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A QUATERNIONIC PRODUCT OF PLANES IN E
3

MIRCEA CRASMAREANU

Abstract. This note introduces a product of Euclidean planes inspired by the product of
quaternions. A technical condition is necessary for the existence of this product and some
examples (squares of planes, the coordinates planes, involutions) are discussed.
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1. The quaternionic product of distingusihed planes

Fix the set of all planes in the Euclidean 3-dimensional space i.e.:

P := {π : Ax+By + Cz +D = 0;A2 +B2 + C2 > 0},

then a plane π is given by π = π(D,
−→
N ) with the normal vector

−→
N = (A,B,C) ∈ R

3 \ {−→0 } and
D ∈ R. The aim of this work is to introduce a product in P and hence the starting point of this

paper is the identification of the given plane π = π(D,
−→
N ) ∈ R

4 \ {(0, 0, 0, D);D ∈ R} with the
quaternion in a projective manner:

q(π) := D +Aī+Bj̄ + Ck̄ = (D,A,B,C) ∈ H = R
4. (1.1)

Here ī, j̄ and k̄ are the usual complex units of the quaternionic algebra i.e.:

ī = (0, 1, 0, 0), j̄ = (0, 0, 1, 0), k̄ = (0, 0, 0, 1).

Since:

D = distE3(O, π) · ‖−→N ‖E3 , ‖−→N ‖E3 > 0, (1.2)

the quaternion q(π) is pure imaginary if and only if the origin O ∈ π; such a plane π belongs to
the Grassmannian manifold Gr(2; 3) = O(3)/(O(2) × O(1)) of 2-dimensional subspaces of R3.
We point out that although there are alternative ways to associate a quaternion to a given plane
we choose the expression (1.1) according to our previous studies, namely (in the chronological
order) [4], [2], [3] and [5]; remark that in all these previous studies the coefficient of k̄ is 1.
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From the real algebra structure of the quaternions ([6, p. 89]) it follows the product of two
associated quaternions:

q(π1) · q(π2) = (D1D2 −A1A2 −B1B2 − C1C2) + (A1D2 +A2D1 +B1C2 −B2C1)̄i+

+(B1D2+B2D1+C1A2−C2A1)j̄+(C1D2+C2D1+A1B2−A2B1)k̄ =: D̂+Âī+B̂j̄+Ĉk̄ (1.3)

and hence we suggest the following definition:

Definition 1.1. The given pair of planes is called q-distinguished if:

Â2 + B̂2 + Ĉ2 = |q(π1) · q(π2)|2 − D̂2 = |q(π1)|2|q(π2)|2 − D̂2 > 0. (1.4)

Example 1.2. For a fixed plane π(A,B,C,D) we have the square:

q(π) · q(π) = (D2 −A2 −B2 − C2) + (2AD)̄i+ (2BD)j̄ + (2CD)k̄. (1.5)

Then the technical condition (1.4) is satisfied if and only if O /∈ π and then the pair (π, π) is

q-distinguished; also q(π) · q(π) ∈ R
4 is a purely imaginary quaternion only for D± = ±‖−→N ‖E3 .

�

Let now P2(q) be the set of q-distinguished pairs of planes; it follows a quaternionic product
in P2(q):

π1 ⊙q π2 := q−1(q(π1) · q(π2)) = π(Â, B̂, Ĉ, D̂). (1.6)

An important tool of the quaternionic theory is that of conjugate, which for our quaternion
(1.1) means:

q(π) := D −Aī−Bj̄ − Ck̄ = (D,−A,−B,−C) = −q(−D,−→N ) (1.7)

and the same projective way of thinking allows the definition of the conjugate plane: π =
π(A,B,C,−D); obviously the conjugation is an involution map. The pair of parallel planes
(π, π) is not q-distinguished. The real part D of the quaternion (1.1) is the Euclidean scalar

product in E
4 of the vectors q(π1) and q(π2).

2. Concrete examples

In the following we study this new product introduced in (1.6) through four large examples.

Example 2.1. Revisiting the example 1.2 (recall that D 6= 0) we have immediately the square
of a plane π not containing O:

π2⊙q
: Ax+By + Cz +

D2 −A2 −B2 − C2

2D
= 0 → π2⊙q

6= π, π2⊙q
‖ π. (2.1)

The expression above suggests as remarkable example the case of a cuboid� : D2 = A2+B2+C2,
which gives the associated planes:

{

π(�,+) : Ax+By + Cz +
√
A2 +B2 + C2 = 0, A > 0, B > 0, C > 0,

(π(�,+))
2
⊙q

: Ax+By + Cz = 0.
(2.3)

We note that the quaternion associated to the cuboid can be expressed in the form suggested
in [7, p. 138]:

q(�) = 1 + µ, µ ∈ S2 ⊂ R
3
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and hence, µ is a solution in H of the equation q2 = −1 ∈ R. Here, S2 is the unit sphere of the

3-dimensional Euclidean space E
3 and µ is the quaternionic version of the vector

−→
N :

µ =
1√

A2 +B2 + C2
(Aī+Bj̄ + Ck̄).

A particular case of cuboid � is provided by the case when (A,B,C,D) is a Pythagorean
quadruple i.e. these are natural (strictly positive) numbers and hence we know its parametriza-
tion (provided exactly by the quaternion algebra):

{

A := m2 + n2 − p2 − q2, B := 2(mq + np), C := 2(nq −mp), D := m2 + n2 + p2 + q2,
0 < m,n, p, q ∈ N, 1 = gcd(m,n, p, q), m+ n+ p+ q = odd.

(2.4)
For a concrete example we choose the minimal Pythagorean quadruple (A = 1, B = C = 2, D =
3,m = n = q = 1, p = 0) with the associated planes:

{

π(minimal) : x+ 2y + 2z + 3 = 0, (π(minimal))2⊙q
: x+ 2y + 2z = 0,

−→
N (minimal) = 1

3(1, 2, 2) ∈ S2.
(2.5)

A trigonometrical generalization of π(minimal) uses two angles (ϕ, θ) ∈ [0, 2π) ×
[

−π
2 ,

π
2

]

as

usual parameters for S2:

π(ϕ, θ) : (cosϕ cos θ)x+ (cosϕ sin θ)y + (sinϕ)z + 1 = 0. (2.6)

Example 2.2. In this example we will perform the quaternionic product of two different q-
distinguished planes. The coordinates planes are so since:

q(xOy) = k̄, q(yOz) = ī, q(zOx) = j̄ (2.7)

and then we have:






xOy ⊙q yOz = yOz ⊙q xOy = zOx,
yOz ⊙q zOx = zOx⊙q yOz = xOy,
zOx⊙q xOy = xOy ⊙q zOx = yOz.

(2.8)

although, generally speaking, the quaternionic product is not commutative (see the following
example); we have only Re(q(π1) · q(π2)) = Re(q(π2) · q(π1)).
Example 2.3. The previous example suggests the case of two distinct planes intersecting
through a line containing O. The intersection condition:

rang

(

A1 B1 C1

A2 B2 C2

)

= 2 (2.9)

means exactly the condition (1.4). Hence, (π1, π2) is a q-distinguished pair with:

q(π1) · q(π2) = −〈−→N 1,
−→
N 2〉E3 + (B1C2 −B2C1)̄i+ (C1A2 − C2A1)j̄ + (A1B2 −A2B1)k̄. (2.10)

In particular, if the planes are orthogonal then q(π1) · q(π2) is a pure quaternion.

As concrete example let us consider the bisectrix line l : x = y = z which is the intersection
of the planes π1 : x− y = 0, π2 : x− z = 0. Since:

q(π1) ·q(π2) = (̄i− j̄)(̄i− k̄) = −1+ j̄+ k̄+ ī, q(π2) ·q(π1) = (̄i− k̄)(̄i− j̄) = −1− j̄− k̄− ī (2.11)

it results:

π1 ⊙q π2 : x+ y + z − 1 = 0, π2 ⊙q π1 : x+ y + z + 1 = 0, π1 ⊙q π2 ‖ π2 ⊙q π1 = 0. (2.12)
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Example 2.4. A main result of the paper [7] is that the real algebra H admits an infinite
number of involutions. Apart from the conjugation map, discussed in the first section, there are
another three remarkable involutions discussed in the cited paper and which in our setting gives
three associated planes to the initial one π:







α(π) : Ax−By − Cz +D = 0,
β(π) : −Ax+By − Cz +D = 0,
γ(π) : −Ax−By + Cz +D = 0.

(2.13)

It follows immediately:

Proposition 2.5. The conditions of q-distinguished pair are as follows:
i) for (π, α(π)): A 6= 0 and B2 + C2 +D2 > 0,
ii) for (π, β(π)): B 6= 0 and C2 +A2 +D2 > 0,
iii) for (π, γ(π)): C 6= 0 and A2 +B2 +D2 > 0.

Proof. We compute the quaternionic product for each pair:
i) q(π) · q(α(π)) = (D2 −A2 +B2 + C2) + (2AD)̄i+ (2AC)j̄ + (−2AB)k̄,
ii) q(π) · q(α(π)) = (D2 +A2 −B2 + C2) + (−2BC )̄i+ (2BD)j̄ + (2AB)k̄,
iii) q(π) · q(α(π)) = (D2 +A2 +B2 − C2) + (2BC )̄i+ (−2AC)j̄ + (2CD)k̄. �

Hence:
a) if the condition i) holds then there exists the plane (not containing O):

α̃(π) : Bx+ Cy +Dz +A = 0

b) if the condition ii) is satisfied then there exists the plane (not containing O):

β̃(π) : Cx+Ay +Dz +B = 0

c) if the condition iii) holds then there exists the plane (not containing O):

γ̃(π) : Ax+By +Dz + C = 0

3. A matrix approach to the quaternionic product

In this section we use the tools of matrices in our study by following the method of [8].
Namely, the quaternion (1.1) is replace with a 2× 2 complex matrix:

M(π) :=

(

a b
−b̄ ā

)

∈M2(C), a := D +Aī, b := C +Dī. (3.1)

The motivation for this choice is the expression of q ∈ H as q := a+ bj̄ as well as the equalities:

detM(π) = |q(π)|2, M(π) :=

(

ā −b
b̄ a

)

. (3.2)

Moreover, the quaternionic product is expressed by the product of associated matrices and the
eigenvalues of M(π) are:

λ±(π) = D ± ‖−→N ‖E3 ī. (3.3)

For our framework the condition (1.4) says the fact that the eigenvalues of the product
M(π1) ·M(π2) are not reducible to real numbers; this means also λ+ 6= λ−.
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Example 3.1. We treat now the case of the minimal plane from the example 2.1:

π(minimal) :
x

3
+

2y

3
+

2z

3
+ 1 = 0. (3.4)

Its associated matrix as well as the corresponding diagonal form are:














M(minimal) =

(

1 + i
3

2
3(1 + i)

−2
3(1− i) 1− i

3

)

= S ·D · S−1, S = 1+i
2

(

i −2i
1− i 1− i

)

,

D = (1 + i)

(

−i 0
0 1

)

, S−1 = 1
3

(

−(1 + i) 2
1 + i 1

)

.

(3.5)
Also, the trace and the determinant are equal: TrM(minimal) = 2 = detM(minimal). We
point out also the eigenvectors:

λ1 = 1− i→ v− =

(

1

2
(−1 + i), 1

)

, λ+ = 1 + i→ v+ = (1− i, 1) (3.6)

which are chosen in that form in order to be orthogonal with respect to the Hermitian inner
product of C2:

〈z, w〉C2 := z1w1 + z2w2, z = (z1, z2) ∈ C
2, w = (w1, w2) ∈ C

2. (3.7)

A direct computation yields the square:

(M(minimal))2 =
2

3

(

i 2(1 + i)
−2(1− i) −i

)

(3.8)

and the first line of this matrix recast the square (π(minimal))2⊙q
: x + 2y + 2z = 0 from the

relation (2.5).

Returning to the matrix M(minimal) since its determinant is 2 it results that the following
matrix (though as a homothetic transformation ofM(minimal)) is special unitary with the trace√
2:







1√
2
M(minimal) = 1√

2

(

1 + i
3

2
3(1 + i)

−2
3(1− i) 1− i

3

)

∈ SU(2),

λ1 =
1−i√

2
= e−

π

4
i → v− = (−1 + i, 2), λ2 =

1+i√
2
= e

π

4
i → v+ = (1− i, 1).

(3.9)

The element (1, 1) in the matrix above can be written in the exponential-trigonometric form:

1√
2

(

1 +
i

3

)

=

√
5

3
eiψ, cosψ =

3√
10
, sinψ =

1√
10
. (3.10)

In fact, ψ ∼= 18.43◦.

Recently, we use the adjoint representation of the Lie group SU(2) to produces a special class
of conics in [1].

Example 3.2. In the very recent paper [3] we associate to the plane line l : ax + by + c = 0
(with obviously a2 + b2 > 0) the quaternion q(l) := k̄ + aī + bj̄ + c. Hence, the minimal plane

gives the quaternion q(minimal) = k̄ + ī
2 + k̄ + 3

2 which in turn yields the line:

l(minimal) : x+ 2y + 3 = 0. (3.11)
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