10−7

Between cubes
0.16393

8.21156 · 10−5
0.48284

1.53622 · 10−6
0.13074

1.42365 · 10−5

Spherical shell
0.05323

2.97918 · 10−6
0.29667

7.09898 · 10−7
0.06827

3.43854 · 10−6
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Example 3.2. Determine the linear regression of the dynamics of bank deposits Y in terms of
the dynamics of income X1 and the dynamics of passive interest rate X2 [6].

The matrix of linear system is

A =

 1 1.068 3.984
1.068 2.1636 4.2696
3.984 4.2696 15.8984

,

and the right side is

b =

 0.452
1.27

1.8344

.

The linear regression obtained in [6] is:

Y = A0 +A1X1 +A2X2 = −3.7869 + 0.7572X1 + 0.861X2.

The matrix is not diagonally dominant, hence we can not apply the over-relaxation method.
We can neither apply (2.15) for estimating λ1.

The eigenvalues of A are λ1 = 0.00154, λ2 = 0.94901 and λ3 = 18.11144. The condition index
is CI = 108.32511, i.e. severe multicolinearity.

If we use in the same conditions as in Example 3.1 the simple relaxation method (maximum
error 0.001) we obtain after 2243 steps A0 = −3.17723, A1 = 0.75911 and A2 = 0.70771. The
real error is 0.000999.

With successive relaxation method we obtain after 3684 steps A0 = −3.21965, A1 = 0.75928
and A2 = 0.71829. We have the same real error, 0.000999.

If we apply the Monte Carlo method to obtain the minimum/ maximum eigenvalue simulating
10000 normal vectors and 10000 sets of coefficients, we obtain λ1 = 0.00189 and λ3 = 19.0873.
They are close to the above real λ1 and λ3 obtained with Scilab. But if we simulate 1 million
feasible solutions we obtain strange results: A0 = 53.58246, A1 = 1.44435 and A2 = −13.63316.
The minimum of F is 2.490955 instead of −0.4147.

Analogously, if we estimate the values λ1 and λ3 using Viète sums we obtain λ1 = 0.00154
and λ3 = 57.186. Even if the estimation of λ1 is quite accurate, we still obtain strange results:
A0 = −48.92698, A1 = 2.52771 and A2 = 13.80325. The minimum of F is 38.266.

If we simulate 1 billion feasible solutions we obtain A0 = −18.16524, A1 = −0.06271 and
A2 = 4.6121. The minimum of F is 0.11586.

Example 3.3. Consider [13] the CPI in the period June 2019 - March 2024 quarterly data. For
the stationarized time series determine the AR (4) coefficients. Using the AR (4) model apply
the Hannan—Rissanen algorithm to obtain the ARMA (2, 1) coefficients.

According to Dickey—Fuller unit root test we obtain
∆Xt = 1.037− 0.05667Xt−1 − 0.04647t
with Student statistics 1.25116, −0.72172 and −1.0193 in the model 3,
∆Xt = 0.46814− 0.07207Xt−1

with Student statistics 1.25116 and −0.72172 in the model 2, respectively
∆Xt = −0.02284Xt−1

with Student statistics −0.54584 in the model 1. Because Φ is not significant, in all three
models the series is not stationary.

For Yt = ∆Xt we have the following results of Dickey—Fuller test:
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∆Yt = 0.43992− 0.4586Yt−1 − 0.03094t
with Student statistics 0.66745, −2.57806 and −0.73412 in the model 3,
∆Yt = 0.00715− 0.42611Yt−1

with Student statistics 0.02453 and −2.49835 in the model 2, respectively
∆Yt = −0.42614Yt−1

with Student statistics −2.55224 in the model 1. In this case Φ is only 10% significant, but
not 5% significant, since the quantiles for 10%, 5% and 1% for the three models and n = 26 are
−3.2367 for 10%, −3.6027 for 5% and −4.3738 for 1% in the case of model 3, −2.6318 for 10%,
−2.985 for 5% and −3.7204 for 1% in the case of model 2, and −1.6228 for 10%, −1.9552 for
5% and −2.6603 for 1% in the case of model 1. We notice that only for model 1 we have 5%
significance for Φ.

For Zt = ∆2Xt we have the following results of Dickey—Fuller test:
∆Zt = −0.06517− 1.3641Zt−1 + 0.06572
with Student statistics −0.09168, −6.76196 and 0.0657 in the model 3,
∆Zt = −0.02359− 1.36445Zt−1

with Student statistics −0.07447 and −6.92436 in the model 2, respectively
∆Zt = −7.0794Zt−1

with Student statistics −2.55224 in the model 1. In this case Φ is significant 1%. Therefore
the time series is I (2).

For Zt we have the first four values of autocorrelation function −0.3642514, 0.207902,
0.0875773 and −0.5423844. Therefore the matrix of the linear system involved in Yule—Walker
algorithm is

1 0.36425 0.2079 0.08758
0.36425 1 0.36425 0.2079
0.2079 0.36425 1 0.36425
0.08758 0.2079 0.36425 1

,

and the right side is
0.36425
0.2079
0.08758
−0.54238

.

Using Cholesky method, the AR (4) model is

Zt = −0.22749Zt−1 + 0.25002Zt−2 + 0.01926Zt−3 − 0.56743Zt−4 + at.

If we apply the simple relaxation method we obtain after 13 steps ϕ1 = −0.22712, ϕ2 =
0.24996, ϕ3 = 0.01895 and ϕ4 = −0.56799. The real error is 0.000431.

With over-relaxation method we obtain after 21 steps ϕ1 = −0.22716, ϕ2 = 0.25067, ϕ3 =
0.0186 and ϕ4 = −0.5679. The real error is 0.000672.

The eigenvalues obtained with Scilab are 0.5232, 0.58692, 1.1364 and 1.75348. The condition
index is CI = 1.8307, hence we do not have multicolinearity.

Using our C ++ program we obtain the results presented in Table 3.
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Table 3. Results for the system in Example 3.3 by the Monte Carlo methods

Values method Monte Carlo Diagonal dominance Viète
λ1 0.50642 0.0636 0.4098
λ4 1.77132 3.80921 2.12207

Max radius 1.36486 10.8678 1.88668
Min radius 0.39022 0.18179 0.32572

Solution on cube


−0.22759
0.25296
−0.02341
−0.60106




−0.25584
0.52044
0.20577
−0.62388




−0.25584
0.20675
0.03205
−0.5677


Solution between cubes


−0.25818
0.29728
0.20044
−0.55125




−0.10517
0.77946
0.23969
−0.71702




−0.28582
0.24033
−0.02917
−0.53114


Solution on spherical shell


−0.24708
0.21128
0.05147
−0.52949




−0.23266
0.18107
0.30162
−0.51323




−0.28508
0.18478
−0.02124
−0.54977


Roots of P (ρ) on cube

ρ1,2=−0.73155±0.54688i

ρ3,4=0.61776±0.58211i

|ρ1,2|=0.91337

|ρ3,4|=0.84881

ρ1,2=−0.73163±0.57918i

ρ3,4=0.7202±0.44476i

|ρ1,2|=0.93313

|ρ3,4|=0.84646

ρ1,2=−0.74279±0.56251i

ρ3,4=0.58458±0.5505i

|ρ1,2|=0.93175

|ρ3,4|=0.80298

Roots of P (ρ) on sphere

ρ1,2=−0.73436±0.56096i

ρ3,4=0.60429±0.54664i

|ρ1,2|=0.9241

|ρ3,4|=0.81485

ρ1,2=−0.75836±0.46737i

ρ3,4=0.65373±0.44718i

|ρ1,2|=0.8908

|ρ3,4|=0.79204

ρ1,2=−0.70728±0.56645i

ρ3,4=0.60322±0.54094i

|ρ1,2|=0.90615

|ρ3,4|=0.81024

Roots of P (ρ) between cubes

ρ1,2=−0.74046±0.59571i

ρ3,4=0.61137±0.4864i

|ρ1,2|=0.95035

|ρ3,4|=0.78126

ρ1,2=−0.81506±0.54155i

ρ3,4=0.76247±0.40916i

|ρ1,2|=0.97857

|ρ3,4|=0.86532

ρ1,2=−0.73899±0.54513i

ρ3,4=0.62953±0.58056i

|ρ1,2|=0.9183

|ρ3,4|=0.85637

Roots of P (ρ) on spherical shell

ρ1,2=−0.71231±0.56137i

ρ3,4=0.58877±0.54506i

|ρ1,2|=0.90693

|ρ3,4|=0.80233

ρ1,2=−0.70497±0.65231i

ρ3,4=0.58864±0.45809i

|ρ1,2|=0.96047

|ρ3,4|=0.74589

ρ1,2=−0.73113±0.53253

ρ3,4=0.67478±0.59428

|ρ1,2|=0.90451

|ρ3,4|=0.89916

Minimum F on cube −0.22116 −0.1766 −0.22043
Minimum F on sphere −0.22116 −0.17566 −0.2209

Minimum F between cubes −0.20871 −0.10558 −0.2736
Minimum F on spherical shell −0.22073 −0.17814 −0.21982

We present in Table 3 the roots of the polynomial

P (ρ) = ρp −
p∑

i=1

ϕiρ
p−i,

and their absolute values. In the stationary case, the absolute values must be less than 1.
We note that the roots of P (ρ) obtained for the AR (p) model using the mentioned Yule—

Walker algorithm but solving the linear system by Cholesky method are −0.72327 ± 0.55261i
and 0.60953± 0.55979i, with absolute values 0.91022 and 0.82758.
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The minimum of F is −0.22215.

In Table 4, we present the results of Hannan—Rissanen algorithm. We solve the linear systems
of Yule—Walker algorithm and that of linear regression of Hannan—Rissanen algorithm by the
same method.

Table 4. Linear regression in ϕi and −θj in Hannan—Rissanen algorithm

Method Extended matrix
Simple Successive

relaxation relaxation
Solution Monte Carlo

Monte Carlo,
cube

 1 −0.36425 0.54055 −0.36425
−0.36425 1 0 0.2079
0.54055 0 0.54055 −0.09612

  −0.58523
−0.00464
0.40569

  −0.58537
−0.00471
0.40589

  −0.59732
−0.01289
0.45017


21 steps 39 steps Fmin = −0.08653

Monte Carlo,
sphere

 1 −0.36425 0.53927 −0.36425
−0.36425 1 0 0.2079
0.53927 0 0.54055 −0.06065

  −0.69099
−0.04379
0.57722

  −0.69197
−0.04368
0.5782

  −0.64208
−0.07857
0.42488


30 steps 42 steps Fmin = −0.09937

Monte Carlo,
between cubes

 1 −0.36425 0.52761 −0.36425
−0.36425 1 0 0.2079
0.52761 0 0.52761 −0.00659

  −0.86495
−0.10716
0.87604

  −0.8661
−0.10709
0.87724

  −0.84691
−0.15953
0.89687


33 steps 42 steps Fmin = −0.14764

Monte Carlo,
spherical shell

 1 −0.36425 0.57438 −0.36425
−0.36425 1 0 0.2079
0.57438 0 0.57438 −0.07825

  −0.71421
−0.05225
0.57686

  −0.71385
−0.05152
0.57598

  −0.7545
−0.47765

0.


35 steps 45 steps Fmin = −0.1019

Viète, cube

 1 −0.36425 0.52957 −0.36425
−0.36425 1 0 0.2079
0.52957 0 0.52957 −0.04899

  −0.70576
−0.04917
0.61199

  −0.70587
−0.04859
0.61166

  −0.69828
−0.08227
0.56606


30 steps 39 steps Fmin = −0.10774

Viète, sphere

 1 −0.36425 0.57879 −0.36425
−0.36425 1 0 0.2079
0.57879 0 0.57879 −0.07813

  −0.7251
−0.05622
0.58886

  −0.72604
−0.05609
0.58977

  −0.75846
−0.09557
0.56605


35 steps 48 steps Fmin = −0.10214

Viète,
between cubes

 1 −0.36425 0.52768 −0.36425
−0.36425 1 0 0.2079
0.52768 0 0.52768 −0.09259

  −0.57389
−0.00114
0.39728

  −0.57424
−0.00078
0.39743

  −0.58721
−0.02601
0.48842


18 steps 39 steps Fmin = −0.08448

Viète,
spherical shell

 1 −0.36425 0.53491 −0.36425
−0.36425 1 0 0.2079
0.53491 0 0.53491 −0.12912

  −0.47628
−0.03442
0.23371

  −0.47702
−0.0346
0.23438

  −0.46449
−0.06434
0.21147


27 steps 39 steps Fmin = −0.07501

4. Conclusions

In our C + + program to estimate the minimum eigenvalue by Monte Carlo methods we
have estimated 10000 random vectors with variance-covariance matrix A and 10000 possible
coefficients of orthogonal regression on unit sphere.

In the first example we notice similar results for diagonal dominance and Viète sums cases.
This is because the estimated λ1 and λ3 are similar: 2 and 20 in diagonal dominance case, and
2.12994 and 19.74011 in the last case. In the Monte Carlo case of estimating λ1 and λ3 we have
results closer to real values λ1 = 3.63498 (versus 3.70017), respectively λ3 = 11.29358 (versus
11.21463). That’s why ε and V1 are smaller in Monte Carlo case. But the region where we search
the solution is larger in the other cases, and the denominator increases too. For this reason we
find no differences in probabilities of errors.
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We notice that when we have severe multicolinearity the relaxation methods (if available -
for instance if we do not have diagonal dominance as in Example 3.2 we can not apply over-
relaxation method) need many steps for a given error. With Monte Carlo methods we obtain
strange results due to the large radius of the sphere, 1221.82922 using real λ1 (with Scilab) and
1107.59869 if we estimate λ1 = 0.00205 by Monte Carlo methods, respectively 1477.42737 if we
estimate λ1 = 0.00154 by Viète sums.

When by some methods we obtain larger CI with some methods to estimate λ1 and λn, we
obtain some biased results. Over-relaxation method can require more steps as the simple relax-
ation method, as in Example 3.3. In this case CI = 7.7394 in the case of diagonal dominance,

when λ1 = 0.0636 and λ4 = 3.8092 (see Table 3). Hence
(
λ1
λ4

)4
= 7.7 · 10−8, so we can see by

(2.19) that there is no significant improvement if we use the spherical shell instead of sphere, or
the region between cubes instead of cube.

When we simulate one billion feasible solutions we obtain reasonable but not close solution.
In the Monte Carlo estimation of λ1 = 0.00162 we obtain Fmin = 0.11585, but the run time is
over 3 hours.

In the case of diagonal dominance we have used for λn the formula (2.15′). An open problem
is to estimate λn more effective (smaller than using above formula).
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