ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE available online at https://rjm-cs.utcb.ro Issue 1, Vol. 15 (2025)

ZEROS OF POLYNOMIALS OVER LOCALLY COMPACT FIELDS

SEVER ANGEL POPESCU

In memory of my Teacher and Master, Dr. doc. Nicolae Popescu

ABSTRACT. Let K be a non-discrete locally compact (commutative) field and let $P \in K[X]$ be a non-constant polynomial. In this note we give two criteria for the existence of a zero for Pin the initial field K. Then, we apply these criteria to simply prove that the complex number field is algebraically closed and, under the truth of a conjecture, that any polynomial equation P(X) = 0, with $P \in K[X]$, is solvable by radicals.

Mathematics Subject Classification (2020): Primary 12J10, 12E12; Secondary 12J25, 12J99.

Key words: locally compact field, zeros of polynomials, Fundamental Theorem of Algebra, radical extension.

Article history: Received: November 10, 2024 Received in revised form: February 19, 2025 Accepted: February 20, 2025

1. INTRODUCTION

We started from a brilliant idea of C. Fefferman [1] and we tried to use it in the much more general context of a non-discrete locally compact (commutative) field K. From [6], Chapter 1, 2 we know that K is a rank one valued field (K, φ) , where $\varphi : K \to \mathbb{R}_{\geq 0}$ is its corresponding multiplicative absolute value. The structure of such fields are well known (see [6], Chapter 1, 2). Namely, if φ is Archimedean, then $(K, \varphi) \simeq (\mathbb{R}, |\cdot|^s)$ or $(K, \varphi) \simeq (\mathbb{C}, |\cdot|^s)$, where $|\cdot|$ is the usual absolute value and $0 < s \leq 1$. If φ is not Archimedean, then $(K, \varphi) \simeq (L, \varphi_L)$ or $(K, \varphi) \simeq (S, \psi_X)$, where L is a finite extension of \mathbb{Q}_p , the p-adic number field for a prime number p, φ_L is the unique extension to L of the p-adic absolute value φ_p of \mathbb{Q}_p , and S is a finite extension of the power series field $\mathbb{F}_p((X))$, with ψ_X the unique extension to S of the X-adic valuation of $\mathbb{F}_p((X))$. For a prime number p, as usual, \mathbb{F}_p is the finite field with p elements. A more elementary treatment of this subject one can find in [2], Chapter 2, or in [4], Chapter 3.

In Section 2 we give the basic results (Theorem 2.2 and Theorem 2.4) and two applications of them, a simple proof for the Fundamental Theorem of Algebra (Corollary 2.5) and, under the truth of a conjecture, an elementary proof for the solvability by radicals of a polynomial equation P(X) = 0, $P \in K[X]$ (Corollary 2.6). In particular, there exists a unique non-discrete locally compact field that contains the radicals of all its elements, the complex number field. We also prove (under the truth of the same conjecture) that $Gal(L_P/K)$ is a solvable group, where $P \in K[X]$ and L_P is a decomposition field of P (Corollary 2.7).

2. The main results

In the following we fix a non-discrete locally compact field (K, φ) , where φ is a canonical multiplicative absolute value (see Section 1), we also fix an algebraic closure \overline{K} of K, and a non-constant polynomial,

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0 \in K[x], c_n \neq 0.$$

Lemma 2.1. With the above notation and assumptions, the function $x \to \varphi(P(x))$, defined on K with values in \mathbb{R}_+ , has an absolute minimum point x_0 in K, that is there exists x_0 in K such that

$$\inf_{x \in K} \varphi(P(x)) = \varphi(P(x_0)).$$

Proof. Since

$$\varphi(P(x)) = \varphi(x)^n \varphi\left(c_n + \frac{c_{n-1}}{x} + \dots + \frac{c_0}{x^n}\right),$$

we can find M > 0 such that $\varphi(P(x)) \ge \varphi(c_0)$ for any $x \in K$ with $\varphi(x) > M$. Since $x \to \varphi(P(x))$ is a continuous function, there exists at least an element $x_0 \in B[0, M] = \{x \in K : \varphi(x) \le M\}$, so that

$$\inf_{x \in B[0,M]} \varphi(P(x)) = \varphi(P(x_0)),$$

because B[0, M] is a compact subspace in K. Let x be in $K \setminus B[0, M]$. Then,

$$\varphi(P(x)) \ge \varphi(c_0) = \varphi(P(0)) \ge \varphi(P(x_0)).$$

Thus $\varphi(P(x)) \ge \varphi(P(x_0))$ for any $x \in K$.

Theorem 2.2. Let (K, φ) be $(\mathbb{R}, |\cdot|^s)$ or $(\mathbb{C}, |\cdot|^s)$, $0 < s \leq 1$, where $|\cdot|$ is the usual absolute value on \mathbb{R} and \mathbb{C} respectively, and let P be a non-constant polynomial of degree n in K[x]. Let x_0 be an absolute minimum in K for the continuous function $x \to \varphi(P(x))$, $x \in K$ (see Lemma 2.1), and let

(2.1)
$$P(x) = a_0 + a_j (x - x_0)^j + \dots + a_n (x - x_0)^n, \ a_j \neq 0,$$

be the Taylor expansion of P at x_0 . Then, x_0 is a zero for the equation P(x) = 0 if and only if the equation

has a root in K.

Proof. We see that if $P(x_0) = a_0 = 0$, then the equation (2.2) has the root x = 0 in K. Conversely, let us assume now that $a_0 \neq 0$, that is we assume that x_0 is not a root for P, and let $y_0 \in K$ be a root of the equation (2.2). We take a small $\varepsilon > 0$ and we compute

$$P(x_0 + \varepsilon y_0) = a_0 + a_j \varepsilon^j y_0^j + a_{j+1} \varepsilon^{j+1} y_0^{j+1} + \dots + a_n \varepsilon^n y_0^n.$$

Since $y_0^j = -\frac{a_0}{a_j}$, we can also write:

$$P(x_0 + \varepsilon y_0) = a_0 - a_0 \varepsilon^j - a_0 \frac{a_{j+1}}{a_j} \varepsilon^{j+1} y_0 - \dots - a_0 \frac{a_n}{a_j} \varepsilon^n y_0^{n-j}.$$

Hence,

$$\varphi(P(x_0 + \varepsilon y_0)) = \varphi(a_0)\varphi\left(1 - \varepsilon^j - \varepsilon^{j+1}R(\varepsilon)\right),$$

where R(x) is a polynomial in K[x]. Since $\varphi(x) = |x|^s$, $0 < s \le 1$, we see that $\varphi(1 - \varepsilon^j - \varepsilon^{j+1}R(\varepsilon)) < 1$ for ε small enough. Thus $\varphi(P(x_0 + \varepsilon y_0)) < \varphi(a_0)$ for such an ε . But this is a contradiction, because $\varphi(a_0) = \varphi(P(x_0))$ and x_0 is an absolute minimum in K for $x \to \varphi(P(x))$, $x \in K$. \Box

Definition 2.3. Let (K, φ) be a non-Archimedean locally compact non-discrete field. With the above notation, let x_0 be an absolute minimum point in K for the function $x \to \varphi(P(x)), x \in K$. We say that x_0 satisfies property (P) if the coefficients $a_0, a_j, a_{j+1}, \dots, a_n$ of the polynomial P(x) in its Taylor expansion (2.1) verify the following condition:

(2.3)
$$\varphi(a_{j+k}) < \frac{\varphi(a_j)^{\frac{j+k}{j}}}{\varphi(a_0)^{\frac{k}{j}}}$$

for any $k = 1, 2, \dots, n - j$. If $a_0 = 0$, we write $\frac{1}{+0} = +\infty$ and, in this case, property (P) is obviously satisfied.

Conjecture C. If (K, φ) is a non-Archimedean locally compact non-discrete field, then, for any polynomial $P(x) \in K[x]$, the continuous function $x \to \varphi(P(x))$ has at least one absolute minimum point x_0 that satisfies the property (P).

Theorem 2.4. Let (K, φ) be a non-Archimedean locally compact non-discrete field, and let P be a non-constant polynomial of degree n in K[x]. Let x_0 be an absolute minimum point for the continuous function $x \to \varphi(P(x)), x \in K$, that satisfies property (P). Then, x_0 is a root of the equation P(x) = 0 if and only if the equation

has at least one root in K. Here a_0 , a_i are coefficients of P in its Taylor expansion from (2.1)

Proof. If x_0 is a root of P in K, then $a_0 = 0$ and x = 0 is a root in K for the equation (2.4). Conversely, we assume that $a_0 = P(x_0) \neq 0$ and $q \in K$ is a root of the equation (2.4), that is

$$(2.5) q^j = -\frac{a_0}{a_i}$$

Let us come back to (2.1) and compute

$$P(x_0+q) = -a_0 \left(\frac{a_{j+1}}{a_j}q + \dots + \frac{a_n}{a_j}q^{n-j}\right).$$

Thus,

(2.6)
$$\varphi(P(x_0+q)) = \varphi(a_0)\varphi\left(\sum_{k=1}^{n-j} \frac{a_{j+k}}{a_j}q^k\right)$$

Since

$$\varphi\left(\sum_{k=1}^{n-j}\frac{a_{j+k}}{a_j}q^k\right) \le \max_{1\le k\le n-j}\left\{\frac{\varphi(a_{j+k})}{\varphi(a_j)}\varphi(q)^k\right\},\,$$

and since

$$\varphi(q) = \left[\frac{\varphi(a_0)}{\varphi(a_j)}\right]^{\frac{1}{j}}$$

Issue 1, Vol. 15 (2025)

(see (2.5)), we conclude that

$$\frac{\varphi(a_{j+k})}{\varphi(a_j)}\varphi(q)^k = \frac{\varphi(a_{j+k})\varphi(a_0)^{\frac{k}{j}}}{\varphi(a_j)^{\frac{j+k}{j}}} < 1$$

for any $k = 1, 2, \dots, n - j$ (see (2.3)). Hence,

$$\varphi(P(x_0+q)) < \varphi(a_0) = \varphi(P(x_0)),$$

a contradiction, because x_0 is an absolute minimum point in K for $x \to \varphi(P(x)), x \in K$. Therefore, if the equation (2.5) has a root q in K, then $a_0 = P(x_0) = 0$.

Corollary 2.5. (The Fundamental Theorem of Algebra) The complex number field \mathbb{C} is algebraically closed.

Proof. (See also [1] for a similar idea.) We directly apply Theorem 2.2 and the fact that the equation $X^j + a_0/a_j = 0$ always has all its solutions in \mathbb{C} , because $\exp(z) \in \mathbb{C}$ if $z \in \mathbb{C}$ and radicals of positive real numbers are also real numbers.

Let K be an arbitrary field. We say that R/K is a *finite radical extension* of K if $R = L_s$, so that

$$K = L_0 \subset L_1 \subset \ldots \subset L_s$$

is a tower of fields, such that $L_i = L_{i-1}(\theta_i)$, with θ_i a root of an equation of the following type,

$$X^{n_i} + b_{i-1} = 0, \ b_{i-1} \in L_{i-1}, \ i = 1, 2, \dots, s.$$

We say that a polynomial $P \in K[X]$ is solvable (by radicals) if its decomposition field L_P is contained in a finite radical extension R of K.

Corollary 2.6. Now we assume that Conjecture C is true. Let (K, φ) be a non-Archimedean, non-discrete locally compact field, and let P(X) = 0 be a polynomial equation with $P \in K[X]$. Then P(X) = 0 has all its solutions in a finite radical extension $R \subset \overline{K}$, where \overline{K} is a fixed algebraic closure of K. Thus, P is solvable by radicals.

Proof. We can assume that $n = \deg_K P \ge 2$. Since (K, φ) is a complete field, φ can be uniquely extended to \overline{K} by an absolute value $\overline{\varphi}$. In what follows we will denote $\overline{\varphi}$ also by φ .

Let us write again formula (2.1) in which we highlight an arbitrary finite extension T of K in which P(X) can be written as

(2.7)
$$P(X) = a_0^{(T)} + a_{j_T}^{(T)} (X - x_0^{(T)})^{j_T} + a_{j_T+1}^{(T)} (X - x_0^{(T)})^{j_T+1} + \dots + a_n^{(T)} (X - x_0^{(T)})^n,$$

where $x_0^{(T)}$ is an arbitrary element in T and $a_{j_T}^{(T)} \neq 0$. We choose now $x_0^{(T)} \in T$ with property (P), such that

(2.8)
$$\inf_{x \in T} \varphi(P(x)) = \varphi(P(x_0^{(T)}))$$

(see Lemma 2.1 and Conjecture C).

If $P(x_0^{(K)}) = 0$ (here T = K), we are done. Let us assume that $P(x_0^{(K)}) \neq 0$ and so, from Theorem 2.4 (we use here the fact that Conjecture C is true), we see that any root α_{j_K} of the equation $X^{j_K} + a_0^{(K)}/a_{j_K}^{(K)} = 0$ is not in $K =: K_0$. Let us take such a root $\alpha_{j_{K_0}} \in \overline{K}$, and let us consider $K_1 = K_0[\alpha_{j_{K_0}}]$, and

$$\inf_{x \in K_1} \varphi(P(x)) = \varphi(P(x_0^{(K_1)}))$$

for an element $x_0^{(K_1)} \in K_1$, which satisfies property (P). Thus,

$$\varphi(P(x_0^{(K_1)})) \le \varphi(P(x_0^{(K_0)})).$$

If $P(x_0^{(K_1)}) = 0$, we are done. If not, we construct $K_2 = K_1[\alpha_{j_{K_1}}]$, where $\alpha_{j_{K_1}}$ is a fixed root of the equation $X^{j_{K_1}} + a_0^{(K_1)}/a_{j_{K_1}}^{(K_1)} = 0$, and so on. We see that

(2.9)
$$K = K_0 \subset K_1 \subset \ldots \subset K_m \subset \ldots \subset K$$

and

(2.10)
$$\varphi(P(x_0^{(K_0)})) \ge \varphi(P(x_0^{(K_1)})) \ge \ldots \ge \varphi(P(x_0^{(K_m)})) \ge \ldots,$$

where $x_0^{(K_j)} \in K_j$ is an absolute minimum point of $x \to \varphi(P(x))$, $x \in K_j$, which satisfies property (P) for j = 0, 1, ... Let $\alpha_{j_{K_s}} \in \overline{K}$ be the above fixed solution of the equation

(2.11)
$$X^{j_{K_s}} + a_0^{(K_s)} / \alpha_{j_{K_s}}^{(K_s)} = 0, \ s \in \{0, 1, \ldots\}.$$

Since $P'(x_0^{(K_h)}) = 0$ for any $h \in \{0, 1, ...\}$ where "we are not done" $(j_{K_h} > 1)$, otherwise the equation (2.11) has a solution in K_h , and so, "we are done"), we see that there exists a smallest k such that

$$\varphi(P(x_0^{(K_k)})) = \varphi(P(x_0^{(K_{k+1})})) = \dots = \varphi(P(x_0^{(K_m)})) = \dots$$

Since $\varphi(P(x_0^{(K_{k+1})})) = \varphi(P(x_0^{(K_k)}))$, the absolute minimum point $x_0^{(K_{k+1})} \in K_{k+1}$, which satisfies property (P), can be taken to be $x_0^{(K_k)} \in K_k$, so we can write, instead of the equation,

$$P(X) = a_0^{(K_{k+1})} + a_{j_{K_{k+1}}}^{(K_{k+1})} (X - x_0^{(K_{k+1})})^{j_{K_{k+1}}} + \dots,$$

the previous equation:

$$P(X) = a_0^{(K_k)} + a_{j_{K_k}}^{(K_k)} (X - x_0^{(K_k)})^{j_{K_k}} + \dots,$$

so $\alpha_{j_{K_{k+1}}}^{(K_{k+1})}$ can be taken to be $\alpha_{j_{K_k}}^{(K_k)} \in K_k \left[\alpha_{j_{K_k}}^{(K_k)} \right] = K_{k+1}$ and again, applying Theorem 2.4 (we use here the fact that Conjecture C is true), we get that $P(x_0^{(K_k)}) = P(x_0^{(K_{k+1})}) = 0$. Thus, the equation P(X) = 0 has a solution in the radical extension K_k/K . Hence, we can write $P(X) = (X - x_0^{(K_k)})Q(X)$ with $Q \in K_k[X]$, and we continue in the same way as above with Q instead of P and K_k instead of K, etc. Therefore, the equation P(X) = 0 has all its solutions in a finite radical extension R/K.

Corollary 2.7. (see also [5], IV, Corollary 5 with an alternative proof) We also assume here that Conjecture C is true. Let (K, φ) be a non-discrete locally compact field and let P be a non-constant polynomial in K[X]. Let $L_P \subset \overline{K}$ be the decomposition field of P. Then $Gal(L_P/K)$ is a solvable group.

Proof. We reconsider the tower of subfields (2.9),

$$K = K_0 \subset K_1 \subset \ldots \subset K_k \subset \overline{K}$$

such that $K_{j+1} = K_j[\alpha_{j_{K_j}}]$, where $\alpha_{j_{K_j}}$ is a root of the equation

$$X^{j_{K_j}} + a_0^{(K_j)} / a_{j_{K_j}} = 0$$

and $a_0^{(K_j)}$, $a_{j_{K_j}} \neq 0$, with $j_{K_j} > 1$, are the first two coefficients in the expansion (2.7) of P(x) for $T = K_j$. We also assume that K_k contains all the roots of P (see the proof of Corollary 2.6). Let us denote by U_m the set of all the *m*-th roots of unity in \overline{K} and denote by $L_{-1} = K_0 = K$, $L_0 = K_0[U_{j_{K_0}}], L_1 = L_0[\alpha_{j_{K_0}}], L_2 = L_1[U_{j_{K_1}}], L_3 = L_2[\alpha_{j_{K_1}}], \ldots$ We see that

$$L_{-1} \subset L_0 \subset L_1 \subset \ldots \subset L_{2k+1},$$

where L_i/K is a normal extension and, from [3], Theorem 6.2, we see that

 $Gal(L_j/L_{j-1})$ is a cyclic group for any j = 0, 1, ..., 2k + 1. Thus $Gal(L_{2k+1}/K)$ is a solvable group. Moreover, the decomposition field L_P of P is contained in L_{2k+1} . Since

$$Gal(L_P/K) \simeq Gal(L_{2k+1}/K)/Gal(L_{2k+1}/L_P)$$

and since $Gal(L_{2k+1}/K)$ is a solvable group, we see that $Gal(L_P/K)$ is also a solvable group. \Box

References

- C. Fefferman, An Easy Proof of the Fundamental Theorem of Algebra, The American Mathematical Monthly, Vol. 74, No. 7 (Aug.-Sept. 1967).
- [2] G. Groza, A. Popescu, Extensions of valued fields (Romanian), Editura Academiei Române, Bucharest, 2011.
- [3] S. Lang, Algebra, Springer-Verlag, New-York, 2002.
- [4] N. Popescu, Elements of Algebraic Number Theory (Romanian), Bucharest University Press, 2021.
- [5] J. P. Serre, Local Fields, Springer, 1979.

[6] A. Weil, Basic Number Theory, Springer, 1967.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF CIVIL ENGINEERING BUCHAREST, B=ul Lacul Tei 122, sector 2, Bucharest 020396, Romania.

Current address: Soseaua Stefan cel Mare 26, Bloc 24A, Sc. A, Ap. 20, Et. 5, Sector 2, Bucharest 020143, Romania.

Email address: angel.popescu@gmail.com