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1. INTRODUCTION

The purpose of this work is to give an extension and a simplified proof of a difficult result by
C.Fefferman [4] concerning the imbedding

(L.1) | pv<c [ ver vrecs.

Here the weight V' will be always a measurable function with values in [0, oo].
The estimate 1.1 is proved in [4], assuming V € F"(R"), 1 < r < %, i.e, there is a constant C' > 0
such that

N 1 N 1/r
(12) @vQQAV) <c,

for all cubes @ in R™.

In his work, C.Fefferman remarked that it is probably a sharp version of 1.2 in which the Lo L norm is
used in place of the L™-norm. Also, it is well known that the F'-condition is necessary but not sufficient
for 1.1 to hold.

F.Chiarenza and M.Frasca [1] have extended 1.1 to the L, spaces. They proved that if

(13) |miQaljwmmyﬁ<c

for all cubes @, with 1 < p <n and 1 <r < n/p, then

(1.4) [rvee [ wir vrecs.
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Here and bellow C' is an unspecified positive constant, possibly different at each occurrence.
In this work we replace 1.2 by a weaker condition involving the dyadic Liog L norm.
Next we recall some definitions and notations.

By a dyadic system D we mean a collection of cubes with the following properties:

e the side length of each cube in D is of the form 277, j € Z,
e any two cubes in D are either disjoint or one is contained in the other,

e the cubes of a given size form a partition of R"™.

Definition 1.1. Let f be a locally integrable function in R™. For x € R™, the dyadic Hardy-Littlewood
mazimal function of f is defined by

M f(z) = mahgéﬁwmw

Q>z,QCD

As in the usual case, see [5, Theorem 2.1], we have

C
(1.5) (o e R™: Mif(x) > 1) < & / \f(2)|dz,
{z€R™: f(z)>1%}
C
(16) o e B M) > 1)) > ¢ / f () dr,
{z€R":f(z)>t}
and
(1.7) / |M2f(z)|Pdz < C |f(z)|Pdz, 1<p< 0.
Rn Rn

Definition 1.2. We say that V satisfies the dyadic Wilson-condition (see [18]) or V € RH{ if

/Md(XQV)(:C)deC/ V(z)dz,
Q Q

for all cubes @ € D.
RH{ is refereed as the dyadic maximal reverse Hélder inequality. Our result is the following:

Theorem 1.1. Let p and q be such that 1 < p < n and p < q < oo. Assume V € RH{ and satisfying

for all cubes Q € D
L 1/q
nTp (/ V(m)dx) <C.
Q

(/ f(x”qv(z)dx)l/q <¢ (/R IVf(x)lpdx)l/p, vf € CE(R™).

Remark 1.1. The non dyadic version of Theorem 1.1 can be found in [15], with p = gq.

Q

Then

Corollary 1.1. Let V be a weight satisfying the dyadic Wilson-condition and 1 < p < n. Assume that
there is a constant C' > 0 such that for all cubes Q € D

1 Vi(z)de < C.
Q) /Q (2)ds <
Then
[ s@rviade<c [ [Vi@rds, v e R,

R
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2. SOME PRELIMINARY RESULTS

Definition 2.1. Let ¢(t) be a non-negative,increasing function on (0,00) and V' a weight on R™. We
say that V satisfies a dyadic p-reverse Holder inequality and write V € RHg if

V(x)
(2.1) /QV(ac)go <W> dx < C/QV(at)dx

for all cube @ € D.
Example 2.1. When ¢(t) = t€ and 0 < € < oo, then 2.1 is equivalent to

(2.2) (é/{gV”e(aﬁ))lie < W:/QV(x)dx,

for all cube @ € D. Condition 2.2 is called a reverse Hdélder inequality. To simplify notation, we write
RH? = RHE.

Lemma 2.1. If for some ¢ >0, V belongs to RHY then it must satisfy
(2.3) / M (xqV)(x)dx < C/ V(z)de,
Q Q
for all cubes Q € D. Where xq denotes the characteristic function of the cube Q.
Proof. For Q € D and x € Q, we have by the RH? condition on V'

MA(xqV')(x) < C(M(xqV)*(x).
Thus Hélder’s inequality and 1.7 lead to

1 d 2Vda 1 d 1+ey) THe 2)dz
o /Q MixgV)@)e < /Q (MA(xoV+) ™ (2)d
1 d 1+e 2)dz e
< (Q| M (V) ( >d)

1

(Md(XQV))1+€($)dx) i+

€

IN
-

1

g[a
S~ &~ &~

C Ite ) T+e
SCTARCE
C
S m/QV(:L‘)da’:

Definition 2.2. A weight V is in Ag, 1 < p < o0, if and only if

s (g [ ver) (g [y <e

The class AL is defined by A2 = U,51 A%

Remark 2.1. As in the continuous case, see [5], if V is in AL, then it must be dyadic doubling ,i.e,
V(2Q) < CV(Q), VQ € D, with V(Q) = fQ V(z)dz. Also if V is in A% | then it must satisfy the dyadic
reverse Holder’s inequality, i.e, RH.-condition on V" holds on all Q € D, for some € > 0.
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The converse is false: the dyadic RH.-condition on V does not implies V € A% . In fact the weight
V' = Xgrn\[0,1]» is in RHZ, for all € > 0, but it is not dyadic doubling. Hence, V' can not be in A% .

Lemma 2.2. Let V in RHZ, € > 0. Then 'V is in RHff)g+ with

logt t>1
+4 g
logt_{o 0<t<1.

Proof. Let Q be a fixed cube in D. Then we have for all € € (0,1/2)

(2.4) /Q V() log* (W) dz < % ( /Q V1+6<x)dx) (@ /Q V(:v)dx) o

The last inequality follows from the estimate

€

log(e +1) < =, Vee (0,1/2),vt > 1.
€

Let € € (0,1/2) be such that 2.2 holds. Then by 2.4 we have

/Q V(2)log™ (W) i < C.Q| <22| /Q V(J;)dx)He (L612| /Q V(x)da:>_6

C /Q V()da.

IN

Lemma 2.3. V ¢ RHl‘ig+ <~V € RH{.

Proof. Let § > 0 to be choose later. The estimate 1.5 implies

[artaan@ie = [Tire @ artova) > ia
Q 0

1 [e%e}
(/0 +/5 > (Hz € @ : M4 (xqV(x) > t}]) dt

<1

< (5|Q\+C/ = / xoV(z)dx | dt
s U\ J{zern:v(z)>t}

< c 6\Q|+/ oV (@) / L) dw
R™ 5 t

<

C(6|Q+/QV(ac)log+(5_1V(3:))dx)

Pick § = fél Jo V(2)dz and using the RH! ,-condition to obtain

/ M(yoV)(x)de < C / V(2)da.
Q Q

To prove the converse, write

/QV(:E)log (e—&-“//((é;))) de =1+11,
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with

3 1 V(Q) 1 ' 4
. W/o mV({x €Q:V()>H))dt < /QM (xoV)()da.

To estimate I1, we use 1.6 to get

V(z)log (e + V@ ))d:c

Il = /
(2€Q:V (2)>V(Q)} V(Q)

1 0 1
V@) /V(Q) t vig V{z € Q: V(z) > t)})dt
¢ h t . d z
=V@) /o e+ vigy {z € Q: M (xqV)(z) > t)}|dt

< c/ooo{x €Q: Mi(xoV)(z) > )} |dt

<c /Q M (xgV)(a)de.

Corollary 2.1. A2 c RH?

logt*
Remark 2.2. As mentioned in Remark 2.1, the class RHl‘f) o is more large than the class A% . However
if V is doubling and belongs to RHld . then it must be in A% .
og
3. STRONG TYPE INEQUALITY FOR RIESZ POTENTIALS

Let a to be a real number such that 0 < o < n. By a Riesz potential operator, we mean an operator
of the type
f(y)

L@ = [ 0y
re T =y
The corresponding usual maximal fractional operator is defined by
Ma(£)(0) = sup1QIF [ [7(w)lda,
Q3 Q

for all cubes Q.

Note. The Riesz operators play a crucial role in the study of partial differential equations. For instance,
to study Carleman estimates and unique continuation problem with a singular potential we need some
some estimates of this operator, see for instance [2], [16].

Riesz operators are also closely related to various function spaces in harmonic analysis. A rich literature
on this can be found in [6, 7, 8, 9, 10, 11, 12, 13] and the references there.

Proposition 3.1. Let 0 < a<n, 1 <p< Z andp < q < oo. If o is a weight and V' is in RH{ such
(3.1) Q

that
1/q 1/p
w1 </ V(x)dx) </ O’(llf)dl’) <C
Q Q
for all cubes QQ € D, then

(3.2) ( /Q (Ma(xoV))” (x)a(x)dx)l/p, <cC ( /Q V(x)dx)l/q,
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for all cubes Q € D.
Proof. Let R > 0 be large and let {Q;x} be the maximal dyadic sub-cubes of @ such that

Q]! / V(y)dy > R
Qjk

Then the collection {Q;} satisfies the Carleson nesting condition:

(3.3) > 1Rkl < ClQ)
QjkCQ
so that
(3.4) / V< c/ M (xgV).
Q,1CQ 7 Qir

See [3]. The estimates 3.1, 3.4 and the dyadic Wilson-condition lead to

/

/Q (Ma(xV))” (2)o(a)dz < C Y <|ij|¢:—1 /Q v)p /Q K

QjrCQ

1/q 1/p'
<c (m- v) ( / a(w)dx>
Q;kCQ Qjk Qjk

’

P p'/q
/ %
Qjk

>p/q p'/q —1
< O(/ V> Z/ 1%
Q ka Q Q;rCQ Qjk
p'/qd -1 p'/d
T el
Q

Theorem 3.1. Let0<a<n, 1<p< ¥ andp <q<oc. IfV isin RH{ and satisfies 3.1. Then

(] |faf<x>|qw:c>dx)1/q <o/ f(x)wdf)” ? f e crm.

Proof. We have by a result of R.Kerman and E.Sawyer [14] that for 1 < p < ¢ < 00, the estimate

(/Rn |Iaf(:v)|qV(x)dx>1/q <C (/n |f(x)|Pd:r>1/p, Vf € CP(R™)

holds if and only if

(3.5) ( /Q (Ma(xoV))” (m)dm)l/pl <C ( /Q V(x)dm)l/q/

for all cubes @ € D. Then using Proposition 3.1 to finish the proof. O

Proof of Theorem 1.1. The proof is immediate by using Theorem 3.1 and the following well known esti-
mate

[f(2)] < CL(Vf(@)]) , Ve (R").

38



Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 14 (2024)

The following corollary is immediate.

Corollary 3.1. Let0<a<n, 1<p<n,p<q<ooandV € RH®. Assume that there is a constant

C > 0 such that for all cubes @ € D
L 1/q
n P (/ V(:U)dx) <C.
Q

1/q 1/p
([ r@rva) " sc([ 1vi@ra) ., vrecre
Remark 3.1. Let 0<a<n, 1<p<Zandp<g<oco. Ifoisin RH¢{ and V is a weight such that

(3.6) Q51 ( /Q V(m)dx)l/q ( /Q a(a:)dx)l/p/ <c

for all cubes @ € D, then one can show, by a similar argument given in the proof of Proposition 3.1, that

(3.7) ( /Q (Ma(x00))" (x)V(x)dx)l/q <C ( /Q a(x)dx)l/p

for all cubes @ € D.
This last estimate is well known to be equivalent to

(/ Ma(fa)(x)|qV(x)dx>1/q <C </n |f(x)1’o'(x)df£>1/p, Vf € C°(R™).

If in addition V € A%, then
(/n Ia(f”)(x)qu(m)dx>1/q - (/n IMa(fa)(wﬂqV(x)dx)l/q

<C (/n |f(x)pa(x)da?) l/p, Vf e C§e(R™).

Q

Then

This remark includes Pérez’s result [17].
Acknowledgments. I am grateful for helpful comments from Professor Jean-Pierre Gossez.
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