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ABSTRACT. The issues of unique classical solvability and construction of a solution to
a mixed problem for a nonlinear differential equation containing a Hilfer fractional ana-
logue of the Barenblatt-Zheltov-Kochina operator are studied. Taking into account the
peculiarities of the fractional Hilfer operator, the Fourier series method was used. Eigen-
values, eigenfunctions and associated functions are found for the spectral problem and
for the conjugate spectral problem. Obtained: a scalar nonlinear fractional equation and
three countable systems of nonlinear fractional differential equations with initial value
conditions. The study of the existence and uniqueness of a solution to a mixed problem
is reduced to the study of the existence and uniqueness of a nonlinear ordinary integral
equation and countable systems of nonlinear ordinary integral equations in the corre-
sponding Banach spaces. Sufficient coefficient conditions for unique classical solvability
of a mixed problem are established.
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1. INTRODUCTION. FORMULATION OF THE PROBLEM

Problems of mechanics often turn out to be initial-boundary (mixed) problems. In particular, many
mixed problems arise in hydrodynamics when solving problems of hydroelasticity [1]. In [8, 10] mixed
problems for second-order linear differential equations of parabolic and hyperbolic types were studied. The
main provisions of the theory of non-stationary filtration in fractured-pore formations are formulated in
the work of G.I. Barenblatt, Yu. P. Zheltov and I. N. Kochina [4] (see also [5]). The theory and applications
of fractional calculus have been developed by many authors (see, for example, [7, 9, 11, 12, 14]).

In our work we consider a mixed problem for a nonlinear differential equation with Hilfer operator of
fractional integro-differentiation. Thus, in the domain Q = (0,7") x (0,1) we consider the equation

T 1
N N 32 82
(1.1) (D " —D ’Vﬁ - 83:2) Ut,z)=f t,x,//G(s,y) U(s,y)dyds
00
with mixed conditions
; 1—vy —
(1'2) tl—l}-r«—lOJOt U(Ll‘) - (p(l‘),
(1.3) U(t,0) =0,
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(1.4) Up(t,1) = Up(t, o), 0<t<T, 0<xg<l,

where D7 = D&P = Jplt=) d jU=P0=e)  jazed o7 g Hilfer fractional operator, 0 < < 1, v =
a+B—aB, plx) € CO0,1], 0 <a<y<1,

d'p() & p(2) & p(2) . ,
- 0 = - -1 = - - =0,2,4 =1
d.’El |170 ) dSCJ |w71 d(EJ |$—$1)0 y L Oa s Ty 67 J 9 37 57
dif(t,fﬁ, ) _ djf(tv'ra ) _ djf(tv'ra ) © s
dl'i |;C=0 - 07 d(E] ‘le - d(E] ‘x:xo , 1= 07 27 47 6a J= 17 3a 5a

(Zb_(j))ldfa is Riemann-Liouville integral

flt, ) € Clp(Q x R), 0 < G(t,x) € C(Q), J§u(t) = wa

o &

operator, Q = [0,7] x [0,1], 0 < T < oc.

Problem. [t is required to find a function U(t,x), that satisfies the nonlinear differential equation (1.1),
the initial value condition (1.2), the boundary value conditions (1.3), (1.4) and belongs to the class of
smoothness

(1.5) 17D € C(Q), DU,y € C(Q), Uy € C().

We note that the study of the existence and uniqueness of a solution to a mixed problem is reduced to
the study of the existence and uniqueness of a nonlinear ordinary integral equation in the space C0,T]
and countable systems of nonlinear ordinary integral equations in the Banach space Bs[0, T (see, Section
4).

This problem is studied in the case of linear equation in the work [13].

2. EIGENVALUES AND EIGENFUNCTIONS OF SPECTRAL PROBLEM

First, we consider homogeneous differential equation

(2.1) DU (t,x) — DYV Uy (t, ) — Ugy(t, ) = 0.
We will look for a non-trivial particular solution of this problem in the form U(¢,z) = wu(t) - 9(z).
Substituting this product into equation (2.1), we obtain

D*vu(t) 9 (x)

Dovu(t) +u(t)  9(x)

Hence, equating second fraction into —\ we obtain the ordinary differential equation of second order

(2.2) ¥ (z) + M (x) = 0.
According to the conditions (1.3) and (1.4), we have boundary value conditions
(2.3) 9(0) =0, 9 (1) =9 (z0), 0<zg<1.

For A < 0, problem (2.2), (2.3) has only a trivial solution, so consider the case A > 0. Solving the
spectral problem (2.2), (2.3), we derive eigenvalues

omr \2 omr \2
24 Ao =0, A= . . neN
(2.4) 0 , Al (1—}—3&0) 2, (1_%) n e

and eigenfunctions

(2.5) Po(x) =2, Vin(x)=sin/ Az, i=1,2, neN.
The spectral problem (2.2), (2.3) was studied in detail in [2]. For ease of readability of the article, we
present some results obtained in these works. Let us denote
n—m

Apm=——, mneN, n>m.
n-—+m
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Lemma 2.1. The system of functions (2.5) has associated functions only for those eigenvalues
Mo, A2m, n,m € N of problem (2.2), (2.3) for which relation xy = A, holds. For each such
pair (n,m), there is only one associated function.

Lemma 2.2. Let x¢ be a rational number from the interval (0,1) such that xo = %, p <gq, pandq
be coprime natural numbers. Then there exists a countable values of n and m such that for two series
of eigenvalues from (2.4), we have A1, = Ao, in addition n and m have the form m = s(¢ — p) and
n=s(q+p). Here s € N, when q — p is odd, and 2s € N, when q — p is even.

Corollary 2.3. Let xy be a rational number from the interval (0,1) such that zo = %, p<gq, pandq

be coprime natural numbers. Then m = s € N and therefore for two sets of eigenvalues {)‘1@}2021 and
{)\Q’m}:zl from (2.4), the inclusion {)\g,m}:zl
{AQﬁm}::l is contained in the set {)\17,1}20:1,

C {)\1’”}20:1 takes place, i.e., the set of eigenvalues

Along with problem (2.2), (2.3), we also consider adjoint problem. It is not difficult to determine that
the following problem will be adjoint to problem (2.2), (2.3):

(2.6) W(z)+Aw(@) =0, A>0, x€ (0,z0)U (z0,1),
(2.7) w(0) =0, «'(1)=0,
(2.8) W' (zo+0) = w'(zg — 0), w(zo+0)—w(xe—0)=w(l).

Consider the case when xg is an irrational number from (0,1). We obtain in this case two series of
eigenvalues of the form (2.4), which correspond to eigenfunctions of the form (2.5), and all these functions
are different and not orthogonal. Problem (2.6)-(2.8) also has eigenvalues of the form (2.4). Solving this
problem, it is not difficult to see that the eigenfunctions have the form

4sin/ A1 n
. 0, S [075(}()), . bm?(vol’wa T e [O,ZCO)?
0@ =\ 2 we (@), @)= 2o A0
0 (1+m0)sin\/)\1m,7

x € (xo, 1],

0’ z G [O?mo);
won(@) = _dcosySanz
(1—I0)Sinmz’ HAS (1'0,1].

Lemma 2.4. Let the number xo be irrational. Then there is a sequence of {n.,}, for which
Wi, (x)HLQ(OJ) — 00, ¢=1,2.

Corollary 2.5. Let xg be any irrational number from the interval (0,1). Then the system of root functions
of problem (2.6)-(2.8) does not form Riesz basis in L]0, 1].

More detailed information on Riesz bases can be found in [6]. We consider our mixed problem (1.1)-
(1.5) when the following condition is fulfilled.
Condition A. Let xg be a rational number from the interval (0,1) such that z¢ = %, p<q, ¢q—p=1,
p and g be positive integers.

If condition A is satisfying, then solving problem (2.2), (2.3), instead (2.4) we obtain

2gqnm
p+q

These eigenvalues correspond to eigenfunctions in (2.5). For each value of Ay ,,, there also exist
associated functions of the form

(2.10) ’l§2,m(l’) = 208 \/Ag,m®.

2
(29) )‘0 = 07 )‘1,71 = < ) ) )‘2,771 = (2qm7r)2a n,m & N7 n 7é m(p+ Q)

43



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 14 (2024)

Problem (2.6)—(2.8) also has eigenvalues of the form (2.9). Solving this problem, it is not difficult to
see that the eigenfunctions have the form

(2.11) {wo(z); win(z); wom(z)}, n,meN, n#m(p+q).
where
0, xr € [0,.’130), 451%::)11”’ YIS [071‘0)7
wo(x) = { q7 T e (mo’ 1]7 1,n(x) = 2cosm(17m)

(14x0) sin y/A1,n ’ T (.’ﬂo, 1},
0, x€]0,x0),
w2,m(x) = 4cos /A2, mx

lfr[) ?
There also exist associated functions of the form
4sin/Az.m
SRy aam® x € [0,xzp),

(2.12) D2m(T) =4 41y o \Sraa

2
1—zg

, € (z0,1].

We note that systems of eigenfunctions (2.5), (2.10) and (2.11), (2.12) are biorthonormal in the space
L,[0,1], that is

1, n=k,

(Yo(x), wolz)) = 1, WMW%M*“”:{o,n¢h

(P2,m (), Wox(z)) = { (1): :Z;]Zi’ ( 2.m(2), woi(z )) = { é: 7:“7;:,7
(Yo(z), win(z)) = (Jo(2), wom(2)) = (Yo(x), Wa,m(x)) =0,
(P1,n(2), wo(x)) = (V1,0(7), wo,m(x)) = (V1,0 (2), G2m(x)) =0
(P2,m (), wo(x)) = (V2,m(2), win(2)) = (V2,m (), wak(2)) =0,
(Fom(@), wo(@)) = (Fam(@), G2x(x)) =0,
where by (-, -) is denoted the inner product in Ls[0, 1].
We note that if the condition A is satisfying, then the systems of root functions of problems (2.2),

(2.3) and (2.6)-(2.8) form a Riesz basis in the space L3[0,1] (see, [2, 3]). Therefore, taking into account
the formulas (2.5), (2.10) and (2.11), (2.12), we look for a solution

(2.13) U(t,z) = Uo(t, ) + Uy (t, ) + Us(t, ) + Us(t, x)
to the problem (1.1)-(1.5) in the following form of Fourier series:

)

(214)  U(t,z) = up(t) vo(x) + Z () O,0(2) + D (2, (8) Do, (@) + iz (1) Do ()
m=1

where

1 1

w(®) = [ ot han)dy, wia®) = [ Vtg)onati)ay,
0 0
1 1
u?,m(t) - /U2(t7y)@2,m(y)dy7 ﬁQ,m / t y w2m )dy
0

Here ”*” means that the sum is taken over n € N, different from k(q + p), k € N.
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3. REDUCING THE SOLUTION OF PROBLEM TO A COUNTABLE SYSTEMS OF INTEGRAL EQUATIONS

Let the condition A be satisfied and a function U(t, ) be a solution to the mixed problem (1.1)-(1.5).
Then, applying representation (2.14) into equation (1.1) and taking (2.5) and (2.13) into account, we

obtain
D {x uo(t) -+ Z ul,n(t) ﬂlﬂn(x) + Z (UQ,m(t) 1927m(x) + ﬁ?,m(t) 1§Q,m(1’)) +

+ Z At (t) V10 () + i [/\2 mU2,m () V2,m () + U m ( (%/H% m (%) + Ao,m Do (z ))} } +

3

+Z)\1nu1n )01 () + |:)\27mu2,m(t>792,m( + Ug (¢ (2\/)\2 Do.m () + Ao.mD2.m (z ))}:

m=1

OO *

=2z fol(t,u) Z n(t, w) V1 n(x) + Z (me t,u) Ogm(x )+.f2,m(t7u)7§2,m(x))a

n=1 m=1

where

1 T 1
folt,u) = [ fo | t v, G(s,2) zup(s)dzds | wo(y)dy,
[o{]]

1 T 1 cox

fin(t, ) :0/f1 t,y,O/O/G(s,z)l_ZluU( 8) V1,i(2)dzds | win(y)dy,
1 T 1 -

fam(t, u):/f2 t,y,//G(s,z) Zuh( )02,(2) dzds | Do (y)dy,
0 0 j=1

/1 /T/lG(sz)i 2,5(8) V2,3(2) dzds | wam(y)dy.

j=1

0
Hence, taking (2.11) and (2.12) into account, we obtain four fractional differential equations

(31) Da’ﬂy’u,o(t) = fo(t,u),
1
3.2 D7 n t n n t) = —— n tv )
(3.2) ur,n(t) + p1,nur,n(t) 14_/\1nf1,( u)
24/ A2.m 1
. D Vg (t g m(t) = — Y2 (DO ) g (1) + ————— Fom (t, 1),
(3.3) U2,m (t) + H2,mu2,m(t) 1+/\2,m( To,m (t) + U, ())+1+>\2,me’ (t,u)
(3.4) Dt (£) + oz () = ———— Fo (£ 10)
) ) ) 1+)\2,m ) ? )
_ >\1,n _ /\Q,m
Hin 1+ )\1 n’ H2,m 1+ /\2,m7

M, and Ao, (n,m € N, n # m(p + q)) are defined from (2.9). The equation (3.1) is scalar fractional
differential equation. The equations (3.2)-(3.4) are countable systems (CS) of fractional differential
equations. We note here that CS of fractional differential equations (3.3) consists two unknown functions
U2.m (t) and @g,m, (t). So, we will solve it only after solving the CS (3.4). To solve the equations (3.1)-(3.4)
we define initial value conditions [20, 21].
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Taking into account the formulas (2.5), (2.10) and (2.11), (2.12), we consider the function ¢(z) as a
function in the case of (2.13):

p(z) = po(z) + 1(2) + Pa(x) + P2(z).

So, from the condition (1.2) we determine the initial value conditions

1
. 1—
(35) Jim 7 Tuo(t) = lim 13 [ Unttplen(w)dy = [ po(wnls)dy = oo
0 0
1 1
(3.6) Jim Jo Ty () = lim o, / Us(t,y)wi,n(y)dy = / P1(y)1n(Y)dy = P10,
0 0
1 1
(37) tE}rEOJ(}t_’YUQ,m(t) - tl_lg_lOJOt /U2(t7y)a}2,m(y)dy = /@2<y)a}2,m(y)dy = ¥2,m;
0 0
1 1
B8) g () = i 5 [ Oa(t e )y = [ pa(ham )y = Gam
0 0

Thus, we have reduced the solvability issues of the mixed problem (1.1)-(1.4) to the study of the unique
solvability of the fractional equation (3.1) and countable systems of fractional equations (3.2)-(3.4) with
the corresponding initial conditions (3.5)-(3.8). Since our equations are nonlinear, we apply the method
of successive approximations in combination with the method of contracting mappings. First, we reduce
these initial problems to a nonlinear integral equation and to countable systems of nonlinear integral
equations [19]. Further, we formulate the corresponding theorems.

The solving methods for a fractional differential equations (3.1) and CS of fractional differential equa-
tions (3.2)-(3.4) are the same. So, we show the scheme of solving only for the equations (3.1) and (3.2).
First, we solve the equation (3.1). In this order we rewrite (3.1) in the form

(3.9) D ug(t) = fo(t,w),

Applying the Riemann-Liouville integral operator J§, to both sides of the equation (3.9), we have
L
NCORMS NC)

t
(3.10) ug(t) = / (t —8)* L fo(s,u)ds,
0
where Cy is arbitrary constant.
Using initial value condition (3.5), we represent (3.10) as the solution of the equation (3.9)

t

(3.11) uo(t) = F('?f;) 4 ﬁ /(t —8) " fo(s,u) ds.
0

The equation (3.11) is a nonlinear Volterra type integral equation with singularity at the point ¢ = 0. So,
we multiply it to the function t'~7:

g (t) = I (tug) = %-ﬁ-

t 1 T 1
(3.12) —i—/Ko(t,s)/fo s,y,//G(Q,z)zuo(O)dde wo(y)dy ds,
0 0 00
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where
tl—’y(t _ 8)(1—1

I'()
Smoothness conditions Sy. Let go(x) € C[0,1], fo(t,z,-) € C(2 x R) be fulfilled.
We use the norm ||u(t)||c = maxo<;<7 |u(t)| in the space C[0,T] of continuous functions.

Ko(t, S) =

Theorem 3.1. Let the smoothness conditions Sy be fulfilled and:
1).ff9 ) 2dzdf < Gy < 00, 0 < Go = const;

). ||f0(t x, zud(t )HC < dp, 0 < dp = const;
3). folt, 2, ur) = folt, 2, u2)llc < lo(x )HU1 —uz o, 0<lo(z) € L2[0,1];
)

l1+a—y
. po = ZOGOI 2 TaF('y) <1, ZO = flo
Then nonlinear Volterra integral equatzon of second kind (3.12) has a unique solution in the class of
continuous functions on the segment [0,T].

The solution uy(t) € C[0,T] of the nonlinear integral equation (3.12) can be found by the following
iteration process

{ ti‘”ué“(t) = Io(t;uf), 7=0,1,2,...
HTug(t) = 2.

Remark 3.2. The last inequality in the theorem is equivalent to the inequality:

(1 - x%) al(y)
20010Go

y—a—1

T <

Moreover, there are opportunities to choose the constants xg, do, l~o, Gy here.
Proof. We consider the following operator [18]
Io(t;uo) : C([0, T R) — C([0, T R),

defined by the right-hand side of integral equation (3.12). Using the principle of contracting mappings,
we show that the operator Iy (t; uo), defined by equality (3.12), has a unique fixed point.
Indeed, for this iteration process we have estimates

H ‘<P0‘
¢ I(y)

[ [ug(8) —ug®)] || <

Htl Tud(t < 00,

t 1 T 1
< . <
< OréltaSXT/Ko(t,s / s,y,//G (0, 2) zud(0)dzdb |wo(y) |dyds <
0 00
2Tl+a 0% 1+a—y
< I fo(t z,u) ||o < 200 T <.
=2} aT(y) “1-2 aT()

17 [ug™ () = ()] [l <

< s [ Kolt.s) / lo(y)en(y) / / G(0.2)z |3 (6) — ug ' (9) | d=df dy ds <

o<t<T
0
max [0~ [ud(0) — uj ' (0)]] ¢ P
0<6<T I—vy(4 a—1 <
<Gy e s [ 0779 [ 1o(w) oo(w)] dyds <
0 0
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~ t
o 2 IyG _ o
<[l (w3 () g ]I\Cl_x;’((;orgtasxT/tl Wt —5)" T ds <
0

< po- || 77 [ug(8) — ug 7 O] ||
where

1
9 plte—y .
= _ 1 =
Po loGol 2 al(y) <1, o /lo(y)dy

From these estimates implies that the right-hand side of the fractional differential equation (3.12) as an
operator I (t; uo) is contracting. Therefore, there is a unique fixed point. Hence, we deduce that there
is unique solution ug(t) € C[0,T] of the equation (3.12). Theorem 3.1 is proved. O

From the representation (3.12) one can find that

VUt 2) = 2t Tug(t) = & 20+

t 1

T 1
(3.13) —I—/xKo(t,s)/fo s,y,//G(G,z) Uo(0,2)dzd0 | wo(y)dyds.
0 0 0

0

Corollary 3.3. The function t' Uy (t,z) € C(Q) in (3.13) is the unique solution of the problem (1.1)-
(1.4) corresponding for eigenvalue g = 0 and eigenfunction Jo(x) = x.
Indeed,
£ 0ot 2) [ < [z |- [ uo(t) [l < oo

Now we solve the fractional order CS of ordinary differential equations (3.2) with initial value condition
(3.6). In this purpose we rewrite the CS (3.2) as

(3.14) Dy (t) = *Nl,nul,n(t) + gl,n(t)a
where

1
(3.15) gin(t) = ﬁfl,n(tau)'

Applying the Riemann-Liouville integral operator J§; to both sides of this equation and taking into
account the linearity of this operator and the formula [15]:

1
L'(v)

JorDggua,n(t) = urn(t) — Jor Tutn(t)e=ot? 7,

we have
Cln

I'()
Then, using the initial value condition (3.6), we represent the solution of the system (3.14) in the form

ur p(t) = 4 Jorg1,n(t) — p1nJGiu1n(t), Ch, = const.

t

! H1,n / 1
Unt)=p1n |- 5~ [ (t—5)""Eya —,uynt—s“s”*lds +
t
(3.16) +J0t91 n\l) — M1 n/ t—s)*" 1Ea o (= Nl,n(t —5)%) J(()ltgl,n(s) ds.
0
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In representation (3.16) we take into account the following relations
¢

— )7 — 1 n(t —8)*) 87 ds =t By (—p1nt®),
I'(y) F(,Y)O/(t ) Eoo(—p1a(t ) d t Ery( )

t’yil /il,n

t

/ (t = )7 B (— i1 nlt — 8)%) TG0 n(s)ds =

t s

— L — S a—1 _ — 3 « s s — a—1 _
- 0/@ ) B (—pian(t — 5)%) d 0/( 0 g1.1(6)do

= (o) O/(t —8)*” ds/(t —5)* s = 0) " Boo (—p1n(t — 0)*) do =

S

_ /gl,n(s)(t )2 B, (—pyn(t— 5)%) ds.
0

Hence, we obtain

(3.17) urpn(t) = (pl’nﬂ*lE — 1 %) + / )T 1Ea7a (—p1,n(t —9)%) g1,n(s)ds,
0
where
E, = -, )
A~ mz::ofaerv) z,a,7v€ C, Re(a)>0

is Mittag-Leffler function.
In obtaining the equation (3.17) we took into account that the following representations are true:

1
Eoq(2) = W +2FE4y+a(2), a>0, v>0,
— VB, (ktY) 7 dt = 27T R (kz*), a>0, v>0
F o,y a,yta ) ) .

)
By virtue of (3.15), the equation (3.17) we rewrite as

ul,n(t) = @1,nt771Ea,7 (7N’1,nta) +

t
1 a—1 «
(3.18) +1+>\1,n/(t —8)* " Ega (1 n(t —s)) fin(s,u)ds.
0

Instead of the equation (3.18) we consider the following CS of nonlinear integral equations (CSNIE)

(319) tl_vul’n(t) = (Pl,nEa,'y (—Ml}nta) —|— /Kl n t S f1 n(S ’LL)

1+>\1n

where
Kin(t,s) =t (t = )" " Ea.a (—pn(t —5)%),

Al n 2 2
;U'ln:#v )\ln: anr 7n:1727"°
' 1+ M ’ p+yq
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By similarly way, for the differential equation (3.4) with initial value condition (3.8) we obtain the
following CSNIE

(320) t177ﬂ2,m(t) = 852,mEoc,’Y (_:u2,mta) + /KZ m t S f2 m(s u)

1+/\2m

where
Kom(t,s) =t (t — 8)* ' Eo.o (—pa.m(t —5)%),
A2,m
1+ )\Q,m
Before to solve the countable system of differential equation (3.3) with initial value condition (3.7), we
study the solvability of the CSNIE (3.19) and (3.20).

Hom = , Ao = (2gmm)?, m=1,2,

4. UNIQUE SOLVABILITY OF CSNIE

In the set {(t) = (¢i(t)) : ¥i(t) € C[0,T], i =1, 2, ...} operations of addition of two elements and
multiplication of an element by a scalar are defined coordinate-wise. This set is a linear vector space.
2
We consider those elements of this vector space that satisfy the condition >, ( rr[lax [ i (t) |> < 00.
te[0,T
This set we denote by Bs[0,T] and is provided with a norm [16]

00 2
5600, = | 2 (s, 1001) <o

o0
We use also coordinate Hilbert space £» of number sequences {Q} with a norm

i=1

Smoothness condition S;. Let in the domain [0, 1] the functions ¢i(z) € C3[0,1] and fi(¢,z,-) €
C’g 031 (€2 x R) have the piecewise continuous derivatives with respect to z up to the fourth and second
order, respectively. Then, we integrate by parts the integrals
1 1
P1,n :/901(11) win(Y)dy, fin(t,u) :/fl(tvyv')wl,n(y)dy
0 0
fourth and second times on the variable x, respectively, and obtain the results

+ ’30171 ‘ + 2 f// (tvu)
(4.) ol (B0 L g < (220) 0]

2qm n4 2qm

where

1 1
4 2
av) _ [ 9'¢(y) _ [Phty,)
(p17n - ay4 Wl,n(y)dya {/,n(t) _/Twl,rxy)dy
0 0
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Theorem 4.1. Let the condition A and smoothness condition Sy be fulfilled and

f’ slsf)’ ]ds§G1<oo, 0 < G = const;
2[0,1
2). max |[fi(t,z, u)llp,01 < 61, 0<d1 = const;

0<t<T
3) |f1(t,x,u1) — fl(t,x,UQ) ‘ < ll(x)|u1 — U2 |, 0< ll(l‘) < LQ[O, 1],‘

4). pr=MiaGy <1, Mig= M| ¥ i llh(@) g0

n=1

Then CSNIE (3.19) has a unique solution in the space Bs[0,T].

Proof. Using the principle of contracting mappings, we show that the operator, defined on the right-hand
side of equation (3.19), has a unique fixed point.

The solution @ (t) € Bz2[0,T] of the nonlinear integral equation (3.19) can be found by the following
iteration process

U (8) = P10 Bay (—pant®) |

t
(4.2) tl_”/uf;l(t) =t () + ﬁ [ Kin(t,s) fin (s,u],)ds, 7=0,1,2,3, ...,
0

where

1 T 1
frnttd) = [ 4t [ [ 6l Zuu ) 91(2)dzds | w1 n(y)dy.
0 0 0

It is known that for all @ € (0,1), v € R and argz = 7 there takes place the following estimate for
Mittag-Leffler function [17]

My
E ——
| Ear@) < Ty
where 0 < My = const does not depend from z In particularly, forall 0 <a <y <1, 0 < p;p <1, 7=
1,2, we have the estimate

‘ Ea,'y (_ﬂ'i,nta) ‘ S MO-

We estimate the zero approximation. By virtue of formulas in (4.1) and the fact that pq, =

ptq
(4.2) we have

2
1, M= (2‘1””> , applying the Cauchy-Shwartz inequality and Bessel inequality, from approximations

1— @
170 oy < | 2 g [ Z 0ax | @10 By (— i nt”)] <
<MOZ|<P1n|<M0 Lra ii‘(p§1\/)’<
n=1 2(]7’(’ n=1 Tl4 " B
84
(43) < M1 1 (IV) < M1’1 Lgf) < 00,
12 3117 LQ[O,l]
where
M, =
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Due to the conditions of the Theorem 4.1, estimate (4.3) and applying the Cauchy-Shwartz inequality

and Bessel’s inequality, for the first difference ¢! [u] ,,(t) — uf ,,(t)] we obtain

t
l ¢ [y () — @) (t) ||Bz[0 7> Z 7oglta<XT/Klv”(t7s) | fin (t,u?m) | ds <

0O* t
<Y g 070 [(0- 927 | B (cpralt = 9%) | dsx
n=1 == 0

T 1 o *
X /f1 t,y,O/O/G(s,z)Zu“( s)V1,:(2)dzds | win(y)dy| <
G(5,2) Y ,(5) (=) | wrn(w)iy | <

( )91 ,i(2)dzds | wi(y)dy <

B>[0,T]

T 1
t,y,//GszU1 (s,2)dzds <
0 0

L»[0,1]

co* t
< - 1—v _ a—1 _
> AanIéltaéXTt /(t ) |Eaa( H1 n(t S) )| dsx
n 0
1 T 1 co*
y /zl(y)//c:(t,z)z|u;i(t)—u“ )| 9.1(2)dadt wor () dy | <
0 0 0 i=1
oo 1 T 1 co%*
1 -
<MY o / L (y)wr.n (9)dy / / Glt,2) S [ uf (1) — ul7(t) | Ora(z)dadt| <
n=1 0 00 =1
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1
< Mg |67 [0 = 70 | g0 / =IO
0 B2[0,T
(4.5) <pu- [T [E @) — @ O] 0.0
where
co* 1
p1 = My 3Gy, Miz= M Z vy l12(@) 1l 00,11 -

n=1

From estimates (4.3)-(4.5) it follows that the operator on the right-hand side of (3.19) is contracting and
there is a fixed point [15]. So, existence and uniqueness of the solution t'~7i;(t) € Bs[0,T] to CSNIE
(3.19) are proved. O

Smoothness condition S5. Let in the domain [0,1] the functions @o(x) € C3[0,1] and fo(t,z,-) €
Cg 901 (2 x R) have the piecewise continuous derivatives with respect to z up to the fourth and second
order, respectively. Then, we integrate by parts

1

1
Ban = [ @) w2n)y, Fant.0) / (1., wa.m(y) dy
0
fourth and second times on the variable x, respectively, and obtaln

~ + ’802m ‘ +4q\2 ‘fNQ,m(tau)‘
|@2,m§<p q) - 1 ‘metu)‘ P 1 )

2qm m4 2qm m2

where

1 1

_avy [ 0*@a(y) 5 [P falty, )

Pom = W wa,m (y) dy, f//Z,m(t) = TyQ wa2.m(y) dy.
0

Theorem 4.2. Let the condition A and smoothness condition Sy be fulfilled and
T
1>. Oj‘ G(t,xz)

=
2). 0%ter HfQ(t’ “ u)’

dt < Gy < oo, 0< Gy = const;

‘Lg[o,u

0<dy = const;

NJ

L2[0,1]
3) ‘fz(t,iE,Ul)—fQ(t,I,Ug
4). pr = Ma3Gy <1, Moz = Mso\/3

m=1 m4

< by,
‘ () |ur —uz |, 0<lx(z) € La[0,1];

ZQ(.’L‘) s
L2[0,1]
Then CSNIE (3.20) has a unique solution in the space Bz[0,T].

MQ,Q, Mg,g = const.

The existence and uniqueness Theorem 4.2 for CS of nonlinear integral equations (3.20) is proved by
similar way as in the case of Theorem 4.1.

The differential equation (3.3) consists two unknown functions. Therefore, the solution of the CSNIE
(3.20) we denote by Fy,,(t) and substitute it into equation (3.3)

1 2./ .
(4.6) DYV ug (1) + pr2,mu2,m(t) = mfz,m(t, u) — T+ /\2 - (Da VFy n(t) + Fz,m(t)) .

The equation (4.6) consists only one unknown function. So, we solve it with initial value condition (3.7).
This problem is equivalent to the following Volterra integral equation

t
24/ A2.m - -
72’/K2,m(t, s) (D‘X’VFQ,m(s) +F2,m<8>) ds+

tl_’yuzm(t) = 902,mEa,7 (_M2,mta) - 1+
2,m
0
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t

1
4, L[
( 7) +1+>\2’m/ 27177,(t78)‘]027,n,71(3)u)d87
0

where
Kom(t,s) = tli’y(t - 5)a71Ea,a (—p2,m(t —s)%),
)\2,m
1 + )\2,771
Smoothness condition S,. Let in the domain [0, 1] the functions 2 (z) € C3[0,1], falt,z,-) € Cto”ml(Qx
R) have the peace-wise continuous derivatives with respect to z up to the fourth order and second order,
respectively. Then, by integrations by parts

H2.m = 5 )\Q,m = (2qm7r)2a m = ]-7 23

1

1
prn = [ @nWdy. Fon(t) = [ L(t.0.) G2y
0 0

we obtain that there hold estimates

o] :

2(]71' mA 2qr mb
| fom(t,u)| < REEACDI S 3M
2,m 2q7T m2 2q71' m3 ,

1 1
4 2
avy _ [ Fe2(y) - [P falty, ) -
2,m ay4 W2,m(y) dy’ é/,m(t7u> - / 8y2 w2,m(y) dy

where

Theorem 4.3. Let the condition A and smoothness condition So be fulfilled and

Mk

2). OgltaSXT | f2(t, u)||L2[071] <62, 0 < dy = const;

3) |f2(t,x,u1) - fg(t,l’,Ug) ‘ < lg(l‘) | U1 — U2 | , 0< lg(l‘) S LQ[O, 1],’
4). ps=M35Gs <1, Mzs=Mss\/3 01 s 12(2) [l 1,01
Then CSNIE (4.7) has a unique solution in the space B2[0,T].

(s,x)
st=v

‘ ds§G2<oo, 0 < G = const;

Proof. We use the method of successive approximations:

2/ Aam b ~ -
07010 (0) = P2 By (pamt®) = TR [ Kam(t) (Da>vF2m(s)+F2m(s)) ds,

HTup () = 18, (1) + i fK2m (t,5) fo,m (t,u5,)ds, 7=0,1,2,3,

where

1 T 1 00
Fom (b5 ,0) = / £ |ty / / G(5,2) S u5(5) a5 (2)dzds | G (y)dy.
0 0 0

j=1

2
By virtue of smoothness conditions S» and the fact that 1., = H’g\l" <1, AMip= (?ﬁ;) , applying

the Cauchy-Shwartz inequality and Bessel inequality, we have

H o </72 0% pa(x) 0* a(x)

ozt +

"

- n&mﬂ<ﬂall

L»[0,1] L»[0,1]
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+Ht1 VFQ()‘

] < 0
B2[0:T]

B>[0,T]

(4.8) +M3,2 [H D [tl_vﬁZ(t)] ’

1 4
M371 = MO max ()
2qm

Due to the conditions of the Theorem 4.3 and applying the Cauchy-Shwartz inequality and Bessel’s
inequality, for the first difference t*=7 [u3 ,,(£) — u3,,(t)] we obtain

. = 1
(| ¢ [a3(t) — aS(t))] HBQ[QT] < Zl . Oréltzsz/Kz,m(t,s) | fom(t,ud ) | ds <
m= ’ - 0

T 1 00
<M332fm x| [ de (o [ [ G612 D 080900221t | wam )y | <
0 0

m?2 0<t<T

T 1
(4.9) t,y,//G(s,z) Ug(&z)dzds wa.m (y)dy < M3 4 < 00,
00

B>[0,T]

where

Now, considering the arbitrary difference ¢!~ [ugff (t) — ug ,(t)], we obtain

= 1
[ 77 [a@5 7 (8) = @5 ()] || 00 S D oA /sz (t,5) | fam (6,13 ,n) = fom(tul,,) | ds <
m=1 " 0

1 T 1
=1
< Msgs Z o) /lg(y)wgw(y)dy : //G ‘U“?J s) = ’ V2,4(2)dads | <
m=1 0 00 Jj=1
T 1 C(s,2)
e L s,z
< Mg || 477 [ag(t) — a5 ()] HBQ[O,T]/ / — wz(2)dz ds <
0o Ilo B2[0,T]
(4.10) < p3- H = a5 (t) — ag_l(t)] HBQ[O,T] )
where
=1
p3 = M3 5Go, Mszs = Ms3 2;1 — 12(@) (| £70,1) -

From estimates (4.8)-(4.10) and last condition of the theorem it follows the existence and uniqueness of
the solution t1 =7y (t) € Ba[0,T] to CSNIE (4.7). O
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5. MIXED PROBLEM

Since the solution of the mixed problem (1.1)-(1.4) we look at (2.13), then for the function (2.14) from
(3.13), (3.19), (3.20) and (4.7) we have

T 1
Ut x) = /Ko (t,s / //G (0,2)Up(0, 2)dzdf | wo(y)dy ds+
00
+Z191n |:S01n o,y (_/ffl,nta)+

+— /Klnts/fl sy//G@zUl(Hz)dde wi(y)dyds| +
1+)\1n
0 0

3

; 1+)\2m

)

> 24/ :
+ Z 792,171(55) @Q,mEocfy (_/JQ,mta) i Abciid /K27m(t7 5) (DOL”YFQ,m(S) + F2}m(5)) ds+
m= 0

t T 1
1
+1_’_)\ /Kz,m(t,s)/fg 37y7//G(0,Z) Us(0,2)dzd0 | wa(y)dyds| +
2,m
0 0 0

+ Z 192 m |:902 ma,y (_/~L2,mta) +

t 1 T 1
(5.1) 1+)\2 /K (t,s /f //G (0,2) Us(6, 2)dzdf | wy(y)dy ds
0 0

Theorem 5.1. Let the conditions of Theorems 3.1-4.3 be satisfied. Then function (5.1) will be a unique
solution to the mized problem (1.1)-(1.4) and this solution belongs to the class (1.5).

Proof. The existence and uniqueness of the solution of the mixed problem (1.1)-(1.4) follows from the
validity of Theorems 3.1-4.3. This solution has the form of a Fourier series (5.1). Indeed, from the
Theorems 3.1-4.3 we have t1=7ug(t) € C5[0,T] and t1-7, (), t1Vida(t), 1 Viy(t) € By[0,T]. To prove
the convergence of the function (5.1), we use the calculations in the proofs of the Theorems 3.1-4.3:

200 Tite—v
‘tl ’yUtm) _|%00| 02 n
IL(y)  1-25 al'(7)
0% oz 0* @o(x
+Mi 1 50 E 2) + M3, ;7245) + (Mz,1 + M3 1) 50725) +
L1[0,1] x L»[0,1] z L2[0,1]
+Ms {H D [1Fy(1)] | +||eE)| }
B,[0,T] B3[0,T]

(5.2)

We will prove the belongness of the function (5.2) to the class (1.5). In this order we also consider the

functions
DU (L, x), 1T U (t, x), 1Y DYV U, (t, ).
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The proofs of convergence of these functions are similarly to the estimate (5.2). So, we show the conver-
gence only one of them. It is not difficult to see that ’tlfVUm (t,x) ’ < 00. Indeed, for the series

- ’Ysz t, x ZAI nﬁln [30171 o,y (_:ul,nta)"_

t 1 T 1
1
b [ Kunttes) [ £ s [ [ 60,2010, 2d50 | wr(dyds| -
1,n
0 0 0 0

t
> 2/ X2m . ~
- Z /\2,m7927m(x) L)02,mlz‘o¢,'y (_M2,mta) - 172’ /KQA,m(tv S) (Da7’yF2,m(5) + FQ,W(S)) d3+
+ )\Z,m
0
. t 1 T 1
+71+)\ /KQ,m(t; 8)/f2 8,y7//G(0,Z) UQ(G,Z)dZdG @Q(y)dyds —
Zm 0 0 0 0
— Z (2\/ A2.mU2.m () + A2 m?92 m(x )) [952,mEa,'y (—p2,mt®) +
m=1
t 1 T 1
(5.3) 1+)\ /K27m(t78)/f2 s,y,//G(ﬁ,z) Us(0,2)dzdf | wa(y)dyds| ,
2™y 0 0 0
we have
‘tl TUypa(t, $) <MOZ|/\1n901n\+M0 Z | A2, m@2,m | + My Z (2\/)\2,m+)\2,m) | Gom |+
n=1 m=1 m=1
oco* 2 1
1,n
—|—Zl 1+>\1m101é1ta§xT /f1 s, 1, G(0,2)U1(8,2)dzdf | wi(y)dy ds /Kln t,s)ds+
n= 0

G(0,2)Us(0, 2)dzdf | &a(y)dy ds /Kgm (t, s)ds+

[e
[fovo

(e e) )\m
+ 3 s | [ s

t
(oo}
2X2, 2 2
T / Kan(t,8)57~1 | D™ (3 Nams' ™ Fon(5)) + v/ Nz ans' ™ Fo(s) | dst

— 1+ Az

1

T 1 .
2\/V+)\2m ~
- Z 0<t<T / S,y,//G(ﬁ,z) Uz (0, 2)dzdf | wa(y)dy ds /KZ,m(t,S)ds.
0 0 0

m—1 1 + )\Q,m

Hence, by virtue of smoothness condltlons, we obtain the following estimate

1
= 1 o
’tl_’waw(tax)’ SMOZT gliy) wLTl(y)dy +
n—1 1,n A Yy
= [ 4 ) 4 [ ' aly)
4o P2y
+M, / w2,m (y) dy | + / wom(y) dy | | +
o2 [ || ot e+ | [ T
1
= 1 0* @a(y)
— m(y) dy | +
mZ:( . )\27m> 94 wa,m () dy
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1
Tie—yr X 1 D f1(t,y,-
max / fl( » Ys )UJ

+Mo a  AH0stST A, dy? 1) dy | +
Ti+a—y & 1| [ ohty )
o 2 tvyv ) o~
+M, - z_:logltaéXT)\Zm 94 Wa,m (y) dy | +
= 0
1
Tita—r & 4 02 fa(t,y,-)
+M, max / = wo m (y) dy | +
« 7;:1 OStST}\Q m\/ )\Z,m ) ay2
L'(y)I'(«) e
2My— LY e 37 ’Dﬂ(,//\ 1 Ey (¢ ) Nt Ey (i ’
* "T(y +a) — 021?<XT 2,m 2 TV 2m(t) |+
THW” - O falt y7
(5.4) +3My Orgtzsz)\z ‘/ wo.m(y)dy | .

By virtue of the results of the Theorem 3.1-4.3 and applying Cauchy-Shwartz inequality and Bessel’s
inequality, from (5.4) we obtain

_ 9%
|t1 WUxm(tax) | < My (;D;JE )
o4 > 0
+M, H 7@?) SN2+ H 2 +
9zt 00 \ ozt

o | T >
L2[0,1] m=1
My T | L)
oy e | I
+4 My Tl—:l_n/ Oréltang ’ 84%(;%') o\ )\2 mT

F(’Y)F(a) o o,y y— y—1
Mg Orgta<XT’D (V2amt? Fon(®) + VAot Fa ()| +

Tite O fo(t,x,) 2
+3Mo a OrgntanT oxt Z Azim
Ly[0,1] \ m=1
So, the series (5.3) is convergence. This completes the proof of the theorem. O
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Example 5.2. At the end of the paper, we consider an example. In the domain 2 = (0,7) x (0,1) we
consider the equation

L a0 ° I
(D 2 _D3,283:2_8x2> Ult,z) =t [m(x—l <x—>} //syU(s,y)dyds
00

with mixed conditions .
L h _ _ 1
tLHEOJOt U(t,z) =5 [x(a: 1) (a: 5 ,

1
U(t,0) =0, Uy(t,1)=U, (t,2) L, 0<t<T.

|-

The conditions
d'o(z) ey = 0 & o(x) oy = dp(x) |
doi 0T g P dxi 2
dif(t,z,-) & f(t,z,-) &’ f(t x,-)

dx? =0 dxd dxd

\_/

; 1=0,2,4,6, j=1,3,5,

r=

:O’

e=1, 1=0,2,4,6, j=13,5

Iz:l =

are fulfilled.
We will check the Condltlons of the Theorem 3.1:

T 1
ff\f:rzdxdt QTZ }sz = Gy < o0

00

2). ||t [z(z—1) (xf%)]G < ;Tj, = do;

c

oy

1
[ sy*ud(s)dyds
0

B 1
3).lo=T [ (2% +1)dz = 3T.
0
For condition
25, T'to—v

=1,G s <1
PO 2T ()

r<(5)"

The fulfillment of the conditions of other Theorems 4.1-4.3 is verified similarly.

to be met, there must be

&l
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