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1. Introduction

Let H represent the set of all holomorphic functions defined within the unit disk D0, which
is expressed as D0 := {ς : |ς| < 1}. Additionally, let A denote the subclass of H consisting of
functions f ∈ A that can be expressed in the form

(1.1) f(ς) := ς +
∞∑
k=2

akς
k,

where ς ∈ D0, and is subject to the normalization conditions f(0) = f ′(0)− 1 = 0. Furthermore,
let S be the subclass of A that includes univalent functions. Robertson [1] has introduced two
well-known subclasses of A, which are defined, for any δ ∈ [0, 1), as

S∗(δ) :=

{
f ∈ A : ℜ

(
ςf ′(ς)

f(ς)

)
> δ, for all ς ∈ D0

}
,

C(δ) :=

{
f ∈ A : ℜ

(
1 +

ςf ′′(ς)

f ′(ς)

)
> δ, for all ς ∈ D0

}
,

and are referred to as starlike and convex functions of order δ. It is established that S∗(δ) is a
subset of S, and C(δ) is also a subset of S. According to Alexander’s relation, f ∈ C(δ) if and
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only if ςf ′(ς) ∈ S∗(δ) for ς within the unit disk D0. When δ = 0, the class S∗, defined as S∗(0),
simplifies to the well-known category of normalized starlike univalent functions, while C, defined
as C(0), corresponds to the normalized convex univalent functions.

A function f(ς) represented in the form (1.1) is classified as a starlike function with respect
to symmetrical points if

ℜ
(

2ςf ′(ς)

f(ς) − f(−ς)

)
> 0, ς ∈ D0.

Let us define the set of all such functions as S∗
s . According to Sakaguchi [2], if f(ς) ∈ S∗

s and
takes the form (1.1), it can be concluded that |ak| ≤ 1 for k = 2, 3, . . . . It is evident that the class
of starlike functions with respect to symmetrical points includes the class of convex functions
with respect to symmetrical points, referred to as Cs, which satisfies the following condition:

ℜ
(

(ςf ′(ς))′

(f(ς) − f(−ς))′

)
> 0, ς ∈ D0.

It is clear that for the classes S∗
s and Cs, the Alexander relation is satisfied, specifically f(ς) ∈ Cs

if and only if ςf ′(ς) ∈ S∗
s .

Consider functions f and ℏ that are analytic in D0. We say that f is subordinate to ℏ,
represented as f ≺ ℏ in D0 or f(ς) ≺ ℏ(ς) for ς in D0, if there exists an analytic function κ
defined in D0 with κ(0) = 0 and |κ(ς)| < 1, such that f(ς) can be expressed as f(ς) = ℏ(κ(ς))
for all ς in D0. Consequently,

f(ς) ≺ ℏ(ς), ς ∈ D0 ⇒ f(0) = ℏ(0) and f(D0) ⊂ ℏ(D0).

Notably, if ℏ is univalent in D0, the following equivalence holds:

f(ς) ≺ ℏ(ς), ς ∈ D0 ⇔ f(0) = ℏ(0) and f(D0) ⊂ ℏ(D0).

Based on the Koebe One-Quarter Theorem, every function f ∈ S has an inverse f−1 which
complies with the following conditions:

f−1(f(ς)) = ς, ς ∈ D0

and

f(f−1(ϑ)) = ϑ,

(
|ϑ| < r0(f); r0(f) ≥ 1

4

)
,

where

(1.2) h(ϑ) := f−1(ϑ) = ϑ− a2ϑ
2 + (2a22 − a3)ϑ

3 − (5a22 − 5a2a3 + a4)ϑ
4 + · · · .

A function f ∈ A is identified as bi-univalent in the area D0 if it satisfies the condition that both
f and its inverse f−1 are univalent in D0. The set of bi-univalent functions in D0 is indicated by Σ,
according to (1.2). For a brief overview of the history and notable examples of functions classified
under Σ, see [3] and [4]. The concept of bi-univalent functions was first presented by Lewin [5]
in 1967, who established an estimate for the second coefficient of functions within this category,
stating that |a2| < 1.51. This finding was subsequently refined by Brannan and Clunie [6], who
demonstrated that |a2| ≤

√
2. A variety of researchers have examined several captivating special

families of Σ, as noted in [7, 8, 9, 10]. In contrast, Netanyahu [11] revealed that the maximum
of f ∈ Σ, |a2| = 4/3. The task of estimating the coefficient for each Taylor–Maclaurin coefficient
|ak|, for k ∈ N and k ≥ 3 is still regarded as an open question. Another property that is widely
researched in the context of the coefficient problems for f ∈ A is the Fekete-Szegö [12] functional,
which is expressed as

|a3 − λa22|, λ ∈ R.
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Sokó l and Thomas [13] presented and examined the class S∗
L within the unit disc D0. A

function f ∈ S∗
L, must satisfy the condition

G(ς) :=
ςf ′(ς)

f(ς)
≺

√
1 + ς = ξ(ς),

with the square root branch selected such that ξ(0) = 1. The function G is situated in the domain
defined by the right half of the lemniscate of Bernoulli, which is geometrically illustrated by the
condition |G2 − 1| < 1 for all ς belonging to D0. Descriptive diagrams and further insights
into the domain |G2 − 1| < 1 are available in [14]. It was also observed that the set ξ(D0) is
located within the area enclosed by the right loop of the Lemniscate of Bernoulli, denoted as
Γ : (x2 + y2)2 − 2(x2 − y2) = 0.

Define P as the set of functions ℓ belonging to H, characterized by the normalization condition
ℓ(0) = 1. Such functions can be represented as

(1.3) ℓ(ς) = 1 +

∞∑
k=1

ℓkς
k = 1 + ℓ1ς + ℓ2ς

2 + ℓ3ς
3 + · · · ,

and it is essential that ℜ(ℓ(ς)) > 0 for all ς in D0. In this context, ℓ(ς) is referred to as a
Carathéodory function. It is established that there is a relationship between the class P and
the class of Schwarz functions κ, specifically that ℓ ∈ P if and only if ℓ(ς) can be expressed as
(1 + κ(ς))/(1 − κ(ς)).

Lemma 1.1. [15, 16] For ℓ ∈ P represented as (1.3), the inequality

|ℓk| ≤ 2, k ≥ 1

is satisfied, and this condition is sharp for each k ∈ N.

Lemma 1.2. [17] Establish that β, γ ∈ R and ς1, ς2 ∈ C, with |ς1| < B, |ς2| < B, then

|(β + γ)ς1 + (β − γ)ς2| ≤

2|β|B, if |β| ≥ |γ|,

2|γ|B, if |β| ≤ |γ|.

In this current article, we introduced few subclasses of bi-univalent functions related to lem-
niscate of Bernoulli within the open unit disk D0. We investigate the estimates of the Tay-
lor–Maclaurin coefficients |a2| and |a3|, as well as the Fekete–Szezö functional problems |a3−λa22|,
for functions that fall within each of the these bi-univalent function classes. Furthermore, for
special cases, corollaries are stated which some of them are new and have not been studied so
far.

2. New Families of Analytic Functions

Sahoo and Patel [18] established the class R̃ based on the Lemniscate of Bernoulli. A function

f(ς) belonging to the class A is classified as part of the R̃ class if and only if

(2.1)
∣∣∣[f ′(ς)

]2 − 1
∣∣∣ < 1.

Equivalently, based on equations (2.1), along with the definition of subordination, a function

f ∈ R̃ satisfies the following subordination conditions:

f ′(ς) ≺ ξ(ς).
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The class R̃ contains univalent functions in D0, so it contains the bi-univalent functions in
the class RΣ(ξ). Utilizing Bernoulli’s Lemniscate, we have established a few new subclasses of
bi-univalent functions.

Definition 2.1. A function f(ς) belonging to the class Σ is classified as part of the RΣ(ξ) class
if and only if

(2.2)
∣∣∣[f ′(ς)

]2 − 1
∣∣∣ < 1

and

(2.3)
∣∣∣[h′(ϑ)

]2 − 1
∣∣∣ < 1.

Equivalently, based on equations (2.2) and (2.3), along with the definition of subordination, a
function f ∈ RΣ(ξ) satisfies the following subordination conditions:

f ′(ς) ≺ ξ(ς)

and

h′(ϑ) ≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

Definition 2.2. Establish that 0 ≤ α ≤ 1. A function f(ς) belonging to the class Σ is classified
as part of the Mα

Σ(ξ) class if and only if

(2.4)

∣∣∣∣∣
[
(1 − α)

ςf ′(ς)

f(ς)
+ α

(
1 +

ςf ′′(ς)

f ′(ς)

)]2
− 1

∣∣∣∣∣ < 1

and

(2.5)

∣∣∣∣∣
[
(1 − α)

ϑh′(ϑ)

h(ϑ)
+ α

(
1 +

ϑh′′(ϑ)

h′(ϑ)

)]2
− 1

∣∣∣∣∣ < 1.

Equivalently, based on equations (2.4) and (2.5), along with the definition of subordination, a
function f ∈ Mα

Σ(ξ) satisfies the following subordination conditions:

(1 − α)
ςf ′(ς)

f(ς)
+ α

(
1 +

ςf ′′(ς)

f ′(ς)

)
≺ ξ(ς)

and

(1 − α)
ϑh′(ϑ)

h(ϑ)
+ α

(
1 +

ϑh′′(ϑ)

h′(ϑ)

)
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

Remark 2.3. (i) If α = 0, in Definition 2.2, then Mα
Σ(ξ) ≡ M0

Σ(ξ) ≡ S∗
Σ(ξ). A function f(ς)

belonging to the class Σ is classified as part of the S∗
Σ(ξ) class if and only if

(2.6)

∣∣∣∣∣
[
ςf ′(ς)

f(ς)

]2
− 1

∣∣∣∣∣ < 1

and

(2.7)

∣∣∣∣∣
[
ϑh′(ϑ)

h(ϑ)

]2
− 1

∣∣∣∣∣ < 1.
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Equivalently, based on equations (2.6) and (2.7), along with the definition of subordination, a
function f ∈ S∗

Σ(ξ) satisfies the following subordination conditions:

ςf ′(ς)

f(ς)
≺ ξ(ς)

and
ϑh′(ϑ)

h(ϑ)
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

(ii) If α = 1, in Definition 2.2, then Mα
Σ(ξ) ≡ M1

Σ(ξ) ≡ CΣ(ξ). A function f(ς) belonging to the
class Σ is classified as part of the CΣ(ξ) class if and only if

(2.8)

∣∣∣∣∣
[
1 +

ςf ′′(ς)

f ′(ς)

]2
− 1

∣∣∣∣∣ < 1

and

(2.9)

∣∣∣∣∣
[
1 +

ϑh′′(ϑ)

h′(ϑ)

]2
− 1

∣∣∣∣∣ < 1.

Equivalently, based on equations (2.8) and (2.9), along with the definition of subordination, a
function f ∈ CΣ(ξ) satisfies the following subordination conditions:

1 +
ςf ′′(ς)

f ′(ς)
≺ ξ(ς)

and

1 +
ϑh′′(ϑ)

h′(ϑ)
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

Definition 2.4. Establish that 0 ≤ µ ≤ 1. A function f(ς) belonging to the class Σ is classified
as part of the LS∗,µ

s,Σ(ξ) class if and only if

(2.10)

∣∣∣∣∣
[
(1 − µ)

2ςf ′(ς)

f(ς) − f(−ς)
+ µ

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′

]2
− 1

∣∣∣∣∣ < 1

and

(2.11)

∣∣∣∣∣
[
(1 − µ)

2ϑh′(ϑ)

h(ϑ) − h(−ϑ)
+ µ

2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′

]2
− 1

∣∣∣∣∣ < 1.

Equivalently, based on equations (2.10) and (2.11), along with the definition of subordination,
a function f ∈ LS∗,µ

s,Σ(ξ) satisfies the following subordination conditions:

(1 − µ)
2ςf ′(ς)

f(ς) − f(−ς)
+ µ

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′
≺ ξ(ς)

and

(1 − µ)
2ϑh′(ϑ)

h(ϑ) − h(−ϑ)
+ µ

2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).
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Remark 2.5. (i) If µ = 0, in Definition 2.4, then LS∗,µ
s,Σ(ξ) ≡ LS∗,0

s,Σ(ξ) ≡ S∗
s,Σ(ξ). A function

f(ς) belonging to the class Σ is classified as part of the S∗
s,Σ(ξ) class if and only if

(2.12)

∣∣∣∣∣
[

2ςf ′(ς)

f(ς) − f(−ς)

]2
− 1

∣∣∣∣∣ < 1

and

(2.13)

∣∣∣∣∣
[

2ϑh′(ϑ)

h(ϑ) − h(−ϑ)

]2
− 1

∣∣∣∣∣ < 1.

Equivalently, based on equations (2.12) and (2.13), along with the definition of subordination,
a function f ∈ S∗

s,Σ(ξ) satisfies the following subordination conditions:

2ςf ′(ς)

f(ς) − f(−ς)
≺ ξ(ς)

and
2ϑh′(ϑ)

h(ϑ) − h(−ϑ)
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

(ii) If µ = 1, in Definition 2.4, then LS∗,µ
s,Σ(ξ) ≡ LS∗,1

s,Σ(ξ) ≡ Cs,Σ(ξ). A function f(ς) belonging

to the class Σ is classified as part of the Cs,Σ(ξ) class if and only if

(2.14)

∣∣∣∣∣
[

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′

]2
− 1

∣∣∣∣∣ < 1

and

(2.15)

∣∣∣∣∣
[

2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′

]2
− 1

∣∣∣∣∣ < 1.

Equivalently, based on equations (2.14) and (2.15), along with the definition of subordination,
a function f ∈ Cs,Σ(ξ) satisfies the following subordination conditions:

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′
≺ ξ(ς)

and
2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′
≺ ξ(ϑ).

In this context, the function h is the inverse of the function f, as specified in equation (1.2).

3. Coefficient Estimates and Fekete-Szegö Functional for the class RΣ(ξ).

Theorem 3.1. Consider the function f(ς) defined by (1.1) that belongs to the class RΣ(ξ), then

(3.1) |a2| ≤
1√
26

≈ 0.1961 . . . ,

(3.2) |a3| ≤
1

6
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and

(3.3) |a3 − λa22| ≤


1

6
, if λ ∈

[
−10

3
,

16

3

]
,

|1 − λ|
26

, if λ ∈
(
−∞,−10

3

)
∪
(

16

3
,∞

)
.

Proof. If the function f(ς) is a member of the class RΣ(ξ), then it follows:

(3.4) f ′(ς) = ξ(κ1(ς))

and

(3.5) h′(ϑ) = ξ(κ2(ϑ)),

where κ1 and κ2 are schwarz functions κ1(0) = κ2(0) = 0 and |κ1(ς)| < 1 and |κ2(ϑ)| < 1.
Subsequently, utilizing the definition of class P, we can derive the corresponding relation

κ1(ς) =
u(ς) − 1

u(ς) + 1
and κ2(w) =

s(ϑ) − 1

s(ϑ) + 1
,

where

u(ς) = 1 + u1ς + u2ς
2 + u3ς

3 + · · · ∈ P
and

s(ϑ) = 1 + s1ϑ + s2ϑ
2 + s3ϑ

3 + · · · ∈ P .

Therefore,
(3.6)

ξ(κ1(ς)) =

(
2u(ς)

u(ς) + 1

) 1
2

= 1 +
1

4
u1ς +

(
1

4
u2 −

5

32
u21

)
ς2 +

(
1

4
u3 −

5

16
u1u2 +

13

128
u31

)
ς3 + · · ·

and
(3.7)

ξ(κ2(ϑ)) =

(
2s(ϑ)

s(ϑ) + 1

) 1
2

= 1 +
1

4
s1ϑ +

(
1

4
s2 −

5

32
s21

)
ϑ2 +

(
1

4
s3 −

5

16
s1s2 +

13

128
s31

)
ϑ3 + · · · .

Since,

(3.8) f ′(ς) = 1 + 2a2ς + 3a3ς
2 + 4a4ς

3 + · · ·
and

(3.9) h′(ϑ) = 1 − 2a2ϑ + (6a22 − 3a3)ϑ
2 − (20a22 − 20a2a3 + 4a4)ϑ

3 + · · · .
It follows from (3.6) and (3.8) that

(3.10) 2a2 =
1

4
u1

and

(3.11) 3a3 =
1

4
u2 −

5

32
u21.

Similarly, it follows from (3.7) and (3.9) that

(3.12) −2a2 =
1

4
s1
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and

(3.13) 6a22 − 3a3 =
1

4
s2 −

5

32
s21.

It can be concluded from (3.10) and (3.12) that

(3.14) u1 + s1 = 0

and

(3.15) a22 =
u21 + s21

128
.

By summing the equalities (3.11) and (3.13), we get

(3.16) 6a22 =
u2 + s2

4
− 5

32
(u21 + s21).

Substituting the value of u21 + s21 from (3.15) in (3.16), we get

(3.17) a22 =
u2 + s2

104
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equations (3.15) and
(3.17), it can be concluded that

(3.18) |a2| ≤
1

4
and |a2| ≤

1√
26

.

This validates the initial findings presented in (3.1). In addition, subtracting (3.13) from (3.11),
yields

(3.19) 6a3 − 6a22 =
u2 − s2

4
+

5

32
(s21 − u21).

The above relation (3.19) combined with (3.14) and (3.17), leads that

(3.20) a3 =
16u2 − 10s2

312
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equation (3.20), it
can be concluded that

(3.21) |a3| ≤
1

6
.

This validates the initial findings presented in (3.2). From equations (3.17) and (3.20), we get

(3.22) a3 − λa22 =

(
1

24
+ g(λ)

)
u2 −

(
1

24
− g(λ)

)
s2,

where

g(λ) =
1 − λ

104
.

In view of Lemma 1.1 and Lemma 1.2, in equation (3.22), we get

(3.23) |a3 − λa22| ≤


1

6
, if |g(λ)| ≤ 1

24
,

4|g(λ)|, if |g(λ)| ≥ 1

24
.

This validates the initial findings presented in (3.3), which completes the proof of Theorem
3.1. □
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4. Coefficient Estimates and Fekete-Szegö Functional for the class Mα
Σ(ξ).

Theorem 4.1. Establish that 0 ≤ α ≤ 1. Consider the function f(ς) defined by (1.1) that
belongs to the class Mα

Σ(ξ), then

(4.1) |a2| ≤
1√

(1 + α)(7 + 5α)
,

(4.2) |a3| ≤
1

4(1 + 2α)

and
(4.3)

|a3 − λa22| ≤


1

4(1 + 2α)
, if λ ∈

[
−3 + 4α + 5α2

4(1 + 2α)
,

11 + 20α + 5α2

4(1 + 2α)

]
,

|1 − λ|
(1 + α)(7 + 5α)

, if λ ∈
(
−∞,−3 + 4α + 5α2

4(1 + 2α)

)
∪
(

11 + 20α + 5α2

4(1 + 2α)
,∞

)
.

Proof. If the function f(ς) is a member of the class Mα
Σ(ξ), then it follows:

(4.4) (1 − α)
ςf ′(ς)

f(ς)
+ α

(
1 +

ςf ′′(ς)

f ′(ς)

)
= ξ(κ1(ς))

and

(4.5) (1 − α)
ϑh′(ϑ)

h(ϑ)
+ α

(
1 +

ϑh′′(ϑ)

h′(ϑ)

)
= ξ(κ2(ϑ)),

Since,

(4.6) (1 − α)
ςf ′(ς)

f(ς)
+ α

(
1 +

ςf ′′(ς)

f ′(ς)

)
= 1 + (1 + α)a2ς + [2(1 + 2α)a3 − (1 + 3α)a22]ς

2 + · · ·

and

(4.7) (1−α)
ϑh′(ϑ)

h(ϑ)
+α

(
1 +

ϑh′′(ϑ)

h′(ϑ)

)
= 1− (1 + α)a2ϑ+ [(3 + 5α)a22 − 2(1 + 2α)a3]ϑ

2 + · · · .

It follows from (3.6) and (4.6) that

(4.8) (1 + α)a2 =
1

4
u1

and

(4.9) 2(1 + 2α)a3 − (1 + 3α)a22 =
1

4
u2 −

5

32
u21.

Similarly, it follows from (3.7) and (4.7) that

(4.10) −(1 + α)a2 =
1

4
s1

and

(4.11) (3 + 5α)a22 − 2(1 + 2α)a3 =
1

4
s2 −

5

32
s21.

It can be concluded from (4.8) and (4.10) that

(4.12) u1 + s1 = 0
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and

(4.13) a22 =
u21 + s21

32(1 + α)2
.

By summing the equalities (4.9) and (4.11), we get

(4.14) 2(1 + α)a22 =
u2 + s2

4
− 5

32
(u21 + s21).

Substituting the value of u21 + s21 from (4.13) in (4.14), we get

(4.15) a22 =
u2 + s2

4(1 + α)(7 + 5α)
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equations (4.13) and
(4.15), it can be concluded that

(4.16) |a2| ≤
1

2(1 + α)
and |a2| ≤

1√
(1 + α)(7 + 5α)

.

This validates the initial findings presented in (4.1). In addition, subtracting (4.11) from (4.9),
yields

(4.17) 4(1 + 2α)a3 − 4(1 + 2α)a22 =
u2 − s2

4
+

5

32
(s21 − u21).

The above relation (4.17) combined with (4.12) and (4.15), leads that

(4.18) a3 =
(11 + 20α + 5α2)u2 − (3 + 4α + 5α2)s2

16(1 + α)(1 + 2α)(7 + 5α)
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equation (4.18), it
can be concluded that

(4.19) |a3| ≤
1

4(1 + 2α)
.

This validates the initial findings presented in (4.2). From equations (4.15) and (4.18), we get

(4.20) a3 − λa22 =

(
1

16(1 + 2α)
+ g(λ)

)
u2 −

(
1

16(1 + 2α)
− g(λ)

)
s2,

where

g(λ) =
1 − λ

4(1 + α)(7 + 5α)
.

In view of Lemma 1.1 and Lemma 1.2, in equation (4.20), we get

(4.21) |a3 − λa22| ≤


1

4(1 + 2α)
, if |g(λ)| ≤ 1

16(1 + 2α)
,

4|g(λ)|, if |g(λ)| ≥ 1

16(1 + 2α)
.

This validates the initial findings presented in (4.3), which completes the proof of Theorem
4.1. □

If we select α = 0, in Theorem 4.1, we get the following corollary.
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Corollary 4.2. Consider the function f(ς) defined by (1.1) that belongs to the class S∗
Σ(ξ), then

|a2| ≤
1√
7
≈ 0.3779 . . . ,

|a3| ≤
1

4
= 0.25

and

|a3 − λa22| ≤


1

4
, if λ ∈

[
−3

4
,

11

4

]
,

|1 − λ|
7

, if λ ∈
(
−∞,−3

4

)
∪
(

11

4
,∞

)
.

If we select α = 1, in Theorem 4.1, we get the following corollary.

Corollary 4.3. Consider the function f(ς) defined by (1.1) that belongs to the class CΣ(ξ), then

|a2| ≤
1√
24

≈ 0.2041 . . . ,

|a3| ≤
1

12
= 0.0833 . . .

and

|a3 − λa22| ≤


1

12
, if λ ∈ [−1, 3] ,

|1 − λ|
24

, if λ ∈ (−∞,−1) ∪ (3,∞) .

5. Coefficient Estimates and Fekete-Szegö Functional for the class LS∗,µ
s,Σ(ξ).

Theorem 5.1. Establish that 0 ≤ µ ≤ 1. Consider the function f(ς) defined by (1.1) that belongs
to the class LS∗,µ

s,Σ(ξ), then

(5.1) |a2| ≤
1

2
√

6 + 12µ + 5µ2
,

(5.2) |a3| ≤
1

4(1 + 2µ)

and

(5.3) |a3 − λa22| ≤


1

4(1 + 2µ)
, if λ ∈

[
−5(1 + µ)2

1 + 2µ
,

7 + 14µ + 5µ2

1 + 2µ

]
,

|1 − λ|
4(6 + 12µ + 5µ2)

, if λ ∈
(
−∞,−5(1 + µ)2

1 + 2µ

)
∪
(

7 + 14µ + 5µ2

1 + 2µ
,∞

)
.

Proof. If the function f(ς) is a member of the class LS∗,µ
s,Σ(ξ), then it follows:

(5.4) (1 − µ)
2ςf ′(ς)

f(ς) − f(−ς)
+ µ

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′
= ξ(κ1(ς))
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and

(5.5) (1 − µ)
2ϑh′(ϑ)

h(ϑ) − h(−ϑ)
+ µ

2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′
= ξ(κ2(ϑ)),

Since,

(5.6) (1 − µ)
2ςf ′(ς)

f(ς) − f(−ς)
+ µ

2[ςf ′(ς)]′

[f(ς) − f(−ς)]′
= 1 + 2(1 + µ)a2ς + 2(1 + 2µ)a3ς

2 + · · ·

and
(5.7)

(1−µ)
2ϑh′(ϑ)

h(ϑ) − h(−ϑ)
+µ

2[ϑh′(ϑ)]′

[h(ϑ) − h(−ϑ)]′
= 1−2(1+µ)a2ϑ+[4(1+2µ)a22−2(1+2µ)a3]ϑ

2 + · · · .

It follows from (3.6) and (5.6) that

(5.8) 2(1 + µ)a2 =
1

4
u1

and

(5.9) 2(1 + 2µ)a3 =
1

4
u2 −

5

32
u21.

Similarly, it follows from (3.7) and (5.7) that

(5.10) −2(1 + µ)a2 =
1

4
s1

and

(5.11) 4(1 + 2µ)a22 − 2(1 + 2µ)a3 =
1

4
s2 −

5

32
s21.

It can be concluded from (5.8) and (5.10) that

(5.12) u1 + s1 = 0

and

(5.13) a22 =
u21 + s21

128(1 + µ)2
.

By summing the equalities (5.9) and (5.11), we get

(5.14) 4(1 + 2µ)a22 =
u2 + s2

4
− 5

32
(u21 + s21).

Substituting the value of u21 + s21 from (5.13) in (5.14), we get

(5.15) a22 =
u2 + s2

16(6 + 12µ + 5µ2)
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equations (5.13) and
(5.15), it can be concluded that

(5.16) |a2| ≤
1

4(1 + µ)
and |a2| ≤

1

2
√

6 + 12µ + 5µ2
.

This validates the initial findings presented in (5.1). In addition, subtracting (5.11) from (5.9),
yields

(5.17) 4(1 + 2µ)a3 − 4(1 + 2µ)a22 =
u2 − s2

4
+

5

32
(s21 − u21).
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The above relation (5.17) combined with (5.12) and (5.15), leads that

(5.18) a3 =
(7 + 14µ + 5µ2)u2 − (5 + 10µ + 5µ2)s2

16(1 + 2µ)(6 + 12µ + 5µ2)
.

By applying Lemma 1.1, in conjunction with the triangle inequality in the equation (5.18), it
can be concluded that

(5.19) |a3| ≤
1

4(1 + 2µ)
.

This validates the initial findings presented in (5.2). From equations (5.15) and (5.18), we get

(5.20) a3 − λa22 =

(
1

16(1 + 2µ)
+ g(λ)

)
u2 −

(
1

16(1 + 2µ)
− g(λ)

)
s2,

where

g(λ) =
1 − λ

16(6 + 12µ + 5µ2)
.

In view of Lemma 1.1 and Lemma 1.2, in equation (5.20), we get

(5.21) |a3 − λa22| ≤


1

4(1 + 2µ)
, if |g(λ)| ≤ 1

16(1 + 2µ)
,

4|g(λ)|, if |g(λ)| ≥ 1

16(1 + 2µ)
.

This validates the initial findings presented in (5.3), which completes the proof of Theorem
5.1. □

If we select µ = 0, in Theorem 5.1, we get the following corollary.

Corollary 5.2. Consider the function f(ς) defined by (1.1) that belongs to the class S∗
s,Σ(ξ),

then

|a2| ≤
1

2
√

6
≈ 0.2041 . . . ,

|a3| ≤
1

4
= 0.25

and

|a3 − λa22| ≤


1

4
, if λ ∈ [−5, 7] ,

|1 − λ|
24

, if λ ∈ (−∞,−5) ∪ (7,∞) .

If we select µ = 1, in Theorem 5.1, we get the following corollary.

Corollary 5.3. Consider the function f(ς) defined by (1.1) that belongs to the class Cs,Σ(ξ),
then

|a2| ≤
1

2
√

23
≈ 0.1042 . . . ,

|a3| ≤
1

12
≈ 0.0833 . . .

71



Romanian Journal of Mathematics and Computer Science Issue 1, Vol. 15 (2025)

and

|a3 − λa22| ≤


1

12
, if λ ∈

[
−20

3
,

26

3

]
,

|1 − λ|
92

, if λ ∈
(
−∞,−20

3

)
∪
(

26

3
,∞

)
.

Conclusion

In this current work, we introduce three new subclasses of the class of bi-univalent functions
Σ, namely RΣ(ξ), Mα

Σ(ξ) and LS∗,µ
s,Σ(ξ), by using lemniscate of Bernoulli. We investigate the

estimates of the Taylor–Maclaurin coefficients |a2| and |a3|, as well as the Fekete–Szezö functional
problems |a3 − λa22|, by using subordination principle. Additionally, we can expand these types
of studies to include bounded boundary rotation and bounded radius rotation (see [8, 9]).
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