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1. Introduction, Notations, Definitions and Some Basic Results

In this paper we make some elementary remarks on the structure of complete (in the Dedekind meaning)
ordered Abelian groups. Some basic interesting facts on Abelian totally ordered groups one can also find
in [3].

An Abelian group (G, ◦) is said to be a totally ordered group if there exists a total order relation ”≺”
on it such that for any x, y, z ∈ G with x ≺ y, we have x ◦ z ≺ y ◦ z. An abelian totally ordered group
is complete if any upper bounded subset S of G has a least upper bound supS in G. We say that G is
dense in itself if for any x, y ∈ G with x ≺ y, there exists w ∈ G, such that x ≺ w ≺ y.

In the following we always denote by G = (G, ◦,≺) a complete totally ordered abelian group.
In this note we give all the auxiliary results (Section 1) to supply an elementary and self contained proof

of the fact that any complete totally ordered abelian group (G, ◦,≺) is isomorphic and homeomorphic
with the additive ordered group of real numbers (R,+, <) (Theorem 2.2). As a consequence we prove
that any two complete totally ordered abelian groups are isomorphic and homeomorphic (Corollary 2.3).

Let us denote by e the unity element of G and, for any x ∈ G, we denote by x′ the symmetric of x in
G. An open interval (x, y), where x, y ∈ G, x ≺ y, is the subset {z ∈ G : x ≺ z ≺ y} of G. We similarly
define [x, y), (x, y] and [x, y]. Since the mapping x → x′ is strictly decreasing, a totally ordered abelian
group (G, ◦,≺), dense in itself, is complete if and only if any lower bounded subset L of G has a greatest
lower bound inf L in G.

A subsetD ofG is said to be open inG if for any z ∈ D, there exist x, y ∈ G, x ≺ y, such that (x, y) ⊂ D
and z ∈ (x, y). It is not difficult to see that all open subsets of G generate a topological group structure on
G. We call this topology, the interval topology. It is easy to see that the set Ve = {(ε′, ε) : ε ≻ e, ε ∈ G}
of open symmetric intervals which contain e is a fundamental system of neighborhoods of e. Then,

Va = {(ε′ ◦ a, ε ◦ a) : ε ≻ e, ε ∈ G}
is a fundamental system of neighborhoods of an arbitrary element a in G. In fact, Va is the translation
Ve ◦a of Ve in a. A mapping f : G → G is continuous at a ∈ G if for any ε ∈ G, ε ≻ e, there exists η ∈ G,
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η ≻ e, such that for any x ∈ (η′◦a, η◦a), we have f(x) ∈ (ε′◦f(a), ε◦f(a)). If f is continuous at any point
a of G, we say that f is continuous on G. It is not difficult to see that a function f : G → G is continuous
if and only if for any open subset D of G, there exists an open subset E of G, such that f(E) ⊂ D. A
mapping g : G × G → G is continuous at (a, b) ∈ G × G if for any ε ∈ G, ε > e, there exist η, δ ∈ G,
η, δ ≻ e, such that for any (x, y) ∈ ((η′ ◦ a, η ◦ a), (δ′ ◦ b, δ ◦ b), we have g(x, y) ∈ (ε′ ◦ g(a, b), ε ◦ g(a, b)).
Here we used the so called product topology on G. Namely, this last one is generated by the product
subsets D × E of G × G, where D and E are open subsets in G. Thus, a function g : G × G → G is
continuous if and only if for any open subset D of G, there exist two open subsets E and F of G, such
that g(E × F ) ⊂ D.

In the following, for simplicity, if w ∈ G, we denote w ◦ w ◦ · · · ◦ w︸ ︷︷ ︸
n−times

by w◦n.

Lemma 1.1. With the above notation and hypotheses, the mapping h : G → G, h(x) = x′ is a strictly
decreasing continuous automorphism of G.

Proof. Let x, y be in G such that x ≺ y. Then, e = x ◦ x′ ≺ y ◦ x′, so y′ ≺ x′. Thus, h, h−1 are strictly
decreasing group morphisms. Since h is a group morphism, it is sufficient to prove its continuity at e.
Let ε be in G, with e ≺ ε. Then h((ε′, ε)) = (ε′, ε), so h is also a continuous mapping. □

Lemma 1.2. Let (G, ◦,≺) be a totally ordered group which is dense in itself. Then, a) For any x ≻ e,
there exists y ∈ G, with x ≻ y ≻ e and x ≻ y ◦ y ≻ e. Moreover, for any n ∈ {2, 3, · · · }, there exists
w ∈ G, with x ≻ w ≻ e and x ≻ w◦2n ≻ e. b) The mapping g : G×G → G, g(x, y) = x ◦ y is continuous
relative to the above interval topology. Thus, (G, ◦,≺) is a topological group with respect to its interval
topology.

Proof. a) Let z be in (e, x), that is e ≺ z ≺ x. If z ◦ z ∈ (e, x), we write y = z, and we are done. If
z ◦ z ≻ x, we see that e ≺ (x ◦ z′) ◦ (x ◦ z′) ≺ x, because x ◦ z′ ≻ e. Since x ◦ z′ ≺ x, we can take
y = x ◦ z′. If z ◦ z = x, we substitute z with y ∈ (z, x). Then, y ◦ w ≻ z ◦ z = x, etc. To prove the last
assertion, we take w1 ∈ (e, x) such that w1 ◦ w1 ∈ (e, x) (see a)). Now, we take w1 instead of x and find
w2 ∈ (e, w1) such that w2 ◦ w2 ∈ (e, w1). Thus, w

◦4
2 ∈ (e, w1 ◦ w1) ⊂ (e, x). We continue in this way and

find w1, w2, · · · , wk · · · such that w◦2k
k ∈ (e, x) for any k = 1, 2, · · · .

b) It is sufficient to prove the continuity of g at (e, e). Let η be in G, η ≻ e, and let us try to find ε ≻ e,
such that g((ε′, ε)× (ε′, ε)) ⊂ (η′, η). It is sufficient to take ε ∈ G with e ≺ ε ◦ ε ≺ η (see a)). Indeed, if
(x, y) ∈ ((ε′, ε)× (ε′, ε)), then

η′ ≺ ε′ ◦ ε′ ≺ x ◦ y ≺ ε ◦ ε ≺ η,

so g is continuous at (e, e). Hence, this lemma and the previous one say that (G, ◦,≺) is a topological
group relative to its interval topology. □

Remark. If (G, ◦,≺) is a totally ordered Abelian group which is not dense in itself, then (G, ◦,≺) is
isomorphic to (Z,+, <) (see Corollary 2.4), so it is also a topological group with the discrete topology.

Definition. We say that a sequence {xn}, xn ∈ G for any n = 0, 1, · · · is convergent to x ∈ G if for any
interval (ε, η) which contains x, there exists n0 ∈ N such that for any n ≥ n0, we have xn ∈ (ε, η).

For instance, any increasing (decreasing) upper (lower) bounded sequence {xn} in G, is convergent to
the least upper bound (greater lower bound) of the set {xn : n = 0, 1, · · · }.

Lemma 1.3. [1] Let (G, ◦,≺) be a complete totally ordered non-trivial Abelian group and let a be an
element in G, with e ≺ a. Then, the sequence {a◦n}n, where a◦n = a ◦ a ◦ · · · ◦ a, n-times, is a strictly
increasing not upper bounded sequence. Similar, if b ≺ e, then the sequence {b◦n}n is a strictly decreasing
not lower bounded sequence.

Proof. Since e ≺ a, we see that a ≺ a ◦ a, a ◦ a ≺ a ◦ a ◦ a, etc. So the sequence {a◦n}n is strictly
increasing. Let us assume that {a◦n}n is upper bounded by γ ∈ G. So, A = sup{a◦n}n is in G and,
since the mapping x → a ◦ x is continuous, we see that a ◦ A = A, thus a = e, a contradiction. For the
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last statement, we take b′, the symmetric of b, and we consider the sequence {b′◦n}n, which is strictly
increasing (see Lemma 1.1 and the first statement), so it cannot be upper bounded. Thus {b◦n}n cannot
be lower bounded, otherwise, if δ is a lower bound of {b◦n}n, then δ′ is an upper bound for the strictly
increasing sequence {b′◦n}n, a contradiction from the first statement. □

Proposition 1.4. Let (G1, ◦,≺) and (G2, ∗, <) be two complete totally ordered Abelian groups which
are dense in themselves, and let f : G1 → G2 be a strictly increasing continuous (relative to their
corresponding orders) mapping. Then, for any a, b ∈ G1, a ≺ b, we have f((a, b)) = (f(a), f(b)), that is
f carries the open interval (a, b) of G1 into the open interval (f(a), f(b)) of G2.

Proof. Let us take λ in G2 with f(a) < λ < f(b), and let us consider the following non-empty subsets in
G1 :

A− = {x ∈ [a, b] : f(x) ≤ λ}, and A+ = {x ∈ [a, .b] : f(x) ≥ λ}.

We see that A−∪A+ = [a, b], and A− and A+ are bounded inG1. In addition, c− = supA− ⪯ c+ = inf A+.
Let us assume that c− ≺ c+ and let us take ξ ∈ (c−, c+) in G1. Thus, f(ξ) > λ and f(ξ) < λ, a
contradiction. So, c− = c+ = c in G1. We prove that f(c) = λ. Otherwise, we suppose that f(c) < λ. We
notice that f(a) < f(c), otherwise a = c and f was not continuous at x = a. Since f(a) < f(c) < λ, we
can take δ, µ ∈ G2 such that

f(a) < δ < f(c) < µ < λ.

Since f is continuous at x = c, there exist ε, η in G1 such that a < ε < c < η < b and f((ε, η)) ⊂ (δ, µ).
In particular, f(η) ≤ µ < λ, so η ∈ A−, a contradiction, because c = supA− and c < η. We can similarly
prove that the assumption f(c) > λ is impossible. Thus f(c) = λ and the proof is complete. □

Proposition 1.5. Let (G, ◦,≺) be a non-trivial complete totally ordered Abelian group, and let (H, ◦,≺)
be a non-trivial subgroup of it such that for any x, y ∈ H, x ≺ y, the entire interval (x, y) (in G) is
contained in H. Then H = G.

Proof. Let us assume that H ̸= G, that is there exists ξ in G∖H. We can suppose that ξ ≻ e, otherwise
we substitute ξ with ξ′, the symmetric of ξ. We take now a ∈ H, a ≻ e and, from Lemma 1.3, we see that
there exists m ∈ N∗ such that a◦m ≻ ξ, that is ξ ∈ (e, a◦m) ⊂ H, a contradiction. Thus, H = G. □

Proposition 1.6. Let (G, ◦,≺) be a non-trivial complete totally ordered Abelian group, let u be an element
in G and let n be a non-zero natural number. Then, the equation x◦n = u has a unique solution in G.
Here, as above, x◦n = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸

n−times

.

Proof. We can assume that u ≻ e, otherwise, we take u′ and we consider the equation y◦n = u′, with
y = x′, etc. It is sufficient to prove that the mapping gn : G → G, gn(x) = x◦n is a strictly increasing
continuous automorphism of G. For n = 1, g1(x) = x is obviously strictly increasing. We assume that gm
is strictly increasing and we take x ≺ y in G. We see that gm(x) ≺ gm(y) implies

gm+1(x) = gm(x) ◦ x ≺ gm(y) ◦ x ≺ gm(y) ◦ y = gm+1(y).

So, gm+1 is also strictly increasing, that is gn is strictly increasing for any n = 1, 2, ... Since the mapping
(x, y) → x ◦ y is continuous (see Lemma 1.2, b) and the Remark from this section) we easily prove by
mathematical induction on n that gn is continuous for any n = 1, 2, ... From Proposition 1.4 we see
that gn((x, y)) = (gn(x), gn(y)) for any x ≺ y. Now, we consider the subgroup H = gn(G) and apply
Proposition 1.5 to find that H = G, that is gn is also onto. Since G is an abelian group, gn is obviously
an automorphism of ordered groups and so, the proof is complete. Since gn is strictly increasing, we see
that the solution xn of the equation x◦n = u is unique in G. □
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2. The main results

In the following we keep unchanged the notation, definitions and hypotheses given in Section 1.

Theorem 2.1. Let (G, ◦,≺) be a non-trivial complete totally ordered Abelian group which is dense in
itself, and let (Q,+, <) be the usual totally ordered additive group of rational numbers. Then, for any fixed
element u ≻ e in G, there exists a unique continuous strictly increasing (one-to-one) group morphism
f∗
u : (Q,+, <) → (G, ◦,≺), such that f∗

u(1) = u.

Proof. (Here we use a basic idea of C.N. Beli [2] for the construction of f∗
u). First of all we define

fu : (Z,+, <) → (G, ◦,≺) by fu(n) = u◦n, if n > 0, fu(n) = (u′)◦(−n), if n < 0, and fu(0) = e. It is
not difficult to prove that fu is a strictly increasing group morphism. Indeed, for instance, let us take
n > m > 0 and let us prove that fu(n−m) = fu(n) ◦ [fu(m)]

′
:

fu(n−m) = u◦(n−m) = u◦n(u′)◦m = u◦n (u◦m)
′
= fu(n) ◦ [fu(m)]

′
.

Now, for n > m > 0, we see that fu(n−m) ≻ e, because

e ≺ u ≺ u ◦ u ≺ · · ·
So, fu(n) ◦ [fu(m)]

′ ≻ e, or, multiplying both sides in G by [fu(m)] , we get fu(n) ≻ fu(m). The other
situations of n,m in Z can be reduced to n > m > 0 by eventually considering −n, −m instead of n and
m.

Now we extend this mapping fu to a strictly increasing continuous group morphism f∗
u : (Q,+, <) →

(G, ◦,≺), such that f∗
u(1) = u. For any n = 2, 3, ... we write f∗

u

(
1
n

)
= xn ∈ G, where xn is the unique

solution of the equation x◦n = u in G (see Proposition 1.6). Moreover, we also define: f∗
u

(
m
n

)
= x◦m

n and

f∗
u

(
−m

n

)
= (x′

n)
◦m for m = 2, 3, ... First of all we have to prove that the definition is correct. Namely,

let m
n = p

q , where m,n, p, q ∈ N∗, n, q > 0. So, mq = np, and we want to prove that x◦m
n = x◦p

q . We are

in a group, so we can simplify with respect to the group law ”◦”. Thus,
x◦m
n = x◦p

q ⇔ x◦mq
n = x◦pq

q ⇔ x◦np
n = x◦pq

q ⇔ (x◦n
n )

p
=

(
x◦q
q

)p ⇔ up = up,

and so, the definition of f∗
u is correct. Now we prove that the mapping f∗

u is a strictly increasing group
morphism. Let m

n , a
b be two rational numbers such that m

n < a
b . We can assume that n = b > 0 and that

even m is a positive integer, otherwise we use x′
n instead of xn. Since, in this last case, m < a, we can

write: f∗
u(

m
n ) = x◦m

n ≺ x◦a
n = f∗

u(
a
b ), because xn ≻ e. In addition, in general, if m > 0, a > 0, we have:

f∗
u

(m
n

+
a

n

)
= f∗

u

(
m+ a

n

)
= x◦(m+a)

n = x◦m
n ◦ x◦a

n = f∗
u

(m
n

)
◦ f∗

u

(a

n

)
.

If m > 0, a < 0, we can write:

f∗
u

(m
n

+
a

n

)
= f∗

u

(
m

n
− −a

n

)
= x◦m

n ◦
(
x◦(−a)
n

)′
= f∗

u

(m
n

)
◦ f∗

u

(a

n

)
.

The case m < 0, a > 0 is symmetric with the previous one, because G is an abelian group.
If m < 0, a < 0, we can write:

f∗
u

(m
n

+
a

n

)
= (x′

n)
◦(−m−a)

= (x′
n)

◦(−m) ◦ (x′
n)

◦(−a) = f∗
u

(m
n

)
◦ f∗

u

(a

n

)
.

Hence, f∗
u is a group morphism.

We prove now that the mapping f∗
u is continuous. Since f∗

u is a group morphism, it is sufficient to
prove the continuity of f∗

u at 0. For this, we take η ≻ e and a η-neighborhood (η′, η) of f∗
u(0) = e. Since

f∗
u is strictly increasing, we see that it is sufficient to prove that f∗

u

(
1
n

)
= xn ∈ (e, η) for any n ≥ n0.

Since η ≻ e, the sequence {η◦n}n is not upper bounded in G (see Lemma 1.3). Thus, there exists n0 ∈ N∗

such that if n ≥ n0, we have u ≺ η◦n. So, u = x◦n
n ≺ η◦n, that is xn ≺ η for any n ≥ n0. If we change

1
n with − 1

n , we have to change xn with x′
n and η with η′. Hence, f∗

u is a strictly increasing continuous
group morphism. □

4
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Theorem 2.2. With the notation and hypotheses of Theorem 2.1, the strictly increasing continuous
group morphism f∗

u : (Q,+ <) → (G, ◦,≺) can be uniquely extended up to a strictly increasing continuous

group isomorphism f̃u : (R,+ <) → (G, ◦,≺), where (R,+, <) is the usual totally ordered additive

group of real numbers. Moreover, f̃−1
u : (G, ◦,≺) → (R,+ <) is also a strictly increasing continuous

group isomorphism, that is f̃u is also a homeomorphism of abelian ordered groups relative to the interval
topologies induced by their corresponding orders.

Proof. Let r be a real number and let us define two subsets of rational numbers in connection with r:

A−
r = {q ∈ Q : q ≤ r} and A+

r = {p ∈ Q : p ≥ r}.
Thus, r = supA−

r = inf A+
r . We see that any p ∈ A+

r is an upper bound for A−
r , and any q ∈ A−

r is
a lower bound for A+

r . Since f∗
u is strictly increasing, we see that the set f∗

u(A
−
r ) is upper bounded by

f∗
u(p) for any p ∈ A+

r , and f∗
u(A

+
r ) is lower bounded by f∗

u(q) for any q ∈ A−
r . Since G is complete, we

see that there exist f̃−
u (r) = sup f∗

u(A
−
r ), and f̃+

u (r) = inf f∗
u(A

+
r ) in G and f̃−

u (r) ⪯ f̃+
u (r). We shall see

later that f̃−
u (r) = f̃+

u (r), but, for the moment we define: f̃u(r) = f̃−
u (r) = sup f∗

u(A
−
r ). It is clear that

f̃u(r) = f∗
u(r) if r is a rational number. If r1 < r2, we can find three rational number s1, s and s2, such

that r1 < s1 < s < s2 < r2. Thus,

f̃u(r1) ⪯ f̃u(s1) ≺ f̃u(s) ≺ f̃u(s2) ⪯ f̃u(r2),

and so, f̃u is strictly increasing.

We prove now that f̃u is a group morphism. For this, it is sufficient to prove that for any r1, r2 ∈ R,
supA−

r1+r2 = supA−
r1 ◦ supA

−
r2 .

We take q1 ∈ A−
r1 and q2 ∈ A−

r2 , so q1 + q2 ∈ A−
r1+r2 and

f∗
u(q1 + q2) = f∗

u(q1) ◦ f∗
u(q2) ⪯ f̃u(r1) ◦ f̃u(r2).

Hence,

(2.1) f̃u(r1 + r2) ⪯ f̃u(r1) ◦ f̃u(r2).
Conversely, we take an arbitrary ε ∈ G, ε ≻ e, and we chose q1, q2 ∈ Q, such that q1 ≤ r1, q2 ≤ r2,

f̃u(r1) ◦ ε′ ⪯ f∗
u(q1) ⪯ f̃u(r1) and f̃u(r2) ◦ ε′ ⪯ f∗

u(q2) ⪯ f̃u(r2). Thus,

(2.2) f̃u(r1) ◦ f̃u(r2) ◦ ε′ ◦ ε′ ⪯ f∗
u(q1 + q2) ⪯ f̃u(r1 + r2).

Since the mapping x → x◦x is continuous at e (see Lemma 1.2), we see that if ε′n ↗ e (see the Definition
from the first section), then ε′n ◦ ε′n ↗ e. So, from (2.2), we find that

(2.3) f̃u(r1) ◦ f̃u(r2) ⪯ f̃u(r1 + r2).

Thus, (2.1) and (2.3) implies that f̃u is a group morphism.

Let us prove now that f̃u is a continuous mapping. Since f̃u is a group morphism, it is sufficient to

prove that f̃u is continuous at r = 0. But f̃u(0) = f∗
u(0) = e, so let us take η ∈ G, η ≻ e and let us

try to find ε ∈ Q+ such that f̃u((−ε, ε)) ⊂ (η′, η), where (−ε, ε) is considered as an open interval in

R. It is sufficient to find such an ε with f̃u(0, ε) ⊂ (e, η). Let us take η1 ∈ G with e ≺ η1 ≺ η. Since
f∗
u : (Q,+, <) → (G, ◦,≺) is continuous, there exists an ε ∈ Q+ such that f∗

u((0, ε) ∩ Q) ⊂ (e, η1). Now

we take r ∈ (0, ε) ⊂ R, and a sequence qn ↗ r, qn ∈ (0, ε) ∩ Q. By the definition of f̃u(r), we see that

f∗
u(qn) = f̃u(qn) ↗ f̃u(r). But e ≺ f̃u(qn) ⪯ η1 ≺ η for any n = 1, 2, ... So, e ≺ f̃u(r) ⪯ η1 ≺ η, otherwise,

there is m ∈ N∗ with f∗
u(qm) ≻ η1, a contradiction. If r ∈ (−ε, 0) ⊂ R, since f̃u(r) =

(
f̃u(−r)

)′
, we see

that f̃u((−ε, 0)) ⊂ (η′, e). Hence, f̃u is also a continuous one-to-one group morphism.

From Proposition 1.4 we see that f̃u((a, b)) =
(
f̃u(a), f̃u(b)

)
for any a, b ∈ R, a < b. This means that

the subgroup H = f̃u(R) of G has the property given in Proposition 1.5. Therefore, f̃u(R) = G (see
5
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Proposition 1.5), and so f̃u : (R,+ <) → (G, ◦,≺) is a strictly increasing continuous group isomorphism.

For the second statement, since f̃−1
u is also a group morphism, it is sufficient to prove its continuity at e.

Moreover, since f̃u and f̃−1
u are strictly increasing mappings, it is sufficient to prove that for any ε ∈ R,

ε > 0, there exists η ∈ G, η ≻ e, such that f̃−1
u ((e, η)) ⊂ (0, ε). We assume contrary, namely, that there

exists a sequence {ηn}, ηn ∈ G, ηn ≻ e for any n = 1, 2, ..., such that ηn ↘ e and f̃−1
u (ηn) ≥ ε, that

is ηn ⪰ f̃u(ε) ≻ e for any n = 1, 2, ..., a contradiction with ηn ↘ e. Hence, f̃−1
u is also a continuous

mapping, and the proof of the theorem is now complete. □

Corollary 2.3. Let (G1, ◦,≺1) and (G2, ∗,≺2) be two complete totally ordered Abelian groups which are
dense in themselves, and e1, e2 be their unity elements. Let u1 ∈ G1, u1 ≻1 e1 and u2 ∈ G2, u2 ≻2 e2 be
two fixed elements in G1 and G2 respectively. Then there exists a unique strictly increasing bicontinuous
group isomorphism fu1,u2

: (G1, ◦,≺1) → (G2, ∗,≺2), such that fu1,u2
(u1) = u2.

Proof. From Theorem 2.2 we can construct two strictly increasing bicontinuous group isomorphisms,

f̃u1
: (R,+, <) → (G1, ◦,≺1), and f̃u2

: (R,+, <) → (G2, ◦,≺2).

So, fu1,u2 = f̃u2 ◦ f̃−1
u1

is the required isomorphism. □

Remark. If in the above considerations, we replace u ≻ e with v ≺ e, v ∈ G, we get strictly decreasing

bicontinuous group isomorphisms f∗
v , f̃v, fv1,v2 , where v1 ≺ e1 and v2 ≺ e2.

Corollary 2.4. Any complete totally ordered Abelian group (G, ◦,≺) is isomorphic to (Z,+, <) or to
(R,+, <), where ”<” is the usual total order relation on Z and on R respectively.

Proof. a) First of all we assume that (G, ◦,≺) has a minimal positive element c ≻ e, where e is the unity
element in G. Let us take another positive element a in G. We want to prove that there exists n ∈ N
such that a = c◦n = c ◦ c ◦ · · · ◦ c, n-times. If a = c, we are done; if a ≻ c, let us take the largest natural
number n such that c◦n ⪯ a. If c◦n = a, we are done; if c◦n ≺ a, then a ◦ c◦(−n) ≻ e and a ◦ c◦(−n) ≺ c,
otherwise, a ◦ c◦(−n) ⪰ c, or a ⪰ c◦(n+1), a contradiction with the maximality of n with c◦n ⪯ a. Thus,
a = c◦n. If b ≺ e, we consider its symmetric b′ ≻ e and take m ∈ N such that b′ = c◦m. So, b = c◦(−m),
that is for any element x in G, there exists a unique k ∈ Z so that x = c◦k. Now, it is not difficult (see
the proof of Theorem 2.1) to see that the mapping x → k is an isomorphism of ordered groups between
(G, ◦,≺) and (Z,+, <).

b) Now we assume that (G, ◦,≺) has no positive minimal element, that is (G, ◦,≺) is dense in itself. In
this last situation we directly apply Theorem 2.2 and find that (G, ◦,≺) is isomorphic to (R,+, <). □

Remark. Let (G, ◦,≺) be a totally ordered Abelian group which has no minimal positive element, that
is it is dense in itself. If (G, ◦,≺) is not complete, we cannot conclude that it is isomorphic to (R,+, <).
Indeed, we take for instance G = Q × Q with the lexicographic order ” ≺ ” induced by the usual order
” < ” of Q. It is clear that (G,+,≺) is a totally ordered Abelian group which has no minimal positive
element and it is not complete, so it cannot be isomorphic to (R,+, <).
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