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Abstract. The paper introduces a new type of polynomial series (Hermite interpolating se-
ries). If f(x) represents the sum of such a series, then its full-Hermite interpolating polynomials
are partial sums of this series. We state and prove sufficient conditions for a function and its
derivatives to be representable as Hermite interpolating series.
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1. Introduction

Interpolating polynomials are a very useful tool in the approximation of functions and, as
Philip Davis remarks in [4], “the flame of interest in interpolation and approximation has burned
brighter” as the automatic calculation speed highly increased. When these polynomials represent
partial sums of some uniformly convergent series, they can be successfully used to approximate
the solution of ordinary differential equations. The Taylor polynomial (corresponding to Taylor
series) is often used for initial-value problems, when the solution is supposed to be analytic.
However, for boundary-value problems, the Newton polynomial (corresponding to Newton series)
is a more adequate instrument, either using an infinite sequence of distinct points (see [8, 9]) or
a periodic sequence on a finite set of points (see [7]).

Hermite interpolating polynomial generalizes both the Newton (Lagrange) polynomial and
the Taylor polynomial, as it makes use of the values of the function and its derivatives at
several points. When only the values of the first derivative are considered, we refer to this as
simple Hermite (or osculatory) interpolation; when the values of higher derivatives are involved,
the interpolating polynomial is known as full Hermite interpolating polynomial. If we want to
represent this polynomial as the partial sum of a series, we need to write it in a suitable form,
in a similar way that Lagrange polynomial must be written in the Newton form to reveal that
it is the partial sum of the Newton series.

Hermite interpolating polynomial was used for solving boundary value problems for differential
equations (see [2, 3, 12, 13]) and integral equation (in [11]), for approximating functions in
topological fields [6], or even the reliability polynomial of a network (in [5]).

Our work was inspired by [7], where the functions are expanded into Newton interpolating
series on p interpolation points and it is proved that some of the derivatives of the polynomial
represented by the partial sum, calculated at the interpolation points, are equal to the derivatives
of the function. This paper introduces the Hermite series, composed by p independent series and
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investigates sufficient conditions for their convergence. Particularly, any Hermite interpolating
polynomial is obtained by adding partial sums of the p series.

2. Hermite interpolating polynomials

Consider p distinct points, x1 < x2 < . . . < xp in the interval [a, b] and p nonnegative integers,

α1, α2, . . . , αp. Denote by α = (α1, α2, . . . , αp). Let f : [a, b] → R be a function of class Ck[a, b],
where k ≥ αi, i = 1, 2, . . . , p. The full Hermite interpolation problem ([10], [4]) is the problem
of finding a polynomial Hα(x) of degree at most

N = α1 + α2 + . . .+ αp + p− 1

such that

(2.1) H(j)
α (xi) = f (j)(xi) , ∀j = 0, 1, . . . , αi, ∀i = 1, 2, . . . , p.

Theorem 2.1. [1, 14] Given the distinct points x1 < x2 < . . . < xp , the nonnegative integers

α1, α2, . . . , αp, and the arbitrary real numbers f
(j)
i , j = 0, 1, . . . , αi, i = 1, 2, . . . , p, there exists

a unique polynomial Hα(x) of degree at most N = α1 + α2 + . . .+ αp + p− 1 such that

(2.2) H(j)
α (xi) = f

(j)
i , ∀j = 0, 1, . . . , αi, ∀i = 1, 2, . . . , p.

The expression of this polynomial (called full Hermite interpolating polynomial) is:

(2.3) Hα(x) =

p∑
i=1

αi∑
j=0

f
(j)
i lα,i,j(x) ,

where, for any j = 0, 1, . . . , αj and i = 1, 2, . . . , p,

(2.4) lα,i,j(x) = uα,i(x)
(x− xi)

j

j!

αi−j∑
k=0

1

k!
v
(k)
α,i (xi)(x− xi)

k,

(2.5) uα(x) =

p∏
i=1

(x− xi)
αi+1, uα,i(x) =

uα(x)

(x− xi)αi+1
, vα,i(x) =

1

uα,i(x)
.

Theorem 2.2. Let x1 < x2 < . . . < xp be distinct points in the interval [a, b], α1, α2, . . . , αp

be nonnegative integers and f : [a, b] → R be a function of class Ck[a, b], where k ≥ αi, i =
1, 2, . . . , p. Then the full Hermite interpolating polynomial, Hα(x) of degree at most N = α1 +
α2 + . . .+ αp + p− 1 verifying (2.1) can be written in the following form:

(2.6) Hα(x) =

p∑
i=1

uα,i(x)

αi∑
k=0

(x− xi)
k

k!

(
f(x)

uα,i(x)

)(k)

x=xi

.

Proof. By Theorem 2.1 we can write:

Hα(x) =

p∑
i=1

uα,i(x)

αi∑
j=0

αi−j∑
l=0

f (j)(xi)
(x− xi)

j+l

j! l!
v
(l)
α,i(xi)

=

p∑
i=1

uα,i(x)

αi∑
j=0

αi∑
k=j

f (j)(xi)
(x− xi)

k

k!

(
k

j

)
v
(k−j)
α,i (xi)
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=

p∑
i=1

uα,i(x)

αi∑
k=0

k∑
j=0

f (j)(xi)
(x− xi)

k

k!

(
k

j

)
v
(k−j)
α,i (xi)

=

p∑
i=1

uα,i(x)

αi∑
k=0

(x− xi)
k

k!

k∑
j=0

(
k

j

)
f (j)(xi)v

(k−j)
α,i (xi)

=

p∑
i=1

uα,i(x)

αi∑
k=0

(x− xi)
k

k!
[f(x)vα,i(x)]

(k)
x=xi

and, since vα,i(x) = uα,i(x)
−1, the formula (2.6) is obtained. □

Theorem 2.3. [1, 4] Let x1 < x2 < . . . < xp be distinct points in the interval [a, b], α1, α2, . . . , αp

nonnegative integers and f : [a, b] → R a function of class CN+1[a, b], where N = α1 + α2 +
. . . + αp + p − 1. If Hα(x) is the corresponding full Hermite interpolating polynomial then, for
any x ∈ [a, b], there exists ξ such that min{x1, x} < ξ < max{xp, x} and

(2.7) f(x)−Hα(x) =
f (N+1)(ξ)

(N + 1)!
uα(x).

In the particular case when α = (n, n, . . . , n), n = 0, 1, . . ., we denote the full Hermite
polynomial by Hn(x). Using the notations

(2.8) u(x) = (x− x1)(x− x2) . . . (x− xp), ui(x) =
u(x)

x− xi

the expression (2.6) is written:

(2.9) Hn(x) =

p∑
i=1

ui(x)
n+1

n∑
k=0

(x− xi)
k

k!

(
f(x)

ui(x)n+1

)(k)

x=xi

.

Notice that Hn(x) is actually a polynomial of degree at most np+ p− 1.

Corollary 2.4. Let f : [a, b] → R be an infinitely differentiable function and a = x1 < x2 <
. . . < xp = b be distinct points in the interval [a, b]. For each n = 0, 1, . . ., we denote by

Mn = max
x∈[a,b]

∣∣∣f (n)(x)
∣∣∣. If there exists a positive constant λ > 0 such that Mn < λn+1, for every

n = 0, 1, . . ., then the sequence of full Hermite interpolating polynomials (2.9) uniformly converge
to f(x) on [a, b].

Proof. By applying Theorem 2.3 for α = (n, n, . . . , n), we can write, for any x ∈ [a, b]:

|f(x)−Hn(x)| ≤
Mnp+p

(np+ p)!
|(x− x1)(x− x2) . . . (x− xp)|n+1

≤ λ
[λ(b− a)]np+p

(np+ p)!
→ 0

hence the corollary follows. □

Remark 2.5. For p = 2, x1 = 0, x2 = 1 and α1 = α2 = n, the full Hermite interpolating
polynomial can be written in the following form, called “Two-point Taylor formula” [2]:

(2.10) Hn(x) =

n∑
j=0

[
f (j)(0)Cn,j(x) + (−1)jf (j)(1)Cn,j(1− x)

]
,
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where the polynomials Cn,j(x), j = 0, 1, . . . , n, n = 0, 1, . . ., are defined by:

Cn,j(x) = (1− x)n+1
n−j∑
k=0

(
n+ k

k

)
xk+j

j!
.

3. Hermite interpolating series

Given p distinct points, x1 < x2 < . . . < xp, we consider the polynomials

(3.1) µi,n(x) = (x− xi)
nui(x)

n+1 = u(x)nui(x),

for i = 1, 2, . . . , p, n = 0, 1, . . ., and the series of the form

(3.2)
∑
n≥0

ai,nµi,n(x),

where ai,n ∈ R, i = 1, . . . , p, n = 0, 1, . . .. Using the Weierstrass M-test we can prove the
following sufficient condition of convergence for the series (3.2) and the series of k−derivatives,

(3.3)
∑
n≥0

ai,nµ
(k)
i,n (x).

Theorem 3.1. Let a = x1 < x2 < . . . < xp = b. Denote by M the maximum absolute value of
the function u(x) = (x− x1)(x− x2) . . . (x− xp):

M = max
x∈[a,b]

|u(x)| = max
x∈[a,b]

|(x− x1)(x− x2) . . . (x− xp)|.

If the sequences {ai,n}n≥0 verify, for any i = 1, 2, . . . , p,

(3.4) lim sup
n→∞

n

√
|ai,n| <

1

M
,

then the series (3.3) is absolutely and uniformly convergent on [a, b], for any k = 0, 1, . . ..

Proof. We first study the case when k = 0. For any x ∈ [a, b] we have:

|ai,nu(x)nui(x)| ≤ |ai,n|Mn(b− a)p−1.

By (3.4) the series
∑
n≥0

|ai,n|Mn(b− a)p−1 is convergent and the absolute and uniform conver-

gence of the series (3.2) follows by Weierstrass M-test.
Now, let us suppose that k ≥ 1. For any x ∈ [a, b] we have:∣∣∣ai,n [u(x)nui(x)](k)∣∣∣ ≤ |ai,n|(pn+ p− 1)(pn+ p− 2) . . . (pn+ p− k)(b− a)pn+p−k−1

if n = 0, 1, . . . , k, and∣∣∣ai,n [u(x)nui(x)](k)∣∣∣ ≤ |ai,n|(pn+ p− 1)(pn+ p− 2) . . . (pn+ p− k)Mn−k(b− a)pk+p−k−1

if n > k.
Since

lim sup
n→∞

n

√
|ai,n|(pn+ p− 1)(pn+ p− 2) . . . (pn+ p− k)Mn−k(b− a)pk+p−k−1

= lim sup
n→∞

n

√
|ai,n|M < 1,
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it follows that the series
∑
n≥0

|ai,n|(pn+ p− 1)(pn+ p− 2) . . . (pn+ p− k)Mn−k(b− a)pk+p−k−1

converges, hence the series (3.3) is uniformly and absolutely convergent on [a, b]. □

Remark 3.2. If the condition (3.4) is fulfilled for any i = 1, 2, . . . , p, then one can write:
p∑

i=1

∑
n≥0

ai,nµi,n(x) =
∑
n≥0

p∑
i=1

ai,nµi,n(x).

Theorem 3.3. Let a = x1 < x2 < . . . < xp = b be p distinct points and f(x) be a function
infinitely differentiable on [a, b] which can be written as the sum of the uniformly convergent
series:

(3.5) f(x) =
∑
n≥0

p∑
i=1

ai,nµi,n(x).

Then, for any i = 1, 2, . . . , p and n ≥ 0, the coefficients ai,n verify the formulas:

(3.6) ai,n =
1

ui(xi)

 1

n!

(
f(x)

ui(x)n

)(n)

x=xi

+

p∑
j=1
j ̸=i

1

(n− 1)!

(
f(x)

uj(x)n(x− xi)

)(n−1)

x=xj

 ,

for n = 1, 2, . . ., and

(3.7) ai,0 =
f(xi)

ui(xi)
.

Proof. The formula (3.7) follows by simply observing that

f(xi) = ai,0ui(xi).

We can also remark that the partial sum of (3.5),

(3.8) Hn(x) =

n∑
k=0

p∑
i=1

ai,k(x− xi)
kui(x)

k+1,

is the full Hermite interpolating polynomial of the function f(x): it is a polynomial of degree

at most np+ p− 1 such that H
(k)
n (xi) = f (k)(xi), for any i = 1, 2, . . . , p and k = 0, 1, . . . , n. For

any n ≥ 1 and i = 1, . . . , p, one can write

f(x)−Hn−1(x) = ai,n(x− xi)
nui(x)

n+1 + (x− xi)
n+1gi,n(x),

where gi,n(x) is a continuous function, infinitely differentiable in the intervals (xi − ε, xi) and
(xi, xi + ε). Then, since there exists the n-th derivative of the function (x− xi)

n+1gi,n(x) at xi
and its value is 0, it follows that

(3.9) ai,n =
f (n)(xi)−H

(n)
n−1(xi)

n! ui(xi)n+1
.

We use the formula (2.9) to calculate H
(n)
n−1(xi). Since

Hn−1(x) =

p∑
i=1

ui(x)
n
n−1∑
k=0

(x− xi)
k

k!

(
f(x)

ui(x)n

)(k)

x=xi

,
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it follows that

H
(n)
n−1(xi) =

[
ui(x)

n
n−1∑
k=0

(x− xi)
k

k!

(
f(x)

ui(x)n

)(k)

x=xi

](n)

x=xi

+

p∑
j=1
i̸=j

[
uj(x)

n
n−1∑
k=0

(x− xj)
k

k!

(
f(x)

uj(x)n

)(k)

x=xj

](n)

x=xi

=

n−1∑
k=0

(
n

k

)[
ui(x)

n
](n−k)

x=xi

[
f(x)

ui(x)n

](k)
x=xi

+

p∑
j=1
i̸=j

n!
ui(xi)

n

(xi − xj)n

n−1∑
k=0

(xi − xj)
k

k!

(
f(x)

uj(x)n

)(k)

x=xj

= f (n)(xi)− ui(x)
n

(
f(x)

ui(xi)n

)(n)

x=xi

+ui(xi)
nn

p∑
j=1
i̸=j

n−1∑
k=0

(
n− 1

k

)
(n− k − 1)!(xi − xj)

k−n

(
f(x)

uj(x)n

)(k)

x=xj

.

Since

(n− k − 1)!(xi − xj)
k−n =

[
1

xi − x

](n−1−k)

x=xj

,

we obtain:

H
(n)
n−1(xi) = f (n)(xi)− ui(xi)

n

( f(x)

ui(xi)n

)(n)

x=xi

+ n

p∑
j=1
i̸=j

(
f(x)

(x− xi)uj(x)n

)(n−1)

x=xj


and by replacing in equation (3.9), the formula (3.6) follows at once. □

Let a = x1 < x2 < . . . < xp = b be p distinct points in the interval [a, b]. If the series

(3.10)
∑
n≥0

p∑
i=1

ai,nµi,n(x)

converges absolutely and uniformly to f(x), then we say that the function f(x) can be repre-
sented as a Hermite interpolating series. Based on Corollary 2.4, we present in Theorem 3.5
a sufficient condition such that an infinitely differentiable function and its derivatives can be
represented as Hermite interpolating series.

Remark 3.4. There exist functions that can be represented as Hermite interpolating series,
but are not differentiable. One such example is the function f(x) = |x| which can be expanded
in Hermite series on the interval [−1, 1] taking as interpolation points x1 = −1 and x2 = 1 as
follows:

(3.11) f(x) =
√

1− (1− x2) =
∞∑
n=0

(−1)n−1

22n(2n− 1)

(
2n

n

)
(x+ 1)n(x− 1)n,
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and, denoting µ1,n(x) = (x+ 1)n(x− 1)n+1 and µ2,n(x) = (x− 1)n(x+ 1)n+1, one can write

f(x) =

∞∑
n=0

(−1)n−1

22n+1(2n− 1)

(
2n

n

)
(µ2,n(x)− µ1,n(x)) .

We notice that the series (3.11) is absolutely and uniformly convergent, by Weierstrass test,

because
∣∣x2 − 1

∣∣ ≤ 1 for all x ∈ [−1, 1], and the series
∞∑
n=0

1
22n(2n−1)

(
2n
n

)
converges.

Theorem 3.5. Let f : [a, b] → R be an infinitely differentiable function for which there exists a
positive constant λ > 0 such that

(3.12)
∣∣∣f (n)(x)

∣∣∣ < λn+1, for all x ∈ [a, b], n = 0, 1, . . . .

Then, for any p distinct points a ≤ x1 < x2 < . . . < xp ≤ b in the interval [a, b], the functions
f(x) and f ′(x) can be represented as full Hermite interpolating series,

(3.13) f(x) =
∑
n≥0

p∑
i=1

ai,nµi,n(x),

(3.14) f ′(x) =
∑
n≥0

p∑
i=1

a
(1)
i,nµi,n(x)

and the coefficients of the derivative series are given by the formula:

(3.15) a
(1)
i,n = (2n+ 1)ai,n

p∑
j=1
j ̸=i

1

xi − xj
+

p∑
j=1
j ̸=i

aj,n
1

xi − xj

(
n+ 1− n

uj(xj)

ui(xi)

)

+(n+ 1)ai,n+1ui(xi),

for any i = 1, 2, . . . , p and n = 0, 1, . . ..

Proof. By applying Corollary 2.4 to the functions f(x) and f ′(x) we obtain that the correspond-
ing sequences of full Hermite interpolating polynomials (which are partial sums of the Hermite
series (3.13), (3.14)) uniformly converge to f(x), respectively f ′(x).

For n = 0 and i = 1, 2, . . . , p we have:

µ′
i,0(x) =

 p∏
j=1
j ̸=i

(x− xj)


′

=

p∑
j=1
j ̸=i

p∏
k=1
k ̸=i,j

(x− xk) ·
(x− xi)− (x− xj)

xj − xi

=

p∑
j=1
j ̸=i

µj,0 − µi,0

xj − xi
=

 p∑
j=1
j ̸=i

1

xi − xj

µi,0 +

p∑
j=1
j ̸=i

1

xj − xi
· µj,0

For n ≥ 1 we apply the formulas (3.6)-(3.7) for the function f(x) = µ′
i,n(x)

µ′
i,n(x) = n(x− xi)

n−1
p∏

j=1
j ̸=i

(x− xj)
n+1 + (n+ 1)

p∑
j=1
j ̸=i

(x− xi)
n(x− xj)

n
p∏

k=1
k ̸=i,j

(x− xk)
n+1
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=

n∑
k=0

p∑
j=1

αj,kµj,k(x).

We remark that, if F (x) is an infinitely differentiable function in a neighborhood of xi, then

(3.16)
[
(x− xi)

nF (x)
](k)
x=xi

=

{
0 if k < n

n!
(
k
n

)
F (k−n)(xi) if k ≥ n

We can also notice that µ′
i,n(x) can be written:

(3.17) µ′
i,n(x) = n(x− xi)

n−1ui(x)
n+1 + (n+ 1)

p∑
j=1
j ̸=i

(x− xi)
nui(x)

n+1

x− xj

as well as

(3.18) µ′
i,n(x) = n

(x− xj)
n+1uj(x)

n+1

(x− xi)2
+ (n+ 1)

p∑
k=1
k ̸=i,j

(x− xj)
n+1uj(x)

n+1

(x− xi)(x− xk)

+(n+ 1)
(x− xj)

nuj(x)
n+1

x− xi
,

for j ̸= i.
It follows that αj,k = 0 for any k < n− 1 and j = 1, 2, . . . , p.
For k = n− 1, using (3.16)-(3.18), we have αj,n−1 = 0 for j ̸= i and

αi,n−1 =
1

ui(xi)
· 1

(n− 1)!

(
µ′
i,n(x)

ui(x)n−1

)(n−1)

x=xi

= n · ui(xi).

For k = n we have:

αi,n =
1

ui(xi)

 1

n!

(
µ′
i,n(x)

ui(x)n

)(n)

x=xi

+

p∑
j=1
j ̸=i

1

(n− 1)!

(
µ′
i,n(x)

uj(x)n(x− xi)

)(n−1)

x=xj



=
1

ui(xi)n!

n(x− xi)
n−1ui(x) + (n+ 1)

p∑
j=1
j ̸=i

(x− xi)
n ui(x)

x− xj


(n)

x=xi

=
1

ui(xi)n!

n!(n1
)
u′i(xi) + (n+ 1)!

p∑
j=1
j ̸=i

ui(xi)

xi − xj

 = (2n+ 1)

p∑
j=1
j ̸=i

1

xi − xj

and, for j ̸= i,

αj,n =
1

uj(xj)

 1

n!

(
µ′
i,n(x)

uj(x)n

)(n)

x=xj

+

p∑
k=1
k ̸=j

1

(n− 1)!

(
µ′
i,n(x)

uk(x)n(x− xj)

)(n−1)

x=xk
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=
1

uj(xj)

[
n+ 1

n!

(
(x− xj)

nuj(x)

x− xi

)(n)

x=xj

+
n

(n− 1)!

(
(x− xi)

n−1ui(x)

x− xj

)(n−1)

x=xi

]

=
1

uj(xj)

[
(n+ 1) · uj(xj)

xj − xi
+ n · ui(xi)

xi − xj

]
=

1

xj − xi

(
n+ 1− n · ui(xi)

uj(xj)

)
.

We denote by

Si =

p∑
j=1
j ̸=i

1

xi − xj
.

We proved that

(3.19) µ′
i,n(x) = (2n+ 1)Siµi,n(x) +

p∑
j=1
j ̸=i

1

xi − xj

(
n+ 1− n

ui(xi)

uj(xj)

)
µj,n(x)

+nui(xi)µi,n−1(x)

and, since

f ′(x) =
∑
n≥0

p∑
i=1

ai,nµ
′
i,n(x) =

∑
n≥0

p∑
i=1

a
(1)
i,nµi,n(x),

the formula (3.15) follows. □

Corollary 3.6. Let U = diag
(
u1(x1), u2(x2), . . . , up(xp)

)
. For n = 0, 1, . . ., we denote by

an = (a1,n, a2,n, . . . , ap,n)
T , a

(1)
n = (a

(1)
1,n, a

(1)
2,n, . . . , a

(1)
p,n)T and

An =


(2n+ 1)S1

1
x1−x2

(
n+ 1− nu2(x2)

u1(x1)

)
. . . 1

x1−xp

(
n+ 1− n

up(xp)
u1(x1)

)
1

x2−x1

(
n+ 1− nu1(x1)

u2(x2)

)
(2n+ 1)S2 . . . 1

x2−xp

(
n+ 1− n

up(xp)
u2(x2)

)
...

...
. . .

...
1

xp−x1

(
n+ 1− nu1(x1)

up(xp)

)
1

xp−x2

(
n+ 1− nu2(x2)

up(xp)

)
. . . (2n+ 1)Sp


Then, for any n = 0, 1, . . ., we have:

a(1)n = Anan + (n+ 1)Uan+1,

for any n = 0, 1, . . ..
Moreover, if

f (k)(x) =
∑
n≥0

p∑
i=1

a
(k)
i,nµi,n(x),

then

a(k+1)
n = Ana

(k)
n + (n+ 1)Ua

(k)
n+1,

for any n = 0, 1, . . ., k = 1, 2, . . ..
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