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Abstract. In this article, we propose a method for solving constrained multi-objective op-
timization problems using an extension of the classical Augmented Lagrangian method. We
demonstrate that any sequence generated by the algorithm is feasible, and that any limit point
is an optimal Pareto solution. A second algorithm is introduced to solve the subproblem within
the main algorithm, using the steepest descent method and a non-monotone Max-type linear
search technique. The theoretical and numerical results validate the performance and efficiency
of the proposed method.
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1. Introduction

Multiobjective optimization is a critical branch of the optimization field that aims to find
solutions that optimize multiple criteria simultaneously. In many real-world problems, decision-
making is often confronted with complex and diverse constraints, which necessitates the use of
constrained optimization methods to obtain viable solutions [12]. These constraints play a crucial
role in ensuring the practical applicability and feasibility of the obtained solutions, making con-
strained multiobjective optimization an essential tool for addressing real-world decision-making
challenges.

Amongst these methods, augmented Lagrangian has emerged as a promising approach for solv-
ing constrained multiobjective optimization problems. It effectively handles constraints through
an iterative process, enhancing the accuracy of the obtained solutions. The augmented La-
grangian method provides a robust and reliable solution for tackling constrained multi-objective
optimization problems.

In the literature, extensive studies have been conducted on the convergence analysis of the
augmented Lagrangian method in this context. It all started with the groundbreaking article by
Powell (1969) [22], which introduced the concept of augmented Lagrangian to address nonlinear
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optimization problems with equality constraints. This seminal work paved the way for numerous
subsequent research endeavors. Subsequently, Hestenes (1969) [16] and Rockafellar (1973) [23]
laid down solid theoretical foundations for the augmented Lagrangian method and established its
global convergence properties for convex problems. Building upon this foundation, adaptations
of the augmented Lagrangian have been developed to handle non-convex and nondifferentiable
optimization problems. Notable contributions, such as those by Birgin and Mart́ınez (2000) [6],
proposed variants tailored to address these specific types of problems.

Recently, there has been research on extending the augmented Lagrangian method to solve
multi-objective problems. Cocchi et al. [10, 11] introduced a method based on non-scalar
augmented Lagrangian, while Undapayer et al. [24] proposed an augmented Lagrangian method
based on the cone method, which transforms the multiobjective problem into a scalar single-
objective problem.

Augmented Lagrangian methods that employ multiplier safeguarding techniques have gained
significant interest in recent years. Notable contributions in this area include the works of
Andreani et al. [1], Birgin et al. [7, 8], and Galván et al. [15]. These methods offer advantages
over classical approaches, such as penalty and multiplier methods [4, 12, 23], as summarized in
[19].

The presence of abstract constraints and the complexity associated with handling approximate
stationary points contribute to the intriguing nature of this problem. Augmented Lagrangian
methods with multiplier safeguarding techniques provide effective tools for addressing these
challenges, enabling efficient and reliable solutions for constrained multi-objective optimization
problems.

Computing the global minimum of each Lagrangian subproblem would simplify the conver-
gence analysis without requiring additional assumptions about the admissible domain, except
for its closure [3]. However, computing the global minimum is often challenging in the presence
of non-convex objective functions. Therefore, our approach focuses on stationary points. Ad-
ditionally, it is often practical to start with approximate stationary points at the beginning of
the algorithm and gradually demand more accurate solutions as the algorithm progresses, which
simplifies the computations.

In this context, we propose in this study a method based on Augmented Lagrangian to solve
global constrained multi-objective problems. Our objective is to develop an approach that
minimizes the number of additional conditions, such as the requirement of convexity.

The rest of this work is structured as follows. In Section 2, we provide an overview of the pre-
liminary concepts related to multi-objective optimization. Section 3 focuses on the augmented
Lagrangian method for multi-objective optimization, providing a detailed description of the al-
gorithm used and presenting the results regarding the feasibility and optimality of the generated
sequences. In Section 4, we examine the practical application of the algorithm by presenting
results that demonstrate its validity. Section 5 is dedicated to the application of the proposed
algorithm through test problems. Finally, Section 6 summarizes our conclusions, offers future
perspectives, and suggests research directions to explore in this field.
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2. Preliminaries

We will consider the multiobjective programming problem defined as follows:

(MOP)

min F (x) = (f1(x), f2(x), · · · , fq(x))

s.t. :

 hi(x) = 0 ∀i ∈ I = {1, 2, 3, · · · , p}
gl(x) ≤ 0 ∀l ∈ L = {1, 2, 3, · · · ,m}
x ∈ Rn.

In this formulation, F : Rn → Rq is a vector function with components f1(x), f2(x), . . . , fq(x).
The constraints include equality constraints hi(x) = 0 for all i in the index set I = {1, 2, 3, · · · , p},
and inequality constraints gl(x) ≤ 0 for all l in the index set L = {1, 2, 3, · · · ,m}. In the follow-
ing, we assume that the functions fj , gi, hl are continuous and differentiable functions. Let X
denote the feasible space of problem (MOP), defined as X = {x ∈ Rn : h(x) = 0 and g(x) ≤ 0}.
In the rest of this work, we assume that the admissible space X is non-empty.

Throughout our study, we will adhere to the following conventions: the set of positive real
numbers is denoted as R++. Rn represents the set of column vectors with dimension n. The
image space of a matrix A ∈ Rm×n is referred to as Im(A). The unit vector of dimension q is
represented by e. For any vectors u = (u1, u2, · · · , un)T and v = (v1, v2, · · · , vn)T , we establish
the following conventions regarding equality and inequality:

(i) u = v ⇔ ui = vi for every i = 1, 2, · · · , n
(ii) u < v ⇔ ui < vi for every i = 1, 2, · · · , n
(iii) u ≦ v ⇔ ui ≤ vi for every i = 1, 2, · · · , n
(iv) u ≤ v ⇔ u ≦ v and u ̸= v.

Definition 2.1. ([20]) A point x∗ ∈ X is Pareto optimal for problem (MOP) if there does not
exist another x ∈ X such that:

F (x) ≤ F (x∗) and F (x) ̸= F (x∗).

Definition 2.1 provides an important property of Pareto optimality. Therefore, we present the
following definition, which proposes simpler conditions to obtain in practice. We can express
the classical definitions of optimality in the Pareto sense since it is not always possible to find
a solution that minimizes all objective functions simultaneously.

Definition 2.2. ([20]) A point x∗ ∈ X is weakly Pareto optimal for problem (MOP) if there
does not exist another x ∈ X such that:

F (x) < F (x∗).

Considering these two definitions, we present the following lemma extracted from [10], which
provides equivalent relationships between Definition 2.1 and Definition 2.2 of Pareto optimality.

Lemma 2.3. A point x∗ ∈ X is

(a): a Pareto optimum for (MOP) if and only if for all y ∈ X at least one of the following
relations holds:
(i): max

j=1,2,...,q
{fj(y)− fj(x

∗)} > 0,

(ii): min
j=1,2,...,q

{fj(y)− fj(x
∗)} ≥ 0.
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(b): a weak Pareto optimum for (MOP) if and only if for all y ∈ X we have
max

j=1,2,...,q
{fj(y)− fj(x

∗)} ≥ 0.

We also define x∗ ∈ Rn as a local Pareto optimal point (or weak local Pareto optimal point)
if there exists a neighborhood V (x∗) ∈ Rn such that x∗ is a Pareto optimal point (or weakly
Pareto optimal point) for F restricted to V (x∗).

A necessary but generally not sufficient condition for weak Pareto optimality can be expressed
by the following relation:

(2.1) − (R++)
q ∩ Im(JF (x

∗)) = ∅,

where JF (.) denotes the Jacobian matrix of F . A point x∗ ∈ X is considered stationary for F
if it satisfies relation (2.1). Now, a necessary condition for Pareto optimality is given by the
following definition.

Definition 2.4. ([13]) A point x∗ ∈ X is considered a Pareto stationary point for the problem
(MOP) if, for any d ∈ Rn, the following inequality holds:

max
j=1;q

∇fj(x
∗)⊤d ≥ 0.

Note that if x∗ is not a Pareto stationary point, there exists an admissible direction d such
that max

j=1;q
∇fj(x

∗)⊤d < 0.

We can define an ε-Pareto-Stationary solution as follows:

Definition 2.5 ([10]). Let ε ≥ 0. A point x∗ ∈ Rn is ε-Pareto-stationary for problem (MOP) if

max
i=1,...,m

∇fj(x
∗)⊤d ≥ −ε, ∀d ∈ {ξ ∈ Rn | ∥ξ∥ ≤ 1} .

Definition 2.6 presents the concepts of ε-Pareto optimal solution and weakly ε-Pareto optimal
solution.

Definition 2.6. Let ε ≥ 0. A point x∗ ∈ X is:

(a): ε-Pareto optimal for (MOP) if for every y ∈ X at least one of the following conditions
is satisfied:
(i): max

j=1,2,...,q
{fj(y)− fj(x

∗)} > −ε, or

(ii): min
j=1,2,...,q

{fj(y)− fj(x
∗)} ≥ −ε.

(b): weakly ε-Pareto optimal for (MOP) if max
j=1,2,...,q

{fj(y)− fj(x
∗)} ≥ −ε for all y ∈ X .

3. Augmented Lagrangian function for Multiobjective Optimization problems

In this section, we introduce the construction of the Augmented Lagrangian method for the
resolution of multiobjective optimization problems.

3.1. Principle. Let’s consider the problem (MOP). Note that (MOP) is equivalent to

min : F (x) = (f1(x), f2(x), · · · , fq(x))

s.t.

 hi(x) = 0 ∀i ∈ I = {1, 2, 3, . . . , p} ,
gl(x) + rl = 0, rl ≥ 0 ∀l ∈ L = {1, 2, 3, . . . ,m}
x ∈ Rn,
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where r = (r1, r2, . . . , rm)⊤. Applying the augmented Lagrangian method to problem (3.1) leads
to solving the following problem [3, 2]:

(3.1) min
x∈Rn, r≧0

Lη(x, r, µ, λ),

where

Lτ (x, r, µ, λ) = F (x)+

{
m∑
l=1

[
µl (gl(x) + rl) +

τ

2
(gl(x) + rl)

2
]
+

p∑
i=1

[
λi (hi(x)) +

τ

2
(hi(x))

2
]}

·e,

and τ > 0, µ = (µ1, µ2, . . . , µm) ∈ Rm
+ and λ = (λ1, λ2, . . . , λp) ∈ Rp

+. The minimum of (3.1) can

be obtained [2] by first minimizing Lτ (x, r, µ, λ) over the slack variables r ≧ 0, which implies

Lτ (x, µ, λ) = min
r≧0

Lτ (x, r, µ, λ),

and then minimizing Lτ (x, µ, λ) when x ∈ Rn. Note that µlgl(x) +
τ
2 (gl(x) + rl)

2 is quadratic
in r. Thus, it is easy to obtain a closed-form expression for Lτ (x, µ, λ) for each fixed x. For a
given x, we have

(3.2) min
r≥0

Lτ (x, r, µ, λ) = F (x) +

{
m∑
l=1

min
r≥0

[
µl (gl(x) + rl) +

τ

2
(gl(x) + rl)

2
]

+

p∑
i=1

[
λi (hi(x)) +

τ

2
(hi(x))

2
]}

· e.

However, the minimum of
{
µl (gl(x) + rl) +

τ
2 (gl(x) + rl)

2
}
is obtained for each

r∗l = max
{
0,−

(µl

τ
+ gl(x)

)}
.

This implies

(3.3)

min
r≥0

{
µl (gl(x) + rl) +

τ

2
(gl(x) + rl)

2
}
=

{
µl max

{
gl(x),−

µl

τ

}
+

τ

2

(
max

{
gl(x),−

µl

τ

})2
}
.

Substituting into (3.2), we obtain

(3.4) Lτ (x, r, µ, λ) = F (x) +

{
m∑
l=1

[
µl max

{
gl(x),−

µl

τ

}
+

τ

2

(
max

{
gl(x),−

µl

τ

})2
]

+

p∑
i=1

[
λi (hi(x)) +

τ

2
(hi(x))

2
]}

· e

which represents the Augmented Lagrange function of (MOP), with λ and µ as vectors of
Lagrange multipliers and τ as the penalty parameter [5, 7, 8, 15, 17]. These parameters are
updated at each iteration according to the following equations:

λk+1
i = PC

[
λk
i + τkhi(x

k+1)
]
with C = [0, λmax] for all i = 1, p

µk+1
l = PΩ

[
µk
l + τkgl(x

k+1)
]
with Ω = [0, µmax] for all l = 1,m,
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with PK(.) being the projection operator onto the convex space K.
Now, posing gl,+(x, µl, τ) = max

{
gl(x),−µl

τ

}
, and substituting in (3.4), we obtain the follow-

ing simplified expression (3.5), which we will use throughout the rest of the paper.

(3.5) Lτk(x, λ
k, µk) = F (x) +

[
p∑

i=1

{
λk
i hi(x) +

τk
2
(hi(x))

2
}

+
m∑
l=1

{
µk
l gl,+(x, µ

k
l , τk) +

τk
2

(
gl,+(x, µ

k
l , τk)

)2
}]

· e.

3.2. Algorithm. In this subsection, we introduce a new algorithm for solving multiobjective
optimization problems using the Augmented Lagrangian method. This algorithm is based on
the information presented in the preceding sections. The algorithm is outlined as follows:

Algorithm 1: Global Optimization Algorithm based on Augmented Lagrangian for Mul-
tiobjective Optimization Problems.

Data: µ0 ∈ Rm
+ σ ∈ (0, 1), λ0 ∈ Rp

+; τ0 > 0; x0 ∈ Rn; α ≥ 1

1 for k = 0, 1, 2, · · · do
2 Find xk+1 ∈ Rn a ϵk-Pareto-Point of

Lτk(x, λ
k, µk) = F (x) +

[
p∑

i=1

{
λk
i hi(x) +

τk
2
(hi(x))

2
}

+
m∑
l=1

{
µk
l gl,+(x, µ

k
l , τk) +

τk
2

(
gl,+(x, µ

k
l , τk)

)2
}]

· e,

3 for i = 1, 2, 3, · · · , p do

4 λk+1
i = P[0;λ]

(
λk
i + τkhi(x

k+1)
)

5 for l = 1, 2, 3, · · · ,m do

6 µk+1
l = P[0;µ]

(
τkgl(x

k+1) + µk
l

)
7 βk+1

l = max

{
gl(x

k+1),−
µk
l

τk

}
8 if max

{∥∥h(xk+1)
∥∥ , ∥∥βk+1

∥∥} ≤ σmax
{∥∥h(xk)∥∥ ,∥∥βk

∥∥} then
9 τk+1 = τk

10 else
11 τk+1 = ατk

3.3. Convergence analysis of Algorithm 1. In this sub-section, we initiate the discussion
on convergence analysis within well-defined assumptions. We examine the required conditions to
ensure the convergence of the Augmented Lagrangian method in the context of multi-objective
problems under constraints. By analyzing these assumptions, our objective is to understand the
convergence behaviors and limitations of these methods. The obtained results provide us with
information regarding the performance and reliability of these approaches for solving complex
multiobjective problems.
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Assumption 3.1. The objective function F has bounded level sets in the multiobjective sense,
meaning that the set {x ∈ Rn, F (x) ≦ F (x0)} is compact.

Assumption 3.2. The sequence {ϵk} satisfies lim
k→∞

ϵk = 0.

Assumption 3.3. For any k = 0, 1, . . . , there exists xk+1 ∈ R an ϵk-Pareto point for
LTk(x, λ

k, µk), that is: for any x ∈ Rn, there is a j ∈ {1, . . . , q} such that(
LTk(x

k+1, λk, µk)
)
j
<

(
LTk(x, λ

k, µk)
)
j
+ ϵk,

where ϵk is a given bounded sequence.

The following theorem presents the admissibility results of the sequence {xk} generated by
Algorithm 1 at each iteration.

Theorem 3.4. (Algorithm 1 Feasibility) Assume that Assumption 3.3 holds. Let {xk} be the

sequence generated by Algorithm 1. Suppose that there exists K ⊆
∞

N such that lim
k→∞
k∈K

xk = x∗.

Then, for all x ∈ Rn, we have

(3.6) ∥h(x∗)∥2 + ∥g+(x∗)∥2 ≤ ∥h(x)∥2 + ∥g+(x)∥2 , where g+(x) = max {g(x), 0}

Proof. We consider two cases on the sequence of penalty parameters:

(a): the sequence {τk} is bounded,
(b): the sequence {τk} is unbounded.

Case (a): From the definition of the sequence of penalty parameters in lines 10 to 12
of Algorithm 1, it can be observed that the terms of the sequence τk satisfy either
τk+1 = τk or τk+1 = ατk with α > 1. This indicates that τk forms a monotonically
increasing sequence. In order for {τk} to be bounded, the number of times the equality
τk+1 = ατk occurs must be finite. Therefore, there exists a positive integer k0 such that
for any k > k0, we have τk = τk0 . Hence, for k0 ≥ 1,

max
{∥∥∥h(xk0+1)

∥∥∥ , ∥βk0+1∥
}
≤ σmax

{∥∥∥h(xk0)∥∥∥ , ∥βk0∥}
max

{∥∥∥h(xk0+2)
∥∥∥ , ∥βk0+2∥

}
≤ σmax

{∥∥∥h(xk0+1)
∥∥∥ , ∥βk0+1∥

}
≤ σ2max

{∥∥∥h(xk0)∥∥∥ , ∥βk0∥}
...

max
∥∥∥h(xk0+m)

∥∥∥ , ∥βk0+m∥ ≤ σmmax
{∥∥∥h(xk0)∥∥∥ , ∥βk0∥} .

When m → ∞, since σ ∈ (0; 1), we have :

σmmax
{∥∥∥h(xk0)∥∥∥ , ∥βk0∥} → 0.

Hence,
∥∥h(xk+1)

∥∥ → 0 and max

{
gl(x

k+1),−
µk
l

τk

}
→ 0 for all l. Since h and g are

continuous, it follows that h(x∗) = 0 and g(x∗) ≤ 0.
Thus, the limit point x∗ of xk is feasible.
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Case (b): assume that τk → ∞. Let K ⊆
∞

N be such that xk
k∈K−−−→ x∗. Assume by

contradiction that there exists x ∈ Rn such that

(3.7) ∥h(x∗)∥2 + ∥g+(x∗)∥2 > ∥h(x)∥2 + ∥g+(x)∥2 .

By the continuity of h and g, the boundedness of
{
µk

}
and

{
λk

}
and the fact that

τk → ∞, there exist ζ > 0 and k0 ∈ N such that for all k ∈ K, k ≥ k0,

(3.8)

∥∥∥∥h(xk+1) +
λk

τk

∥∥∥∥2 + ∥∥∥∥(g(xk+1) +
µk

τk

)
+

∥∥∥∥2 − ∥∥∥∥µk

τk

∥∥∥∥2 − ∥∥∥∥λk

τk

∥∥∥∥2 >∥∥∥∥h(x) + λk

τk

∥∥∥∥2 + ∥∥∥∥(g(x) + µk

τk

)
+

∥∥∥∥2 − ∥∥∥∥λk

τk

∥∥∥∥2 − ∥∥∥∥µk

τk

∥∥∥∥2 + ζ.

Therefore, for all k ∈ K, k ≥ k0, we have for all j = 1, q

(3.9) fj(x
k+1) +

p∑
i=1

{
λihi(x

k+1) +
τk
2

(
hi(x

k+1)
)2

}
+

m∑
l=1

{
µk
l gl,+(x

k+1, µk
l , τ)

+
τ

2

(
gl,+(x

k+1, µk
l , τ)

)2
}

> fj(x) +

p∑
i=1

{
λk
i hi(x) +

τk
2
(hi(x))

2
}

+
m∑
l=1

{
µk
l gl,+(x, µ

k
l , τ) +

τ

2

(
gl,+(x, µ

k
l , τ)

)2
}
+

τk · ζ
2

+ fj(x
k+1)− fj(x).

Since xk
k∈K−−−→ x∗, and {ϵk} is bounded there exists k0 ≤ k′0 such that for all k ≥ k′0 and

j = 1, 2, . . . , q
τk · ζ
2

+ fj(x
k+1)− fj(x) > ϵk.

Therefore for k > k′0 from equation (3.9), we can write(
Lτk(x

k+1, λk, µk)
)
j
>

(
Lτk(x, λ

k, µk)
)
j
+ ϵk, for all j,

which contradicts assumption (3.3). Hence, (3.6) holds.

□

Theorem 3.5. (Optimality of solution generated by Algorithm 1) Let x∗ be a cluster point for
the sequence

{
xk+1

}
generated by Algorithm 1 under assumptions 3.1 and assumption 3.2. Then

x∗ is a weak Pareto point for problem (MOP).

Proof. Since the problem (MOP) is feasible by Theorem 3.4, the point x∗ is feasible i.e h(x∗) = 0
and g(x∗) ≤ 0.

Assume now by contradiction that x∗ is not a weak Pareto point for problem (MOP). Then,
there exists x ∈ X such that for all j = 1, q

(3.10) fj(x) < fj(x
∗).

From the instruction of the algorithm and from Lemma 2.3 we know that
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(3.11) min
j=1,2,...,q

{
fj(x

k+1) +

p∑
i=1

{
λk
i hi(x

k+1) +
τk
2

(
hi(x

k+1)
)2

}

+

m∑
l=1

{
µk
l gl,+(x

k+1, µk
l , τk) +

τk
2

(
gl,+(x

k+1, µk
l , τk)

)2
}
− fj(x)

−
m∑
l=1

{
µk
l gl,+(x, µ

k
l , τk) +

τk
2

(
gl,+(x, µ

k
l , τk)

)2
}}

≤ ϵk,

which means that

(3.12) min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ −

p∑
i=1

{
λk
i hi(x

k+1) +
τk
2

(
hi(x

k+1)
)2

}

−
m∑
l=1

{
µk
l gl,+(x

k+1, µk
l , τk) +

τk
2

(
gl,+(x

k+1, µk
l , τk)

)2
}
+

m∑
l=1

{
µk
l gl,+(x, µ

k
l , τk) +

τk
2

(
gl,+(x, µ

k
l , τk)

)2
}
+ ϵk,

By rearranging, we obtain

(3.13)

min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ −τk

2

p∑
i=1

{(
hi(x

k+1) +
λk
i

τk

)2
}
−τk

2

m∑
l=1

[
max

{
0, gl(x

k+1) +
µk
l

τk

}]2

+
τk
2

p∑
i=1

(
λk
i

τk

)2

+
τk
2

m∑
l=1

[
max

{
0, gl(x) +

µk
l

τk

}]2
+ ϵk.

We consider two cases on the sequences of penalty parameters

(i): {τk} tend to infinity
(ii): {τk} is bounded

Case (i): τk → ∞ now we have

(3.14) min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ τk

2

p∑
i=1

(
λk
i

τk

)2

+
τk
2

m∑
l=1

[
max

{
0, gl(x) +

µk
l

τk

}]2
+ ϵk, for all k ∈ N.

As x is feasible by assumption, i.e h(x) = 0 and g(x) ≤ 0, we have that for all l,[
max

{
0, gl(x) +

µk
l

τk

}]2
≤

{
µk
l

τk

}2

.
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Therefore, by equation (3.14),

(3.15) min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ τk

2

p∑
i=1

(
λk
i

τk

)2

+
τk
2

m∑
l=1

(
µk
l

τk

)2

+ ϵk.

(3.16) ⇒ min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤

p∑
i=1

(
λk
i

)2
τk

+

m∑
l=1

(
µk
l

)2
τk

+ ϵk.

Taking limits for k ∈ K and using that lim
k→∞

(
λk
i

)2
τk

= lim
k→∞

(
µk
l

)2
τk

= 0 and ϵk → 0,

recalling again
{
λk

}
and

{
µk

}
are bounded, we get

min
j=1,2,...,q

{fj(x∗)− fj(x)} ≤ 0,

which contradicts (3.10).

Case (ii): in this case, there exists k0 ∈ N such that τk = τk0 for all k ≥ k0.
From the instruction of the algorithm, max

{∥∥h(xk+1)
∥∥ ,∥∥βk+1

∥∥} → 0 This implies

that hi(x
k+1) → 0 and βk+1 → 0 =⇒ µk

i

τk
→ 0 as k → ∞, k ∈ K for all i such that

gi(x
∗) < 0. In particular, for such indices i it holds µk

i → 0 as k → ∞, k ∈ K. We
therefore have from the Lemma 2.3

(3.17) min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ −τk0

2

p∑
i=1

{(
hi(x

k+1) +
λk
i

τk0

)2
}

− τk0
2

m∑
l=1

[
max

{
0, gl(x

k+1) +
µk
l

τk0

}]2
+

τk0
2

p∑
i=1

{(
λk
i

τk0

)2
}

+
τk0
2

m∑
l=1

[
max

{
0, gl(x) +

µk
l

τk0

}]2
+ ϵk.

Given that h(x) = 0 and g(x) ≤ 0, it follows from equation (3.17) that

(3.18)

min
j=1,2,...,q

{
fj(x

k+1)− fj(x)
}
≤ −τk0

2

p∑
i=1

(
hi(x

k+1) +
λk
i

τk0

)2

−τk0
2

m∑
l=1

[
max

(
0, gl(x

k+1) +
µk
l

τk0

)]2

+
τk0
2

p∑
i=1

(
λk
i

τk0

)2

+
τk0
2

m∑
l=1

(
µk
l

τk0

)2

+ ϵk for any k ∈ N.

Since xk → x∗, and h(x∗) = 0, and because the functions hi for all i are continuous,
and the sequences {λk

i } are bounded, we deduce that

−τk0
2

p∑
i=1

(
hi(x

k+1) +
λk
i

τk0

)2

+
τk0
2

p∑
i=1

(
λk
i

τk0

)2

−→ 0.
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For the other two sums, we can write:

m∑
l=1

(
µk
l

τk0

)2

−
m∑
l=1

[
max

{
0, gl(x

k+1) +
µk
l

τk0

}]2

≤
∑

l:gl(x∗)<0

(
µk
l

τk0

)2

+
∑

l:gl(x∗)=0

{(
µk
l

τk0

)2

−
[
max

{
0, gl(x

k+1) +
µk
l

τk0

}]2}
.

Since µk
l → 0 for all l such that gl(x

∗) < 0, the first sum tends to 0. The second sum also

goes to 0 because xk → x∗, gl(x
∗) = 0, the functions gl are continuous, and the sequences {µk

l }
are bounded.

Thus, it follows that

min
j=1,...,q

(fj(x
∗)− fj(x)) ≤ 0,

which contradicts (3.10). □

4. Practical Algorithm

In this section, we present an algorithm specifically designed to solve the sub-problem of
Algorithm 1, aiming for an efficient resolution. This algorithm utilizes the Steepest Descent
method. In the rest of this paper, we denote

(4.1) Tj = (Lτ (x, λ, µ))j = fj(x) +

p∑
i=1

{
λk
i hi(x) +

τk
2
(hi(x))

2
}

+
m∑
l=1

{
µk
l gl,+(x, µ

k
l , τ) +

τ

2

(
gl,+(x, µ

k
l , τ)

)2
}
for all j,

and

νq =

w :
∑

j∈1,2,...,q
wj = 1, wj ≥ 0, j ∈ 1, 2, . . . , q

 .

The algorithm is presented as follows:
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Algorithm 2: Algorithm to solve subproblem of Algoritm 1

Data: Choose ρ ∈ (0, 1), δ ∈ (0, 1); tolerance ϵk ≥ 0; x0 ∈ Rn

1 Set C0 = T (x0)

2 Set a nonnegative integer M

3 for k = 0, 1, 2, · · · do

4 Set wk = arg min
w∈νq

1

2

∥∥∥∥∥∥
q∑

j=1

wj∇Tj(x
k)

∥∥∥∥∥∥
2

5 Set dk = −
q∑

j=1

wk
j∇Tj(x

k)

6 Set θk = −1

2
∥dk∥

7 if | θk |≤ ϵk then
8 Stop and Return ϵk-Pareto-critical point x

k

9 else
10 Set φ = 1

11 while
(
Tj(x

k + φdk) ≰ Ck
j + ρφ∇Tj(x

k)⊤dk

)
for all j do

12 φ = δφ

13 Set xk+1 = xk + φdk
14 k = k + 1

15 for j = 1, 2, . . . , q do

16 Set Ck
j = max

0≤i≤min(k,M)
Tj(x

k−i)

The description of Algorithm 2 is as follows: first, we evaluate the function (Lτ (x, λ, µ))j using
the parameters λ and µ for each j calculated in Algorithm 1, while keeping x as a variable. Then,
we initialize the vector C0 by evaluating the function Tj(x) with the value x0. In the main loop,
we start by solving the problem presented at line 5 to determine the weighting factors. Then,
at line 6, these factors are used to determine the descent direction. The stopping condition is
checked at line 8, where we compare the computed value θk at line 9 with a tolerance threshold
ϵk defined previously in Algorithm 1. It is important to note that the threshold ϵk varies at each
iteration of Algorithm 1 and tends to 0. Finally, if the point xk is not ϵk-Pareto-Stationary, we
compute the descent step in steps 11 to 16. It should be emphasized that the proper definition
of Algorithm 2 relies on the use of the linear search technique to determine the step size φ in
these steps . Therefore, we start by presenting Assumption 4.1 regarding the proposed descent
direction dk in [21], and then we present a technical result stated in Lemma 4.2.

Assumption 4.1. For a sequence of iteration
{
xk

}
and search direction {dk} there exist positive

constants ϱ1 and ϱ2 such that

max
j=1;q

{
∇Fj(x

k)⊤dk

}
≤ −ϱ1 | θk |,

∥dk∥ ≤ ϱ2 | θk | .
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Lemma 4.2. For every iteration k of Algorithm 2, the following inequality holds:

T (xk) ≤ Ck.

Proof. Since for all j , Ck
j = max

0≤i≤min(k,M)
Tj(x

k−i) we have T (xk) ≤ Ck. □

The following theorem demonstrates that the linear search technique presented in algorithm
2 is well-defined, meaning that the step size is determined in a finite number of iterations.

Theorem 4.3. Let
{
xk

}
be an iteration of Algorithm 2. If JT (x

k)dk < 0, indicating that dk is
a descent direction, then for any ρ ∈ (0, 1), there exists a φ > 0 such that

T (xk + φdk) ≤ Ck + ρφJT (x
k)dk.

Proof. Assume that JT (x)dk < 0. Since by the definition T is differentiable, we have

T (xk + φdk) = T (xk) + φ
(
JT (x

k)dk +Θ(φ)
)
,

with lim
φ→0

Θ(φ) = 0.

Observe that max∇T (xk)⊤dk < 0 and dk ̸= 0.
Since ρ ∈ (0, 1), there exist δ > 0 such that for some φ ∈ [0, δ], ∥Θ(φ)∥ is small enough, so

that

Θ(φ) ≤ −(1− ρ)JT (x)dk for all φ ∈ [0, δ] .

Therefore

T (xk + φdk) = T (xk) + φ
(
JT (x

k)dk +Θ(φ)
)

≤ T (xk) + φ
(
JT (x

k)dk − (1− ρ)JT (x)dk

)
≤ T (xk) + φJT (x

k)dk for all φ ∈ [0, δ] .

Since T (xk) ≤ Ck from Lemma 4.2. We conclude that

T (xk + φdk) ≤ Ck + ρφJT (x
k)dk for all φ ∈ [0, δ] .

□

Theorem 4.4. Assume that the Assumptions 3.1 and 4.1 hold. Let x∗ be a cluster point for
sequence

{
xk

}
generated by Algorithm 2. Then x∗ is Pareto critical point.

Proof. Since the steepest descent direction dk(x
k) = −

q∑
j=1

wk
j∇Tj(x

k) with

wk = arg min
w∈νq

1

2

∥∥∥∥∥∥
q∑

j=1

wj∇Tj(x
k)

∥∥∥∥∥∥
2

clearly satisfies Assumption 4.1, the result holds for Algorithm 2 (see Theorem 6 of [21]). □
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5. Numerical Experiments

In this section, we present the application of the proposed method to test problems to demon-
strate its ability to generate Pareto optimal solutions. The set of test problems used is sum-
marized in Table 1, encompassing both convex and non-convex problems. To evaluate the
performance of the method, we utilize specific parameter settings. The values used for the pa-
rameters are as follows: ρ = 10−4, α = 10, σ = 0.9, λ0 = 0 ∈ Rp, µ0 = 0 ∈ Rm, µ = 105, λ = 1,
φ0 = 1, δ = 0.5. The termination criterion used in all problems is that ϵk ≥ 10−6. At each
iteration, ϵk is updated according to the formula

ϵk+1 =

{
0.75 ∗ ϵk if k = 1,

0.9 ∗ ϵk if k > 1.

Regarding the problems that have constraints in the form lb ≤ x ≤ ub, we transform them into
constraints of the form lb− x ≤ 0 and x− ub ≤ 0. This transformation is carried out to adapt
the constraints to the formalism used by the method. The total number of constraints generated
is equal to 2n, where n represents the number of variables in the problem. This transformation
ensures the feasibility of the obtained solutions and guarantees that they adhere to the specified
bounds. we used an HP EliteBook laptop equipped with an Intel Core i7-3687U processor with
a base frequency range of 2.10GHz to 2.60 GHz and 4GB of RAM to test our algorithms.

Table 1. List of multiobjective optimization test problems

Problems n q Parameters bornes Source

DGO1 1 2 [−10, 13] [18]

BNH1 2 2 [0, 5]2 [10]
SCH 1 2 [−4, 4] [18]

ZDT1 5,10,15,20,25,30 2 [0, 1]× [0, 1/100]n−1 [21]

ZDT2 5,10,15,20,25,30 2 [0, 1]× [0, 1/100]n−1 [14]
JOS1 20, 30, 35, 40, 45, 50 2 [−2, 2]n [18]
FON 20, 30, 35, 40, 45, 50 2 [−4, 4]n [18]
MLF1 1 2 [0, 20] [18]
LE1 2 2 [−5, 10] [18]

IKK1 2 3 [−50, 50]2 [18]
DD1 5 2 [−20, 20] [21]
Deb 2 2 [0.1, 1]× [0, 1] [9]

FDS 10 3 [−2, 2]10 [21]

TRIDIA 3 3 [−1, 1]3 [21]

Table 2 shows the mathematical formulation of some test problems taken from Table 1.
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Table 2. Mathematical formulation of some multiobjective optimization test
problems

Problems Mathematical formulation Source

DGO1



min f1(x) = sin(x)

min f2(x) = sin(x+ 0.7)

s.t.

g1(x) = x− 13 ≤ 0

g2(x) = −x− 10 ≤ 0

[18]

BNH1



min f1(x) = 4x2
1 + 4x2

2

min f2(x) = (x1 − 5)2 + (x2 − 5)2

s.t.

g1(x) = (x1 − 5)2 + x2
2 ≤ 25

g2(x) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

[10]

LE1



min f1(x) =
(
x2
1 + x2

2

)0.125
min f2(x) =

(
(x1 − 0.5)2 + (x2 − 0.5)2

)0.25
s.t.

g1(x) = −x1 − 5 ≤ 0

g2(x) = x1 − 10 ≤ 0

g1(x) = −x2 − 5 ≤ 0

g2(x) = x2 − 10 ≤ 0

[18]

DD1



min f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5,

min f2(x) = 3x1 + 2x2 − x3
3

+ 0.01(x4 − x5)
3,

s.t.

g1−5(x) = −xi − 20 ≤ 0, i = 1, 2, . . . , 5

g6−10(x) = xi − 20 ≤ 0, i = 1, 2, . . . , 5

[21]

Deb



min f1(x) = x1

min f2(x) =
h(x)
x1

h(x) = 2− exp
{
−
(
x2−0.2
0.004

)2}− 0.8 exp
{
−
(
x2−0.6

0.4

)2}
s.t.

g1(x) = −x1 − 0.1 ≤ 0

g2(x) = x1 − 1 ≤ 0

g3(x) = −x2 ≤ 0

g4(x) = x2 − 1 ≤ 0

[9]

FDS



min f1(x) =
1
n2

n∑
i=1

i(xi − i)4, n = 10

min f2(x) = exp

(
n∑

i=1

xi

n

)
+ ∥x∥22,

min f3(x) =
1

n(n+1)

n∑
i=1

i(n− i+ 1)e−xi ,

s.t.

g1,10(x) = −xi − 2 ≤ 0, i = 1, . . . , 10

g11,20(x) = xi − 2 ≤ 0, i = 1, . . . , 10

[21]
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The figures below display the Pareto fronts of the problems mentioned in Table 1. These
Pareto fronts illustrate the optimal solutions that offer an optimal compromise between the
objectives of the problem, where no improvement in one objective is possible without sacrificing
another objective.

Figure 1. Pareto front SCH Figure 2. Pareto front of DGO1

Figure 3. Pareto front FON Figure 4. Pareto front of BNH1
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Figure 5. Pareto front of LE1 Figure 6. Pareto front of DD1

Figure 7. Pareto front of JOS1 Figure 8. Pareto front of FDS

Figure 9. Pareto front of TRIDIA Figure 10. Pareto front of IKK1
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Figure 11. Pareto front of ZDT1 Figure 12. Pareto front of ZDT2

Figure 13. Pareto front of MLF1 Figure 14. Pareto front of Deb

6. Conclusion

In this paper, we have presented a method based on Augmented Lagrangian for solving
global constrained multi-objective optimization problems. We have demonstrated the feasibility
and optimality of the sequences generated by the proposed algorithm. Additionally, we have
introduced a second algorithm for its practical application, highlighting the results regarding its
validity and emphasizing the numerical outcomes obtained in various test problems.

Future research directions in this field include exploring variants of the proposed algorithm,
adapting it to specific problem classes, and extending the method to handle more complex
constraints.
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