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1. Introduction

The purpose of this work is to give an extension and a simplified proof of a difficult result by
C.Fefferman [4] concerning the imbedding

(1.1)

∫
Rn

|f |2V ≤ C

∫
Rn

|∇f |2, ∀f ∈ C∞
0 .

Here the weight V will be always a measurable function with values in [0,∞].
The estimate 1.1 is proved in [4], assuming V ∈ F r(Rn), 1 < r ≤ n

2 , i.e, there is a constant C > 0
such that

(1.2) |Q| 2
n

(
1

|Q|

∫
Q

V r

)1/r

≤ C,

for all cubes Q in Rn.
In his work, C.Fefferman remarked that it is probably a sharp version of 1.2 in which the LlogL norm is

used in place of the Lr-norm. Also, it is well known that the F 1-condition is necessary but not sufficient
for 1.1 to hold.

F.Chiarenza and M.Frasca [1] have extended 1.1 to the Lp spaces. They proved that if

(1.3) |Q|
p
n

(
1

|Q|

∫
Q

V r(x)dx

)1/r

≤ C

for all cubes Q, with 1 < p < n and 1 < r < n/p, then

(1.4)

∫
Rn

|f |pV ≤ C

∫
Rn

|∇f |p, ∀f ∈ C∞
0 .
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Here and bellow C is an unspecified positive constant, possibly different at each occurrence.
In this work we replace 1.2 by a weaker condition involving the dyadic LlogL norm.
Next we recall some definitions and notations.

By a dyadic system D we mean a collection of cubes with the following properties:

• the side length of each cube in D is of the form 2−j , j ∈ Z,

• any two cubes in D are either disjoint or one is contained in the other,

• the cubes of a given size form a partition of Rn.

Definition 1.1. Let f be a locally integrable function in Rn. For x ∈ Rn, the dyadic Hardy-Littlewood
maximal function of f is defined by

Mdf(x) = sup
Q∋x,Q⊂D

1

|Q|

∫
Q

|f(x)|dx.

As in the usual case, see [5, Theorem 2.1], we have

(1.5) |{x ∈ Rn : Mdf(x) > t}| ≤ C

t

∫
{x∈Rn:f(x)> t

2}
|f(x)|dx,

(1.6) |{x ∈ Rn : Mdf(x) > t}| ≥ C

t

∫
{x∈Rn:f(x)>t}

|f(x)|dx,

and

(1.7)

∫
Rn

|Mdf(x)|pdx ≤ C

∫
Rn

|f(x)|pdx, 1 < p < ∞.

Definition 1.2. We say that V satisfies the dyadic Wilson-condition (see [18]) or V ∈ RHd
1 if∫

Q

Md(χQV )(x)dx ≤ C

∫
Q

V (x)dx,

for all cubes Q ∈ D.
RHd

1 is refereed as the dyadic maximal reverse Hölder inequality. Our result is the following:

Theorem 1.1. Let p and q be such that 1 < p < n and p ≤ q < ∞. Assume V ∈ RHd
1 and satisfying

for all cubes Q ∈ D

|Q|
1
n− 1

p

(∫
Q

V (x)dx

)1/q

≤ C.

Then (∫
Rn

|f(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|∇f(x)|pdx
)1/p

, ∀f ∈ C∞
0 (Rn).

Remark 1.1. The non dyadic version of Theorem 1.1 can be found in [15], with p = q.

Corollary 1.1. Let V be a weight satisfying the dyadic Wilson-condition and 1 < p < n. Assume that
there is a constant C > 0 such that for all cubes Q ∈ D

|Q|
p
n−1

∫
Q

V (x)dx ≤ C.

Then ∫
Rn

|f(x)|pV (x)dx ≤ C

∫
Rn

|∇f(x)|pdx, ∀f ∈ C∞
0 (Rn).
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2. Some Preliminary Results

Definition 2.1. Let φ(t) be a non-negative,increasing function on (0,∞) and V a weight on Rn. We
say that V satisfies a dyadic φ-reverse Hölder inequality and write V ∈ RHd

φ if

(2.1)

∫
Q

V (x)φ

(
V (x)

1
|Q|
∫
Q
V (x)dx

)
dx ≤ C

∫
Q

V (x)dx

for all cube Q ∈ D.
Example 2.1. When φ(t) = tϵ and 0 < ϵ < ∞, then 2.1 is equivalent to

(2.2)

(
1

Q

∫
Q

V 1+ϵ(x)

) 1
1+ϵ

≤ C

|Q|

∫
Q

V (x)dx,

for all cube Q ∈ D. Condition 2.2 is called a reverse Hölder inequality. To simplify notation, we write
RHd

ϵ = RHd
tϵ .

Lemma 2.1. If for some ϵ > 0, V belongs to RHd
ϵ then it must satisfy

(2.3)

∫
Q

Md(χQV )(x)dx ≤ C

∫
Q

V (x)dx,

for all cubes Q ∈ D. Where χQ denotes the characteristic function of the cube Q.

Proof. For Q ∈ D and x ∈ Q, we have by the RHd
ϵ condition on V

Md(χQV
1+ϵ)(x) ≤ C(Md(χQV ))1+ϵ(x).

Thus Hölder’s inequality and 1.7 lead to

1

|Q|

∫
Q

Md(χQV )(x)dx ≤ 1

|Q|

∫
Q

(
Md(χQV

1+ϵ)
) 1

1+ϵ (x)dx

≤
(

1

|Q|

∫
Q

Md(χQV
1+ϵ)(x)dx

) 1
1+ϵ

≤
(

C

|Q|

∫
Q

(Md(χQV ))1+ϵ(x)dx

) 1
1+ϵ

≤
(

C

|Q|

∫
Q

V 1+ϵ(x)dx

) 1
1+ϵ

≤ C

|Q|

∫
Q

V (x)dx.

□

Definition 2.2. A weight V is in Ad
p, 1 < p < ∞, if and only if

sup
Q∈D

(
1

|Q|

∫
Q

V (x)dx

)(
1

|Q|

∫
Q

V
−1
p−1 (x)dx

)p−1

≤ C.

The class Ad
∞ is defined by Ad

∞ = ∪p>1A
d
p.

Remark 2.1. As in the continuous case, see [5], if V is in Ad
∞, then it must be dyadic doubling ,i.e,

V (2Q) ≤ CV (Q), ∀Q ∈ D, with V (Q) =
∫
Q
V (x)dx. Also if V is in Ad

∞, then it must satisfy the dyadic

reverse Hölder’s inequality, i.e, RHϵ-condition on V holds on all Q ∈ D, for some ϵ > 0.
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The converse is false: the dyadic RHϵ-condition on V does not implies V ∈ Ad
∞. In fact the weight

V = χRn\[0,1]n is in RHd
ϵ , for all ϵ > 0, but it is not dyadic doubling. Hence, V can not be in Ad

∞.

Lemma 2.2. Let V in RHd
ϵ , ϵ > 0. Then V is in RHd

log+ with

log+ t =

{
log t t > 1
0 0 < t ≤ 1.

Proof. Let Q be a fixed cube in D. Then we have for all ϵ ∈ (0, 1/2)

(2.4)

∫
Q

V (x) log+

(
V

1
|Q|
∫
Q
V (x)dx

)
dx ≤ 1

ϵ

(∫
Q

V 1+ϵ(x)dx

)(
1

|Q|

∫
Q

V (x)dx

)−ϵ

.

The last inequality follows from the estimate

log(e+ t) ≤ tϵ

ϵ
, ∀ϵ ∈ (0, 1/2),∀t ≥ 1.

Let ϵ ∈ (0, 1/2) be such that 2.2 holds. Then by 2.4 we have∫
Q

V (x) log+

(
V (x)

1
|Q|
∫
Q
V (x)dx

)
dx ≤ Cϵ|Q|

(
1

|Q|

∫
Q

V (x)dx

)1+ϵ(
1

|Q|

∫
Q

V (x)dx

)−ϵ

≤ C

∫
Q

V (x)dx.

□

Lemma 2.3. V ∈ RHd
log+ ⇐⇒ V ∈ RHd

1 .

Proof. Let δ > 0 to be choose later. The estimate 1.5 implies∫
Q

Md(χQV )(x)dx =

∫ ∞

0

|{x ∈ Q : Md(χQV )(x) > t}|dt

=

(∫ δ

0

+

∫ ∞

δ

)
(
∣∣{x ∈ Q : Md(χQV (x) > t}|

)
dt

≤ δ|Q|+ C

∫ ∞

δ

1

t

(∫
{x∈Rn:V (x)>t}

χQV (x)dx

)
dt

≤ C

(
δ|Q|+

∫
Rn

χQV (x)

(∫ V (x)

δ

1

t
dt

)
dx

)

≤ C

(
δ|Q|+

∫
Q

V (x) log+(δ−1V (x))dx

)
Pick δ = 1

|Q|
∫
Q
V (x)dx and using the RHd

log+ -condition to obtain∫
Q

Md(χQV )(x)dx ≤ C

∫
Q

V (x)dx.

To prove the converse, write ∫
Q

V (x) log

(
e+

V (x)

V (Q)

)
dx = I + II,
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with

I =
1

V (Q)

∫ V (Q)

0

1

e+ t
V (Q)

V ({x ∈ Q : V (x) > t)})dt ≤
∫
Q

Md(χQV )(x)dx.

To estimate II, we use 1.6 to get

II =

∫
{x∈Q:V (x)>V (Q)}

V (x) log

(
e+

V (x)

V (Q)

)
)dx

=
1

V (Q)

∫ ∞

V (Q)

1

e+ t
V (Q)

V ({x ∈ Q : V (x) > t)})dt

≤ C

V (Q)

∫ ∞

0

t

e+ t
V (Q)

|{x ∈ Q : Md(χQV )(x) > t)}|dt

≤ C

∫ ∞

0

{x ∈ Q : Md(χQV )(x) > t)}|dt

≤ C

∫
Q

Md(χQV )(x)dx.

□

Corollary 2.1. Ad
∞ ⊂ RHd

log+ .

Remark 2.2. As mentioned in Remark 2.1, the class RHd
log+ is more large than the class Ad

∞. However

if V is doubling and belongs to RHd
log+ then it must be in Ad

∞.

3. Strong type inequality for Riesz potentials

Let α to be a real number such that 0 < α < n. By a Riesz potential operator, we mean an operator
of the type

Iα(f)(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

The corresponding usual maximal fractional operator is defined by

Mα(f)(x) = sup
Q∋x

|Q|αn−1

∫
Q

|f(x)|dx,

for all cubes Q.
Note. The Riesz operators play a crucial role in the study of partial differential equations. For instance,
to study Carleman estimates and unique continuation problem with a singular potential we need some
some estimates of this operator, see for instance [2], [16].
Riesz operators are also closely related to various function spaces in harmonic analysis. A rich literature
on this can be found in [6, 7, 8, 9, 10, 11, 12, 13] and the references there.

Proposition 3.1. Let 0 < α < n, 1 < p < n
α and p ≤ q < ∞. If σ is a weight and V is in RHd

1 such
that

(3.1) |Q|αn−1

(∫
Q

V (x)dx

)1/q (∫
Q

σ(x)dx

)1/p′

≤ C

for all cubes Q ∈ D, then

(3.2)

(∫
Q

(Mα(χQV ))
p′
(x)σ(x)dx

)1/p′

≤ C

(∫
Q

V (x)dx

)1/q′
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for all cubes Q ∈ D.

Proof. Let R > 0 be large and let {Qjk} be the maximal dyadic sub-cubes of Q such that

|Qjk|
α
n−1

∫
Qjk

V (y)dy > Rk.

Then the collection {Qjk} satisfies the Carleson nesting condition:

(3.3)
∑

Qjk⊂Q

|Qjk| ≤ C|Q|

so that

(3.4)
∑

Qjk⊂Q

∫
Qjk

V ≤ C

∫
Q

Md(χQV ).

See [3]. The estimates 3.1, 3.4 and the dyadic Wilson-condition lead to∫
Q

(Mα(χQV ))
p′
(x)σ(x)dx ≤ C

∑
Qjk⊂Q

(
|Qjk|

α
n−1

∫
Qjk

V

)p′ ∫
Qjk

σ

≤ C
∑

Qjk⊂Q

|Qjk|
α
n−1

(∫
Qjk

V

)1/q (∫
Qjk

σ(x)dx

)1/p′p′ (∫
Qjk

V

)p′/q′

≤ C
∑

Qjk⊂Q

(∫
Qjk

V

)p′/q′

≤ C

(∫
Q

V

)p′/q′−1 ∑
Qjk⊂Q

∫
Qjk

V

≤ C

(∫
Q

V

)p′/q′−1 ∫
Q

Md(χQV ) ≤ C

(∫
Q

V

)p′/q′

.

□

Theorem 3.1. Let 0 < α < n, 1 < p < n
α and p ≤ q < ∞. If V is in RHd

1 and satisfies 3.1. Then(∫
Rn

|Iαf(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|f(x)|pdx
)1/p

, ∀f ∈ C∞
0 (Rn).

Proof. We have by a result of R.Kerman and E.Sawyer [14] that for 1 < p ≤ q < ∞, the estimate(∫
Rn

|Iαf(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|f(x)|pdx
)1/p

, ∀f ∈ C∞
0 (Rn)

holds if and only if

(3.5)

(∫
Q

(Mα(χQV ))
p′
(x)dx

)1/p′

≤ C

(∫
Q

V (x)dx

)1/q′

for all cubes Q ∈ D. Then using Proposition 3.1 to finish the proof. □

Proof of Theorem 1.1. The proof is immediate by using Theorem 3.1 and the following well known esti-
mate

|f(x)| ≤ CI1(|∇f(x)|) , ∀f ∈ C∞
0 (Rn).

□
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The following corollary is immediate.

Corollary 3.1. Let 0 < α < n, 1 < p < n, p ≤ q < ∞ and V ∈ RHd
ϵ . Assume that there is a constant

C > 0 such that for all cubes Q ∈ D

|Q|
1
n− 1

p

(∫
Q

V (x)dx

)1/q

≤ C.

Then (∫
Rn

|f(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|∇f(x)|pdx
)1/p

, ∀f ∈ C∞
0 (Rn).

Remark 3.1. Let 0 < α < n, 1 < p < n
α and p ≤ q < ∞. If σ is in RHd

1 and V is a weight such that

(3.6) |Q|αn−1

(∫
Q

V (x)dx

)1/q (∫
Q

σ(x)dx

)1/p′

≤ C

for all cubes Q ∈ D, then one can show, by a similar argument given in the proof of Proposition 3.1, that

(3.7)

(∫
Q

(Mα(χQσ))
q
(x)V (x)dx

)1/q

≤ C

(∫
Q

σ(x)dx

)1/p

for all cubes Q ∈ D.
This last estimate is well known to be equivalent to(∫

Rn

|Mα(fσ)(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|f(x)|pσ(x)dx
)1/p

, ∀f ∈ C∞
0 (Rn).

If in addition V ∈ Ad
∞, then(∫

Rn

|Iα(fσ)(x)|qV (x)dx

)1/q

≃
(∫

Rn

|Mα(fσ)(x)|qV (x)dx

)1/q

≤ C

(∫
Rn

|f(x)|pσ(x)dx
)1/p

, ∀f ∈ C∞
0 (Rn).

This remark includes Pérez’s result [17].
Acknowledgments. I am grateful for helpful comments from Professor Jean-Pierre Gossez.
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[12] F. Gürbüz, Sublinear operators with rough kernel generated by fractional integrals and commutators
on generalized vanishing local Morrey spaces, TWMS J. App. Eng. Math. 10 (2020), 73-84.
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