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ZEROS OF POLYNOMIALS OVER LOCALLY COMPACT FIELDS

SEVER ANGEL POPESCU

In memory of my Teacher and Master, Dr. doc. Nicolae Popescu

Abstract. Let K be a non-discrete locally compact (commutative) field and let P ∈ K[X] be
a non-constant polynomial. In this note we give two criteria for the existence of a zero for P

in the initial field K. Then, we apply these criteria to simply prove that the complex number
field is algebraically closed and, under the truth of a conjecture, that any polynomial equation
P (X) = 0, with P ∈ K[X], is solvable by radicals.
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1. Introduction

We started from a brilliant idea of C. Fefferman [1] and we tried to use it in the much more
general context of a non-discrete locally compact (commutative) field K. From [6], Chapter 1,
2 we know that K is a rank one valued field (K,ϕ), where ϕ : K → R≥0 is its corresponding
multiplicative absolute value. The structure of such fields are well known (see [6], Chapter
1, 2). Namely, if ϕ is Archimedean, then (K,ϕ) ≃ (R, |·|s) or (K,ϕ) ≃ (C, |·|s), where |·|
is the usual absolute value and 0 < s ≤ 1. If ϕ is not Archimedean, then (K,ϕ) ≃ (L,ϕL)
or (K,ϕ) ≃ (S, ψX), where L is a finite extension of Qp, the p-adic number field for a prime
number p, ϕL is the unique extension to L of the p-adic absolute value ϕp of Qp, and S is a finite
extension of the power series field Fp((X)), with ψX the unique extension to S of the X-adic
valuation of Fp((X)). For a prime number p, as usual, Fp is the finite field with p elements. A
more elementary treatment of this subject one can find in [2], Chapter 2, or in [4], Chapter 3.

In Section 2 we give the basic results (Theorem 2.2 and Theorem 2.4) and two applications
of them, a simple proof for the Fundamental Theorem of Algebra (Corollary 2.5) and, under
the truth of a conjecture, an elementary proof for the solvability by radicals of a polynomial
equation P (X) = 0, P ∈ K[X] (Corollary 2.6). In particular, there exists a unique non-discrete
locally compact field that contains the radicals of all its elements, the complex number field. We
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also prove (under the truth of the same conjecture) that Gal(LP /K) is a solvable group, where
P ∈ K[X] and LP is a decomposition field of P (Corollary 2.7).

2. The main results

In the following we fix a non-discrete locally compact field (K,ϕ), where ϕ is a canonical
multiplicative absolute value (see Section 1), we also fix an algebraic closure K of K, and a
non-constant polynomial,

P (x) = cnx
n + cn−1x

n−1 + ...+ c0 ∈ K[x], cn 6= 0.

Lemma 2.1. With the above notation and assumptions, the function x → ϕ(P (x)), defined on

K with values in R+, has an absolute minimum point x0 in K, that is there exists x0 in K such

that

inf
x∈K

ϕ(P (x)) = ϕ(P (x0)).

Proof. Since

ϕ(P (x)) = ϕ(x)nϕ
(

cn +
cn−1

x
+ ...+

c0
xn

)

,

we can findM > 0 such that ϕ(P (x)) ≥ ϕ(c0) for any x ∈ K with ϕ(x) > M. Since x→ ϕ(P (x))
is a continuous function, there exists at least an element x0 ∈ B[0,M ] = {x ∈ K : ϕ(x) ≤ M},
so that

inf
x∈B[0,M ]

ϕ(P (x)) = ϕ(P (x0)),

because B[0,M ] is a compact subspace in K. Let x be in K rB[0,M ]. Then,

ϕ(P (x)) ≥ ϕ(c0) = ϕ(P (0)) ≥ ϕ(P (x0)).

Thus ϕ(P (x)) ≥ ϕ(P (x0)) for any x ∈ K. �

Theorem 2.2. Let (K,ϕ) be (R,|·|s) or (C,|·|s), 0 < s ≤ 1, where |·| is the usual absolute value

on R and C respectively, and let P be a non-constant polynomial of degree n in K[x]. Let x0 be

an absolute minimum in K for the continuous function x→ ϕ(P (x)), x ∈ K (see Lemma 2.1),
and let

(2.1) P (x) = a0 + aj(x− x0)
j + · · ·+ an(x− x0)

n, aj 6= 0,

be the Taylor expansion of P at x0. Then, x0 is a zero for the equation P (x) = 0 if and only if

the equation

(2.2) xj +
a0
aj

= 0

has a root in K.

Proof. We see that if P (x0) = a0 = 0, then the equation (2.2) has the root x = 0 in K.
Conversely, let us assume now that a0 6= 0, that is we assume that x0 is not a root for P, and
let y0 ∈ K be a root of the equation (2.2). We take a small ε > 0 and we compute

P (x0 + εy0) = a0 + ajε
jyj0 + aj+1ε

j+1yj+1
0 + · · ·+ anε

nyn0 .

Since yj0 = −a0
aj
, we can also write:

P (x0 + εy0) = a0 − a0ε
j − a0

aj+1

aj
εj+1y0 − · · · − a0

an
aj
εnyn−j

0 .
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Hence,
ϕ(P (x0 + εy0)) = ϕ(a0)ϕ

(

1− εj − εj+1R(ε)
)

,

whereR(x) is a polynomial inK[x]. Since ϕ(x) = |x|s , 0 < s ≤ 1, we see that ϕ
(

1− εj − εj+1R(ε)
)

<
1 for ε small enough. Thus ϕ(P (x0 + εy0)) < ϕ(a0) for such an ε. But this is a contradiction,
because ϕ(a0) = ϕ(P (x0)) and x0 is an absolute minimum in K for x→ ϕ(P (x)), x ∈ K. �

Definition 2.3. Let (K,ϕ) be a non-Archimedean locally compact non-discrete field. With the

above notation, let x0 be an absolute minimum point in K for the function x→ ϕ(P (x)), x ∈ K.
We say that x0 satisfies property (P ) if the coefficients a0, aj , aj+1, · · · , an of the polynomial

P (x) in its Taylor expansion (2.1) verify the following condition:

(2.3) ϕ(aj+k) <
ϕ(aj)

j+k

j

ϕ(a0)
k
j

for any k = 1, 2, · · · , n − j. If a0 = 0, we write 1
+0 = +∞ and, in this case, property (P ) is

obviously satisfied.

Conjecture C. If (K,ϕ) is a non-Archimedean locally compact non-discrete field, then, for

any polynomial P (x) ∈ K[x], the continuous function x → ϕ(P (x)) has at least one absolute

minimum point x0 that satisfies the property (P ).

Theorem 2.4. Let (K,ϕ) be a non-Archimedean locally compact non-discrete field, and let P
be a non-constant polynomial of degree n in K[x]. Let x0 be an absolute minimum point for the

continuous function x → ϕ(P (x)), x ∈ K, that satisfies property (P ). Then, x0 is a root of the

equation P (x) = 0 if and only if the equation

(2.4) xj +
a0
aj

= 0

has at least one root in K. Here a0, aj are coefficients of P in its Taylor expansion from (2.1)

Proof. If x0 is a root of P in K, then a0 = 0 and x = 0 is a root in K for the equation (2.4).
Conversely, we assume that a0 = P (x0) 6= 0 and q ∈ K is a root of the equation (2.4), that is

(2.5) qj = −
a0
aj
.

Let us come back to (2.1) and compute

P (x0 + q) = −a0

(

aj+1

aj
q + · · ·+

an
aj
qn−j

)

.

Thus,

(2.6) ϕ(P (x0 + q)) = ϕ(a0)ϕ

(

n−j
∑

k=1

aj+k

aj
qk

)

.

Since

ϕ

(

n−j
∑

k=1

aj+k

aj
qk

)

≤ max
1≤k≤n−j

{

ϕ(aj+k)

ϕ(aj)
ϕ(q)k

}

,

and since

ϕ(q) =

[

ϕ(a0)

ϕ(aj)

]
1

j
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(see (2.5)), we conclude that

ϕ(aj+k)

ϕ(aj)
ϕ(q)k =

ϕ(aj+k)ϕ(a0)
k
j

ϕ(aj)
j+k

j

< 1

for any k = 1, 2, · · · , n− j (see (2.3)). Hence,

ϕ(P (x0 + q)) < ϕ(a0) = ϕ(P (x0)),

a contradiction, because x0 is an absolute minimum point in K for x → ϕ(P (x)), x ∈ K.
Therefore, if the equation (2.5) has a root q in K, then a0 = P (x0) = 0. �

Corollary 2.5. (The Fundamental Theorem of Algebra ) The complex number field C is alge-

braically closed.

Proof. (See also [1] for a similar idea.) We directly apply Theorem 2.2 and the fact that the
equation Xj + a0/aj = 0 always has all its solutions in C, because exp(z) ∈ C if z ∈ C and
radicals of positive real numbers are also real numbers. �

Let K be an arbitrary field. We say that R/K is a finite radical extension of K if R = Ls, so
that

K = L0 ⊂ L1 ⊂ . . . ⊂ Ls

is a tower of fields, such that Li = Li−1(θi), with θi a root of an equation of the following type,

Xni + bi−1 = 0, bi−1 ∈ Li−1, i = 1, 2, . . . , s.

We say that a polynomial P ∈ K[X] is solvable (by radicals) if its decomposition field LP is
contained in a finite radical extension R of K.

Corollary 2.6. Now we assume that Conjecture C is true. Let (K,ϕ) be a non-Archimedean,

non-discrete locally compact field, and let P (X) = 0 be a polynomial equation with P ∈ K[X].
Then P (X) = 0 has all its solutions in a finite radical extension R ⊂ K, where K is a fixed

algebraic closure of K. Thus, P is solvable by radicals.

Proof. We can assume that n = degK P ≥ 2. Since (K,ϕ) is a complete field, ϕ can be uniquely
extended to K by an absolute value ϕ. In what follows we will denote ϕ also by ϕ.

Let us write again formula (2.1) in which we highlight an arbitrary finite extension T of K in
which P (X) can be written as

(2.7) P (X) = a
(T )
0 + a

(T )
jT

(X − x
(T )
0 )jT + a

(T )
jT+1(X − x

(T )
0 )jT+1 + . . .+ a(T )

n (X − x
(T )
0 )n,

where x
(T )
0 is an arbitrary element in T and a

(T )
jT

6= 0. We choose now x
(T )
0 ∈ T with property

(P), such that

(2.8) inf
x∈T

ϕ(P (x)) = ϕ(P (x
(T )
0 ))

(see Lemma 2.1 and Conjecture C).

If P (x
(K)
0 ) = 0 (here T = K), we are done. Let us assume that P (x

(K)
0 ) 6= 0 and so, from

Theorem 2.4 (we use here the fact that Conjecture C is true), we see that any root αjK of the

equation XjK + a
(K)
0 /a

(K)
jK

= 0 is not in K =: K0. Let us take such a root αjK0
∈ K, and let us

consider K1 = K0[αjK0
], and

inf
x∈K1

ϕ(P (x)) = ϕ(P (x
(K1)
0 ))
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for an element x
(K1)
0 ∈ K1, which satisfies property (P). Thus,

ϕ(P (x
(K1)
0 )) ≤ ϕ(P (x

(K0)
0 )).

If P (x
(K1)
0 ) = 0, we are done. If not, we construct K2 = K1[αjK1

], where αjK1
is a fixed root of

the equation XjK1 + a
(K1)
0 /a

(K1)
jK1

= 0, and so on. We see that

(2.9) K = K0 ⊂ K1 ⊂ . . . ⊂ Km ⊂ . . . ⊂ K

and

(2.10) ϕ(P (x
(K0)
0 )) ≥ ϕ(P (x

(K1)
0 )) ≥ . . . ≥ ϕ(P (x

(Km)
0 )) ≥ . . . ,

where x
(Kj)
0 ∈ Kj is an absolute minimum point of x → ϕ(P (x)), x ∈ Kj , which satisfies

property (P) for j = 0, 1, ... Let αjKs
∈ K be the above fixed solution of the equation

(2.11) XjKs + a
(Ks)
0 /α

(Ks)
jKs

= 0, s ∈ {0, 1, . . .}.

Since P ′(x
(Kh)
0 ) = 0 for any h ∈ {0, 1, . . .} where ”we are not done” (jKh

> 1, otherwise the
equation (2.11) has a solution in Kh, and so, ”we are done”), we see that there exists a smallest
k such that

ϕ(P (x
(Kk)
0 )) = ϕ(P (x

(Kk+1)
0 )) = . . . = ϕ(P (x

(Km)
0 )) = . . .

Since ϕ(P (x
(Kk+1)
0 )) = ϕ(P (x

(Kk)
0 )), the absolute minimum point x

(Kk+1)
0 ∈ Kk+1, which satisfies

property (P), can be taken to be x
(Kk)
0 ∈ Kk, so we can write, instead of the equation,

P (X) = a
(Kk+1)
0 + a

(Kk+1)
jKk+1

(X − x
(Kk+1)
0 )jKk+1 + ...,

the previous equation:

P (X) = a
(Kk)
0 + a

(Kk)
jKk

(X − x
(Kk)
0 )jKk + ...,

so α
(Kk+1)
jKk+1

can be taken to be α
(Kk)
jKk

∈ Kk

[

α
(Kk)
jKk

]

= Kk+1 and again, applying Theorem 2.4

(we use here the fact that Conjecture C is true), we get that P (x
(Kk)
0 ) = P (x

(Kk+1)
0 ) = 0. Thus,

the equation P (X) = 0 has a solution in the radical extension Kk/K. Hence, we can write

P (X) = (X − x
(Kk)
0 )Q(X) with Q ∈ Kk[X], and we continue in the same way as above with Q

instead of P and Kk instead of K, etc. Therefore, the equation P (X) = 0 has all its solutions
in a finite radical extension R/K. �

Corollary 2.7. (see also [5], IV, Corollary 5 with an alternative proof) We also assume here

that Conjecture C is true. Let (K,ϕ) be a non-discrete locally compact field and let P be a non-

constant polynomial in K[X]. Let LP ⊂ K be the decomposition field of P. Then Gal(LP /K) is
a solvable group.

Proof. We reconsider the tower of subfields (2.9),

K = K0 ⊂ K1 ⊂ . . . ⊂ Kk ⊂ K

such that Kj+1 = Kj [αjKj
], where αjKj

is a root of the equation

X
jKj + a

(Kj)
0 /ajKj

= 0
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and a
(Kj)
0 , ajKj

6= 0, with jKj
> 1, are the first two coefficients in the expansion (2.7) of P (x)

for T = Kj . We also assume that Kk contains all the roots of P (see the proof of Corollary 2.6).

Let us denote by Um the set of all the m-th roots of unity in K and denote by L−1 = K0 = K,
L0 = K0[UjK0

], L1 = L0[αjK0
], L2 = L1[UjK1

], L3 = L2[αjK1
], . . . We see that

L−1 ⊂ L0 ⊂ L1 ⊂ . . . ⊂ L2k+1,

where Lj/K is a normal extension and, from [3], Theorem 6.2, we see that
Gal(Lj/Lj−1) is a cyclic group for any j = 0, 1, ..., 2k + 1. Thus Gal(L2k+1/K) is a solvable

group. Moreover, the decomposition field LP of P is contained in L2k+1. Since

Gal(LP /K) ≃ Gal(L2k+1/K)/Gal(L2k+1/LP )

and since Gal(L2k+1/K) is a solvable group, we see that Gal(LP /K) is also a solvable group. �
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