ON SOME CHARACTER HOMOLOGICAL PROPERTIES OF GENERALIZED MODULE EXTENSION BANACH ALGEBRAS

CARLOS C. PEÑA

Abstract

We consider several homological properties associated to characters of generalized module extension Banach algebras. These algebras were introduced to investigate questions concerning weak amenability, generalizing and collecting similar structures such as classical module extension algebras, θ-Lau and T-Lau products and direct sums of Banach algebras. We shall need to determine the structure of the corresponding character spaces. Then we shall focus our investigation on the character homological properties of left amenability, biprojectivity, biflatness, Johnson amenability and Johnson contractibility.

Mathematics Subject Classification (2010): 47A15, 43A22, 46H20.
Key words: Generalized module extension Banach algebra, algebraic Banach bimodule, amenable Banach algebra.

Article history:
Received: February 21, 2024
Received in revised form: April 3, 2024
Accepted: April 5, 2024

1. Introduction

1.1. Generalized module extension Banach algebras. Throughout this article, let A and B be complex Banach algebras so that B is an algebraic Banach A-bimodule, i.e. it is a Banach A-bimodule and given $a \in A$ and $b_{1}, b_{2} \in B$ the following identities hold

$$
a\left(b_{1} b_{2}\right)=\left(a b_{1}\right) b_{2},\left(b_{1} b_{2}\right) a=b_{1}\left(b_{2} a\right),\left(b_{1} a\right) b_{2}=b_{1}\left(a b_{2}\right) .
$$

Let $A \bowtie B$ denote the cartesian product $A \times B$ endowed with the operations

$$
\begin{aligned}
z\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & =\left(z a_{1}+a_{2}, z b_{1}+b_{2}\right), \\
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) & =\left(a_{1} a_{2}, a_{1} b_{2}+a_{2} b_{1}+b_{1} b_{2}\right)
\end{aligned}
$$

and the norm $\|(a, b)\|_{L}=\|a\|+\|b\|$ for any $z \in \mathbb{C}, a, a_{1}, a_{2} \in A$ and $b, b_{1}, b_{2} \in B$. Then $A \bowtie B$ becomes a complex Banach algebra, which is called the generalized module extension Banach algebra (or GMEBA) of A and B.
In particular, $A \bowtie B$ admits the following A and B bimodule actions:

$$
\begin{aligned}
& a^{\prime}(a, b) \triangleq\left(a^{\prime}, 0_{B}\right)(a, b) \text { and }(a, b) a^{\prime} \triangleq(a, b)\left(a^{\prime}, 0_{B}\right) \\
& b^{\prime}(a, b) \triangleq\left(0_{A}, b^{\prime}\right)(a, b) \text { and }(a, b) b^{\prime} \triangleq(a, b)\left(0_{A}, b^{\prime}\right),
\end{aligned}
$$

respectively, with $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
These algebras were introduced in 2017 [1]. Recent advances about biprojectivity and biflatness of GMEBA's were obtained in [2].
1.2. Amenable, biprojective and biflat Banach algebras. Amenable Banach algebras were introduced and studied by B. E. Johnson in his definitive monograph [3] in 1972. A Banach algebra A is amenable if given a Banach A-module X every continuous derivation D from A into X^{*} is inner, i.e. there exists $x^{\prime} \in X^{*}$ so that $D(a)=a x^{\prime}-x^{\prime} a$ if $a \in A$. An equivalent condition of amenability of A is that A has a virtual diagonal, i.e. there exists $m \in(A \hat{\otimes} A)^{* *}$ such that $a m=m a$ and $\hat{\pi}_{A}^{* *}(m) a=\kappa_{A}(a)$ if $a \in A$, where $\kappa_{A}: A \hookrightarrow A^{* *}$ is the usual isometric immersion of A into its second dual space, $\pi_{A}: A \times A \rightarrow A$ is the product of $A, \hat{\otimes}$ denotes the projective tensor product and $\hat{\pi}_{A} \in \mathcal{B}(A \hat{\otimes} A, A)$ is the unique bounded linear operator so that $\hat{\pi}_{A}\left(a_{1} \otimes a_{2}\right)=\pi_{A}\left(a_{1}, a_{2}\right)$ if $a_{1}, a_{2} \in A$.
Initially, the classes of biprojective and biflat Banach algebras were considered by A. Ya. Helemskii [4] [5] [7]. For the structure theory of these algebras the reader can see [16] [17]. Recall that a Banach algebra A is biprojective if $\hat{\pi}_{A}$ has a bounded right inverse which is an A-bimodule homomorphism, while A is called biflat if $\left(\hat{\pi}_{A}\right)^{*}$ has a bounded left inverse which is an A-bimodule homomorphism. Plainly every biprojective Banach algebra is biflat. Besides it is worth mentioning that a Banach algebra A is amenable if and only if A is biflat and it has a bounded approximate identity [6], i.e. there is a bounded net $\left\{e_{j}\right\}_{j \in J}$ in A such that

$$
\lim _{j \in J}\left[\left\|a e_{j}-a\right\|+\left\|e_{j} a-a\right\|\right]=0
$$

for all $a \in A$.
1.3. Some notions of character amenability. The following are the notions of character amenability of Banach algebras which we shall consider in connection with generalized module extension Banach algebras. Given a Banach algebra A then $\Delta(A)$ will denote the character space of A, eventually empty, consisting of non-zero complex multiplicative functionals of A. In what follows let ϕ be a fixed character on A.
Definition 1.1. [11] [12]. A Banach algebra A is called left (resp. right) ϕ-amenable if every continuous derivation from A into the dual space of a Banach A-module X is inner, where the left module action of A into X is defined by $a x=\phi(a) x$ (resp. $x a=\phi(a) x)$ if $a \in A$ and $x \in X .{ }^{1}$
Definition 1.2. [13] A Banach algebra A is called ϕ-biprojective if there exists a bounded A-module morphism $\rho: A \rightarrow A \hat{\otimes} A$ such that $\phi \circ \hat{\pi}_{A} \circ \rho=\phi$.

Definition 1.3. [13] A Banach algebra A is called ϕ-biflat if there exists a bounded A-module morphism $\sigma: A \rightarrow(A \hat{\otimes} A)^{* *}$ such that $\kappa_{A^{*}}(\phi) \circ \hat{\pi}_{A}^{* *} \circ \sigma=\phi$.
Definition 1.4. [13] A Banach algebra A is called ϕ-Johnson amenable if there exists $J \in(A \hat{\otimes} A)^{* *}$ such that $\left\langle\phi, \hat{\pi}_{A}^{* *}(J)\right\rangle=1$ and $a J=J a$ for every $a \in A$. Such an element J will be called a ϕ-Johnson amenable element of $A .^{2}$
Definition 1.5. [9] A Banach algebra A is called ϕ-Johnson contractible if there exists $j \in A \hat{\otimes} A$ such that $\left\langle\hat{\pi}_{A}(j), \phi\right\rangle=1$ and $a j=j a$ for every $a \in A$. Such an element j will be called a ϕ-Johnson contractible element of A.
Definition 1.6. [10] A Banach algebra A is called ϕ-inner amenable if there exists $a^{\prime \prime} \in A^{* *}$ such that $\left\langle\phi, a^{\prime \prime}\right\rangle=1$ and $\left\langle a a^{\prime}-a^{\prime} a, a^{\prime \prime}\right\rangle=0$ for all $a \in A$ and $a^{\prime} \in A^{*} .{ }^{3}$
Remark 1.7. Let L- $\phi-\mathrm{A}, \mathrm{R}-\phi-\mathrm{A}, \phi-\mathrm{JA}, \phi-\mathrm{JC}, \phi-\mathrm{IA}, \phi-\mathrm{BF}$ and ϕ - BP be the classes of Banach algebras that are left ϕ-amenable, right ϕ-amenable, ϕ-Johnson amenable, ϕ-Johnson contractible, ϕ-inner amenable, ϕ-biflat and ϕ-biprojective respectively. Clearly ϕ - $\mathrm{BP} \subseteq \phi$ - BF and

[^0]$$
(\mathrm{L}-\phi-\mathrm{A}) \cap(\mathrm{R}-\phi-\mathrm{A})=(\phi-\mathrm{JA})=(\phi-\mathrm{IA}) \cap(\phi-\mathrm{BF})
$$
(cf. [13], Prop. 2.2, Lemma 2.3, Lemma 3.1 and Prop. 3.3). Besides $\phi-\mathrm{JC} \subseteq \phi$ - BP , and the equality holds for either unital or commutative algebras (cf. [13], Lemma 3.2).
1.4. Main results. In this article we shall consider homological properties associated to characters of GMEBA's related to the notions introduced in Subsection 1.3. Our aim is to study to what extent such eventual amenability properties of a GMEBA affect the underlying pair of its constituent Banach algebras. To this end Section 2 is devoted to describe the general form of characters of GMEBA's. From Section 3 to Section 8 we shall consider the corresponding issues of left ϕ-amenability, ϕ-biprojectivity, ϕ-biflatness, ϕ-Johnson amenability, ϕ-Johnson contractibility and ϕ-inner amenability of GMEBA's respectively. Finally we close Section 9 with some final remarks and examples.
1.5. Some additional notation. We shall use the following notation: p_{A}, p_{B} (or p_{1}, p_{2} if $A=B$) will be the natural projections of $A \bowtie B$ onto A and B respectively; ι_{A}, ι_{B} will be the natural injections of A and B into $A \bowtie B$ respectively.
Let us assume that B is a unital algebraic Banach A-bimodule with an A-central unit e_{B}, i.e. $a e_{B}=e_{B} a$ for all $a \in A$. Then, if $a \in A, b \in B$ we define
\[

$$
\begin{aligned}
& r_{B}: A \bowtie B \rightarrow B, r_{B}(a, b) \triangleq a e_{B}+b \\
& s_{A}: A \rightarrow A \bowtie B, s_{A}(a) \triangleq\left(a,-a e_{B}\right) \\
& t: A \rightarrow B, t(a) \triangleq a e_{B}
\end{aligned}
$$
\]

Note that p_{A}, ι_{A}, t are bounded A-bimodule maps and ι_{B} is a bounded B-bimodule map, while r_{B} and s_{A} are bounded B-bimodule and A-bimodule maps respectively (cf. [2], Lemma 2.1).

2. The Character space of GMEBA's

Lemma 2.1. Any character ϕ of $A \bowtie B$ has the form

$$
\begin{equation*}
\phi=\alpha \circ p_{A}+\beta \circ p_{B} \tag{2.1}
\end{equation*}
$$

where α and β are unique multiplicative complex functionals, at least one of them not null, and

$$
\begin{equation*}
\beta(a b)=\beta(b a)=\alpha(a) \beta(b) \tag{2.2}
\end{equation*}
$$

if $a \in A$ and $b \in B$. In particular, if $A=B$ then $\alpha=\beta$.
Proof. Let us assume that α, β are linear functionals on A and B so that (2.1) holds. Clearly $\alpha=\phi \circ \iota_{A}$, $\beta=\phi \circ \iota_{B}$, and they are uniquely determinated multiplicative complex linear functionals on A and B respectively. Since A and B are complete $\alpha \in A^{*}$ and $\beta \in B^{*}$.
Given $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ we see that

$$
\begin{aligned}
\alpha\left(a_{1} a_{2}\right)+\beta\left(a_{1} b_{2}+b_{1} a_{2}+b_{1} b_{2}\right) & =\phi\left(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right) \\
& =\phi\left(\left(a_{1}, b_{1}\right)\right) \phi\left(\left(a_{2}, b_{2}\right)\right) \\
& =\left(\alpha\left(a_{1}\right)+\beta\left(b_{1}\right)\right)\left(\alpha\left(a_{2}\right)+\beta\left(b_{2}\right)\right)
\end{aligned}
$$

Therefore $\beta\left(a_{1} b_{2}+b_{1} a_{2}\right)=\alpha\left(a_{1}\right) \beta\left(b_{2}\right)+\beta\left(b_{1}\right) \alpha\left(a_{2}\right)$ and (2.2) follows immediately. Let us assume that the A-bimodule B is stable, i.e. the A-bimodule generated by B is dense in B. Then $\alpha \in \Delta(A)$. Precisely, if $\alpha=0_{A^{*}}$ by (2.2) we see that $\beta=0_{B^{*}}$. So, by (2.1) we would have $\phi_{(A \bowtie B)^{*}}=0$, which contradicts that ϕ is non-zero.
If the A-bimodule B is not stable and $\alpha=0_{A^{*}}$ we see that $\beta \in \Delta(B)$ and β vanishes on the A-bimodule generated by B in B.

Remark 2.2. By Lemma 2.1 we shall denote any character $\phi \in \Delta(A \bowtie B)$ as $\phi=\left(\phi_{A}, \phi_{B}\right)$. So $\phi=\phi_{A} \circ p_{A}+\phi_{B} \circ p_{B}, \phi_{A}=\phi \circ \iota_{A}$ and $\phi_{B}=\phi \circ \iota_{B}$. Here $\phi_{A}=\alpha, \phi_{B}=\beta$ are the multiplicative functionals defined in Lemma 2.1.

Definition 2.3. Let A and B be Banach algebras so that B is an algebraic Banach A-bimodule and let α, β be multiplicative complex functionals on A and B respectively. We shall say that the pair (α, β) is admissible if it satisfies the conditions of Lemma 2.1.

Example 2.4. Let G be a locally compact group. Let $\mathrm{L}^{1}(G)$ be the Banach algebra of absolutely Haar integrable complex-valued functions on G and let $\mathrm{M}(G)$ be the Banach algebra of complex-valued bounded regular Borel measures on G. Then any character

$$
\Theta \in \Delta\left(\mathrm{M}(G) \bowtie \mathrm{L}^{1}(G)\right) \cap\left[\Delta(\mathrm{M}(G)) \times \Delta\left(\mathrm{L}^{1}(G)\right)\right]
$$

is determined by a unique $\theta \in \hat{G}$ such that

$$
\begin{equation*}
\Theta(m, x)=\int_{G} \theta(g) d m(g)+\int_{G} \theta(g) x(g) d g \text { for all }(m, x) . \tag{2.3}
\end{equation*}
$$

In fact, such a Θ defines an admissible pair $\left(\Theta_{1}, \Theta_{2}\right) \in \Delta(\mathrm{M}(G)) \times \hat{G}$. Hence there exists a unique $\theta \in \hat{G}$ such that $\Theta_{2}(x)=\int_{G} x(g) \theta(g) d g$ for all $x \in \mathrm{~L}^{1}(G)$.
Let $(m, x) \in \mathrm{M}(G) \times \mathrm{L}^{1}(G)$. Then

$$
\begin{equation*}
\Theta_{2}(m * x)=\Theta_{2}(x * m)=\int_{G} \theta(g) d m(g) \Theta_{2}(x) \tag{2.4}
\end{equation*}
$$

For, as θ is a group homomorphism, by Fubini's theorem and the left-invariance of the Haar measure on G we have

$$
\begin{align*}
\Theta_{2}(m * x) & =\int_{G} \theta(g) \int_{G} x\left(f^{-1} g\right) d m(f) d g \\
& =\int_{G} \int_{G} x\left(f^{-1} g\right) \theta(g) d g d m(f) \\
& =\int_{G} \int_{G} x(h) \theta(f h) d h d m(f) \\
& =\int_{G} \theta(f) d m(f) \Theta_{2}(x) . \tag{2.5}
\end{align*}
$$

Besides, if Δ_{G} denotes the modular function of G we also have

$$
\begin{align*}
\Theta_{2}(x * m) & =\int_{G} \theta(f) \int_{G} \Delta_{G}\left(g^{-1}\right) x\left(f g^{-1}\right) d m(g) d f \\
& =\int_{G} \Delta_{G}\left(g^{-1}\right) \int_{G} \theta(f) x\left(f g^{-1}\right) d f d m(g) \\
& =\int_{G} \Delta_{G}\left(g^{-1}\right) \int_{G} \Delta_{G}\left(f^{-1}\right) \theta\left(f^{-1}\right) x\left((g f)^{-1}\right) d f d m(g) \\
& =\int_{G} \Delta_{G}\left(g^{-1}\right) \int_{G} \Delta_{G}\left(h^{-1} g\right) \theta\left(h^{-1} g\right) x\left(h^{-1}\right) d h d m(g) \\
& =\int_{G} \theta(g) \int_{G} \Delta_{G}\left(h^{-1}\right) \theta\left(h^{-1}\right) x\left(h^{-1}\right) d h d m(g) \\
& =\int_{G} \theta(g) \int_{G} \theta(h) x(h) d h d m(g) \\
& =\int_{G} \theta(g) d m(g) \Theta_{2}(x) . \tag{2.6}
\end{align*}
$$

So (2.4) follows by (2.5) and (2.6). Now, let $x_{0} \in \mathrm{~L}^{1}(G)$ such that $\Theta_{2}\left(x_{0}\right)=1$. Consequently

$$
\Theta_{1}(m)=\Theta_{1}(m) \Theta_{2}\left(x_{0}\right)=\Theta_{2}\left(m * x_{0}\right)=\int_{G} \theta(g) d m(g)
$$

and (2.3) follows.

3. Left ϕ-Amenability of GMEBA's

Theorem 3.1. (1) Let $L=A \bowtie B$ be the GMEBA of Banach algebras A and B. Let $\phi \in \Delta(L)$ so that L is left ϕ-amenable. Then: (i) B becomes left ϕ_{B}-amenable if $\phi_{B} \in \Delta(B)$ and (ii) A is becomes ϕ_{A}-amenable if $\phi_{B}=0_{B^{*}}$.
(2) Let A be a Banach algebra without non-zero characters and let B be a non-stable algebraic unital Banach A-bimodule with unit e_{B}. If B is left β-amenable for some $\beta \in \Delta(B)$ that vanishes on the A-bimodule generated by B then $A \bowtie B$ is left $\left(0_{A^{*}}, \beta\right)$-amenable.
(3) Let B be an algebraic Banach A-bimodule without non-zero characters and let A be a left α amenable Banach algebra. Then $A \bowtie B$ is left ($\alpha, 0_{B^{*}}$)-amenable.

Proof. (1) Since L is left ϕ-amenable let $\left\{\left(a_{i}, b_{i}\right)\right\}_{i \in I}$ be a bounded net in L such that

$$
\begin{equation*}
\phi_{A}\left(a_{i}\right)+\phi_{B}\left(b_{i}\right) \rightarrow 1 \tag{3.1}
\end{equation*}
$$

and for every $(a, b) \in L$ we have

$$
(a, b)\left(a_{i}, b_{i}\right)-\left(\phi_{A}(a)+\phi_{B}(b)\right)\left(a_{i}, b_{i}\right) \rightarrow\left(0_{A}, 0_{B}\right)
$$

Thus

$$
\begin{aligned}
& a a_{i}-\left(\phi_{A}(a)+\phi_{B}(b)\right) a_{i} \rightarrow 0_{A}, \\
& a b_{i}+b a_{i}+b b_{i}-\left(\phi_{A}(a)+\phi_{B}(b)\right) b_{i} \rightarrow 0_{B} .
\end{aligned}
$$

If $\phi_{B} \in \Delta(B)$ there exists $b_{1} \in B$ such that $\phi_{B}\left(b_{1}\right)=1$. If we make $a=0_{A}$ and $b=b_{1}$ in (3.2) then $a_{i} \rightarrow 0$. So, by (3.1), $\phi_{B}\left(b_{i}\right) \rightarrow 1$ and by (3.3) for any a and b we have

$$
a b_{i}+b b_{i}-\left(\phi_{A}(a)+\phi_{B}(b)\right) b_{i} \rightarrow 0_{B} .
$$

If $a=0_{A}$ in (3.4), $b b_{i}-\phi_{B}(b) b_{i} \rightarrow 0$. Since $\left\{b_{i}\right\}_{i \in I}$ becomes bounded then (i) holds.
If $\phi_{B}=0_{B^{*}}$, by Lemma 2.1, $\phi_{A} \in \Delta(A)$. Besides $\left\{a_{i}\right\}_{i \in I}$ becomes bounded in A. By (3.1) and (3.2), $\phi_{A}\left(a_{i}\right) \rightarrow 1$ and given $a \in A$ we have $a a_{i}-\phi_{A}(a) a_{i} \rightarrow 0_{A}$, i.e. (ii) follows.
(2) Let $\left(b_{j}\right)_{j \in J}$ be a bounded net in B so that $\beta\left(b_{j}\right) \rightarrow 1$ and $b b_{j}-\beta(b) b_{j} \rightarrow 0_{B}$ for all $b \in B$. Now, $(0, \beta) \in \Delta(A \bowtie B)$ by Lemma 2.1. Evidently $\left(0_{A}, b_{j}\right)_{j \in J}$ is a bounded net in $A \bowtie B$. Given $a \in A$ and $b \in$ we have

$$
a b_{j}=\left(a e_{B}\right) b_{j}-\beta\left(a e_{B}\right) b_{j} \rightarrow 0_{B}
$$

and so

$$
\begin{aligned}
(a, b)\left(0_{A}, b_{j}\right)-\beta(b)\left(0_{A}, b_{j}\right) & =\left(0_{A}, a b_{j}+b b_{j}-\beta(b) b_{j}\right) \\
& \rightarrow\left(0_{A}, 0_{B}\right) .
\end{aligned}
$$

Since $\beta\left(b_{j}\right) \rightarrow 1$ the assertion follows.
(3) Let $\left(a_{i}\right)_{i \in I}$ be a bounded net in A so that $\alpha\left(a_{i}\right) \rightarrow 1$ and $a a_{i}-\alpha(a) a_{i} \rightarrow 0$ for all $a \in A$. If $a \in A$ and $b \in B$, as $\left(b a_{i}\right)_{i \in I}$ is bounded, we have that

$$
(a, b)\left(a_{i}, 0_{B}\right)-\alpha(a)\left(a_{i}, 0_{B}\right)=\left(a a_{i}-\alpha(a) a_{i}, b a_{i}\right) \rightarrow 0 .
$$

Since $\alpha\left(a_{i}\right) \rightarrow 1$ the assertion follows.

4. ϕ-Biprojectivity of GMEBA's

Theorem 4.1. Let $L=A \bowtie B$ be a ϕ-biprojective $G M E B A$.
(1) Let us assume that B has an A-central unit e_{B}. Then $\left(0_{A}, e_{B}\right)$ is an idempotent element in L and $\phi\left(0, e_{B}\right) \in\{0,1\}$. Further, (i) A is ϕ_{A}-biprojective if $\phi\left(0_{A}, e_{B}\right)=0$ and (ii) B is ϕ_{B}-biprojective if $\phi\left(0_{A}, e_{B}\right)=1$.
(2) If $A=B$ then A is ϕ-biprojective.

Proof. (1) (i) If $\phi\left(0_{A}, e_{B}\right)=0$ given $a \in A$ and $b \in B$ we have

$$
\phi\left(0_{A}, a e_{B}+b\right)=\phi\left(\left(0_{A}, e_{B}\right)(a, b)\right)=\phi\left(0_{A}, e_{B}\right) \phi(a, b)=0 .
$$

Hence $\phi_{B}=0_{B^{*}}$, by Lemma $2.1 \phi_{A} \neq 0_{A^{*}}$ and $\phi=\phi_{A} \circ p_{A}$.
Now, let $\rho_{L} \in_{L} \mathcal{B}_{L}(L, L \hat{\otimes} L)$ such that $\phi=\phi \circ \hat{\pi}_{L} \circ \rho_{L} .{ }^{4}$ We define

$$
\rho_{A} \triangleq\left(p_{A} \otimes p_{A}\right) \circ \rho_{L} \circ \iota_{A} .
$$

Evidently $\rho_{A} \in{ }_{A} \mathcal{B}_{A}(A \hat{\otimes} A)$ and

$$
\begin{aligned}
\phi_{A} & =\phi \circ \iota_{A} \\
& =\phi \circ \hat{\pi}_{L} \circ \rho_{L} \circ \iota_{A} \\
& =\phi_{A} \circ\left(p_{A} \circ \hat{\pi}_{L}\right) \circ \rho_{L} \circ \iota_{A} \\
& =\phi_{A} \circ\left(\hat{\pi}_{A} \circ\left(p_{A} \otimes p_{A}\right)\right) \circ \rho_{L} \circ \iota_{A} \\
& =\phi_{A} \circ \hat{\pi}_{A} \circ \rho_{A}
\end{aligned}
$$

and A becomes ϕ_{A}-biprojective.
(ii) If $\phi\left(0_{A}, e_{B}\right)=1$ then $\phi_{B} \neq 0_{B^{*}}$. Let us write

$$
\rho_{B} \triangleq\left(r_{B} \otimes r_{B}\right) \circ \rho_{L} \circ \iota_{B} .
$$

Plainly $\rho_{B} \in_{B} \mathcal{B}_{B}(B, B \hat{\otimes} B)$. It is readily seen that $\hat{\pi}_{B} \circ\left(r_{B} \otimes r_{B}\right)=r_{B} \circ \hat{\pi}_{L}$ and $\phi_{B} \circ r_{B}=\phi$.
Consequently

$$
\begin{aligned}
\phi_{B} & =\phi_{B} \circ \operatorname{Id}_{B} \\
& =\phi_{B} \circ\left(r_{B} \circ \iota_{B}\right) \\
& =\phi \circ \iota_{B} \\
& =\left[\phi \circ \hat{\pi}_{L} \circ \rho_{L}\right] \circ \iota_{B} \\
& =\phi_{B} \circ r_{B} \circ \hat{\pi}_{L} \circ \rho_{L} \circ \iota_{B} \\
& =\phi_{B} \circ \hat{\pi}_{B} \circ\left[\left(r_{B} \otimes r_{B}\right) \circ \rho_{L} \circ \iota_{B}\right] \\
& =\phi_{B} \circ \hat{\pi}_{B} \circ \rho_{B}
\end{aligned}
$$

and the assertion follows.
(2) The assertion follows by Lemma 3 and a little modification of the argument in (1)(i).

The next theorem generalizes Th. 3.2 of [2] to our context of character biprojectivity of Banach algebras.

Theorem 4.2. Let $L=A \bowtie B$ be the GMEBA of Banach algebras A, B, and assume that B has an A-central unit e_{B}. Let (α, β) be a pair of admissible multiplicative complex functionals on A and B respectively. Then L is (α, β)-biprojective if there exist $\rho_{A} \in_{A} \mathcal{B}_{A}(A, A \hat{\otimes} A), \rho_{B} \in_{B} \mathcal{B}_{B}(B, B \hat{\otimes} B)$ so that $\alpha=\alpha \circ \hat{\pi}_{A} \circ \rho_{A}, \beta=\beta \circ \hat{\pi}_{B} \circ \rho_{B}$ and $t \circ \hat{\pi}_{A} \circ \rho_{A}=\hat{\pi}_{B} \circ \rho_{B} \circ t$.
Proof. Let $\rho_{L}: L \rightarrow L \hat{\otimes} L$ so that

$$
\rho_{L}(a, b) \triangleq\left(\left(s_{A} \otimes s_{A}\right) \circ \rho_{A} \circ p_{A}\right)(a, b)+(a, b)\left(\iota_{B} \otimes \iota_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right) .
$$

Then $\rho_{L} \in_{L} \mathcal{B}_{L}(L, L \hat{\otimes} L)$ [2] and, given $(a, b) \in L$, we see that

$$
\begin{aligned}
\hat{\pi}_{L}\left(\rho_{L}(a, b)\right) & =\left(\hat{\pi}_{L} \circ\left(s_{A} \otimes s_{A}\right)\right)\left(\rho_{A}(a)\right)+(a, b)\left(\hat{\pi}_{L} \circ\left(\iota_{B} \otimes \iota_{B}\right)\right)\left(\rho_{B}\left(e_{B}\right)\right) \\
& =\left(s_{A} \circ \hat{\pi}_{A}\right)\left(\rho_{A}(a)\right)+(a, b)\left(\iota_{B} \circ \hat{\pi}_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right) .
\end{aligned}
$$

As $p_{A} \circ s_{A}=\operatorname{Id}_{A}$ and $p_{A} \circ s_{A}=-t$ we have

$$
\begin{aligned}
\left((\alpha, \beta) \hat{\pi}_{L} \rho_{L}\right)(a, b) & =\left(\alpha \hat{\pi}_{A} \rho_{A}\right)(a)+\beta\left[-\left(t \hat{\pi}_{A} \rho_{A}\right)(a)+a \hat{\pi}_{B}\left(\rho_{B}\left(e_{B}\right)\right)+\hat{\pi}_{B}\left(\rho_{B}(b)\right)\right] \\
& =\alpha(a)+\beta(b),
\end{aligned}
$$

[^1]i.e. $(\alpha, \beta) \circ \hat{\pi}_{L} \circ \rho_{L}=(\alpha, \beta)$.

5. ϕ-biflatness of GMEBA's

Theorem 5.1. Let $L=A \bowtie B$ be a ϕ-biflat GMEBA of Banach algebras A and B.
(1) Let us assume that B has an A-central unit e_{B}. Then $\left(0_{A}, e_{B}\right)$ is an idempotent element in L and $\phi\left(0, e_{B}\right) \in\{0,1\}$. Further, (i) If $\phi\left(0_{A}, e_{B}\right)=0$ then A is ϕ_{A}-biflat. (ii) B is ϕ_{B}-biflat if $\phi\left(0_{A}, e_{B}\right)=1$ and (iii) L is ϕ-biflat if B is ϕ_{B}-biflat.
(2) If $A=B$ then A is ϕ-biflat.

Proof. (1) (i) As in Th. 4.1 we know that $\phi_{B}=0_{B^{*}}$ and $\phi=\phi_{A} \circ p_{A}$. Given $\sigma_{L} \in_{L} \mathcal{B}_{L}\left(L,(L \hat{\otimes} L)^{* *}\right)$ such that $\kappa_{L^{*}}(\phi) \circ \hat{\pi}_{L}^{* *} \circ \sigma_{L}=\phi$ let us write

$$
\sigma_{A}: A \rightarrow(A \hat{\otimes} A)^{* *}, \sigma_{A} \triangleq\left(p_{A} \otimes p_{A}\right)^{* *} \circ \sigma_{L} \circ \iota_{A} .
$$

Besides $\sigma_{A} \in_{A} \mathcal{B}_{A}\left(A,(A \hat{\otimes} A)^{* *}\right)$ because σ_{L} becomes a bounded morphism of A-bimodules. Further,

$$
\begin{aligned}
\kappa_{A^{*}}\left(\phi_{A}\right) \circ \hat{\pi}_{A}^{* *} \circ \sigma_{A} & =\kappa_{A^{*}}\left(\phi_{A}\right) \circ\left(\hat{\pi}_{A} \circ\left(p_{A} \otimes p_{A}\right)\right)^{* *} \circ \sigma_{L} \circ \iota_{A} \\
& =\kappa_{A^{*}}\left(\phi_{A}\right) \circ\left(p_{A} \circ \hat{\pi}_{L}\right)^{* *} \circ \sigma_{L} \circ \iota_{A} \\
& =\kappa_{A^{*}}\left(\phi_{A}\right) \circ p_{A}^{* *} \circ \hat{\pi}_{L}^{* *} \circ \sigma_{L} \circ \iota_{A} \\
& =\kappa_{L^{*}}(\phi) \circ \hat{\pi}_{L}^{* *} \circ \sigma_{L} \circ \iota_{A} \\
& =\phi \circ \iota_{A} \\
& =\phi_{A}
\end{aligned}
$$

and A becomes ϕ_{A}-biflat.
(ii) Now we write

$$
\sigma_{B}: B \rightarrow(B \hat{\otimes} B)^{* *}, \sigma_{B} \triangleq\left(r_{B} \otimes r_{B}\right)^{* *} \circ \sigma_{L} \circ \iota_{B} .
$$

Then $\sigma_{B} \in_{B} \mathcal{B}_{B}\left(B,(B \hat{\otimes} B)^{* *}\right)$. For,
Besides we know that $\phi_{B} \circ r_{B}=\phi$ and so

$$
\begin{aligned}
\kappa_{B^{*}}\left(\phi_{B}\right) \circ \hat{\pi}_{B}^{* *} \circ \sigma_{B} & =\kappa_{B^{*}}\left(\phi_{B}\right) \circ\left(\hat{\pi}_{B} \circ\left(r_{B} \otimes r_{B}\right)\right)^{* *} \circ \sigma_{L} \circ \iota_{B} \\
& =\kappa_{B^{*}}\left(\phi_{B}\right) \circ\left(r_{B} \circ \hat{\pi}_{L}\right)^{* *} \circ \sigma_{L} \circ \iota_{B} \\
& =\kappa_{B^{*}}\left(\phi_{B}\right) \circ r_{B}^{* *} \circ \hat{\pi}_{L}^{* *} \circ \sigma_{L} \circ \iota_{B} \\
& =\kappa_{L^{*}}(\phi) \circ \hat{\pi}_{L}^{* *} \circ \sigma_{L} \circ \iota_{B} \\
& =\phi \circ \iota_{B} \\
& =\phi_{B}
\end{aligned}
$$

i.e. B becomes ϕ_{B}-biflat.
(iii) Let $\sigma_{B} \in_{B} \mathcal{B}_{B}\left(B,(B \hat{\otimes} B)^{* *}\right)$ such that $\beta=\kappa_{B^{*}}(\beta) \circ \hat{\pi}_{B}^{* *} \circ \sigma_{B}$. We shall write

$$
\begin{aligned}
& \sigma_{L}: L \rightarrow(L \hat{\otimes} L)^{* *} \\
& \sigma_{L}(a, b) \triangleq(a, b)\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\left(\sigma_{B}\left(e_{B}\right)\right)
\end{aligned}
$$

It is straightforward to see that

$$
\begin{align*}
(a, b)\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\left(\sigma_{B}\left(e_{B}\right)\right) & =\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\left(\sigma_{B}\left(a e_{B}+b\right)\right) \\
& =\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\left(\sigma_{B}\left(e_{B}\right)\right)(a, b) . \tag{5.2}
\end{align*}
$$

Consequently $\sigma_{L} \in_{L} \mathcal{B}_{L}\left(L,(L \hat{\otimes} L)^{* *}\right)$. By (5.1) and (5.2) we see that

$$
\begin{aligned}
\kappa_{L^{*}}(\alpha, \beta)\left[\hat{\pi}_{L}^{* *}\left(\sigma_{L}(a, b)\right)\right] & =\kappa_{L^{*}}(\alpha, \beta)\left[\left(\hat{\pi}_{L}^{* *} \circ\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\right)\left(\sigma_{B}\left(a e_{B}+b\right)\right)\right] \\
& =\kappa_{L^{*}}(\alpha, \beta)\left[\iota_{B}^{* *}\left(\hat{\pi}_{B}^{* *}\left(\sigma_{B}\left(a e_{B}+b\right)\right)\right)\right] \\
& =\kappa_{B^{*}}(\beta)\left(\hat{\pi}_{B}^{* *}\left(\sigma_{B}\left(a e_{B}+b\right)\right)\right. \\
& =\beta\left(a e_{B}+b\right) \\
& =\alpha(a)+\beta(b) \\
& =(\alpha, \beta)(a, b) .
\end{aligned}
$$

(2) The assertion follows by Lemma 2.1 and a little modification of the argument in (1)(i).

6. ϕ-Johnson amenability of GMEBA's

Theorem 6.1. Let $L=A \bowtie B$ be the GMEBA of Banach algebras A and B.
(1) If B has an A-central unit e_{B}, L is ϕ-Johnson amenable if and only if B is ϕ_{B}-Johnson amenable.
(2) If $A=B$ and L is ϕ-Johnson amenable then A is ϕ-Johnson amenable.

Proof. (1) (\Rightarrow) Let $J_{L} \in(L \hat{\otimes} L)^{* *}$ be a ϕ-Johnson amenable element of L and let us write

$$
J_{B} \triangleq\left(r_{B} \otimes r_{B}\right)^{* *}\left(J_{L}\right)
$$

in $(B \hat{\otimes} B)^{* *}$. Given $l \in L$ we have

$$
\begin{aligned}
r_{B}(l)\left(r_{B} \otimes r_{B}\right)^{* *}\left(J_{L}\right) & =\left(r_{B} \otimes r_{B}\right)^{* *}\left(l J_{L}\right) \\
& =\left(r_{B} \otimes r_{B}\right)^{* *}\left(J_{L} l\right) \\
& =\left(r_{B} \otimes r_{B}\right)^{* *}\left(J_{L}\right) r_{B}(l) .
\end{aligned}
$$

Since r_{B} is surjective we infer that $b J_{B}=J_{B} b$ for every $b \in B$. Besides

$$
\begin{aligned}
1 & =\left\langle\phi, \hat{\pi}_{L}^{* *}\left(J_{L}\right)\right\rangle \\
& =\left\langle\phi_{A} \circ p_{A}+\phi_{B} \circ p_{B}, \hat{\pi}_{L}^{* *}\left(J_{L}\right)\right\rangle \\
& =\left\langle\phi_{A},\left(p_{A}^{* *} \circ \hat{\pi}_{L}^{* *}\right)\left(J_{L}\right)\right\rangle+\left\langle\phi_{B},\left(p_{B}^{* *} \circ \hat{\pi}_{L}^{* *}\right)\left(J_{L}\right)\right\rangle \\
& =\left\langle\phi_{A},\left(p_{A}^{* *} \circ \hat{\pi}_{L}^{* *}\right)\left(J_{L}\right)\right\rangle+\left\langle\phi_{B}, \hat{\pi}_{B}^{* *}\left(J_{B}\right)-t^{* *}\left(\left(p_{A}^{* *} \circ \hat{\pi}_{L}^{* *}\right)\left(J_{L}\right)\right)\right\rangle \\
& =\left\langle\phi_{A}-t^{*}\left(\phi_{B}\right),\left(p_{A}^{* *} \circ \hat{\pi}_{L}^{* *}\right)\left(J_{L}\right)\right\rangle+\left\langle\phi_{B}, \hat{\pi}_{B}^{* *}\left(J_{B}\right)\right\rangle \\
& =\left\langle\phi_{B}, \hat{\pi}_{B}^{* *}\left(J_{B}\right)\right\rangle
\end{aligned}
$$

because $\phi_{A}=t^{*}\left(\phi_{B}\right)$.
(\Leftarrow) Let $J_{B} \in(B \hat{\otimes} B)^{* *}$ be a ϕ-Johnson amenable element of B. We define

$$
J_{L} \triangleq\left(\iota_{B} \otimes \iota_{B}\right)^{* *}\left(J_{B}\right) \text { in }(L \hat{\otimes} L)^{* *} .
$$

Hence

$$
\begin{aligned}
\left\langle\phi, \hat{\pi}_{L}^{* *}\left(J_{L}\right)\right\rangle & =\left\langle\phi,\left(\hat{\pi}_{L} \circ\left(\iota_{B} \otimes \iota_{B}\right)\right)^{* *}\left(J_{B}\right)\right\rangle \\
& =\left\langle\phi, \iota_{B}^{* *}\left(\hat{\pi}_{B}^{* *}\left(J_{B}\right)\right)\right\rangle \\
& =\left\langle\phi_{B}, \hat{\pi}_{B}^{* *}\left(J_{B}\right)\right\rangle \\
& =1 .
\end{aligned}
$$

Further, given $l \in L$ we see that

$$
l J_{L}=r_{B}(l) J_{B}=J_{B} r_{B}(l)=J_{L} l
$$

(2) Given a ϕ-Johnson amenable element J_{L} of L let

$$
J_{A}^{1} \triangleq\left(p_{1} \otimes p_{1}\right)^{* *}\left(J_{L}\right), J_{A}^{2} \triangleq\left(p_{1} \otimes p_{2}+p_{2} \otimes p_{1}+p_{2} \otimes p_{2}\right)^{* *}\left(J_{L}\right)
$$

in $(A \hat{\otimes} A)^{* *}$. If $a \in A$ we have

$$
\begin{aligned}
a J_{A}^{1} & =p_{1}\left(a, 0_{A}\right) J_{A}^{1} \\
& =\left(p_{1} \otimes p_{1}\right)^{* *}\left(\left(a, 0_{A}\right) J_{L}\right) \\
& =\left(p_{1} \otimes p_{1}\right)^{* *}\left(J_{L}\left(a, 0_{A}\right)\right) \\
& =J_{A}^{1} a .
\end{aligned}
$$

Analogously one can see that $a J_{A}^{2}=J_{A}^{2} a$ for every $a \in A$. Since L is ϕ-Johnson amenable we have

$$
\begin{aligned}
1 & =\left\langle\phi \circ\left(p_{1}+p_{2}\right), \hat{\pi}_{L}^{* *}\right\rangle \\
& =\left\langle\phi,\left(p_{1} \circ \hat{\pi}_{L}\right)^{* *}\left(J_{L}\right)+\left(p_{2} \circ \hat{\pi}_{L}\right)^{* *}\left(J_{L}\right)\right\rangle \\
& =\left\langle\phi,\left(\hat{\pi}_{A} \circ\left(p_{1} \otimes p_{1}\right)\right)^{* *}\left(J_{L}\right)+\left(\hat{\pi}_{A} \circ\left(p_{1} \otimes p_{2}+p_{2} \otimes p_{1}+p_{2} \otimes p_{2}\right)\right)^{* *}\left(J_{L}\right)\right\rangle \\
& =\left\langle\phi, \hat{\pi}_{A}^{* *}\left(J_{A}^{1}+J_{A}^{2}\right)\right\rangle .
\end{aligned}
$$

Consequently $\left\langle\phi, \hat{\pi}_{A}^{* *}\left(J_{A}^{1}\right)\right\rangle \neq 0$ or $\left\langle\phi, \hat{\pi}_{A}^{* *}\left(J_{A}^{2}\right)\right\rangle \neq 0$, i.e. a suitable multiple of J_{A}^{1} or J_{A}^{2} provides a ϕ-Jhonson amenable element of A.

7. ϕ-Johnson contractibility of GMEBA's

Theorem 7.1. Let $L=A \bowtie B$ be the GMEBA of Banach algebras A and B.
(1) If B has an A-central unit e_{B} then L is ϕ-Johnson contractible if and only if B is ϕ_{B}-Johnson contractible.
(2) If $A=B, L$ is (ϕ, ϕ)-Johnson contractible then A is ϕ-Johnson contractible.

Proof. (1) (\Rightarrow) With the above notation let $j_{B} \triangleq\left(r_{B} \otimes r_{B}\right)\left(j_{L}\right)$ in $B \hat{\otimes} B$. We write

$$
j_{L}=\sum_{n=1}^{\infty}\left(a_{n}^{1}, b_{n}^{1}\right) \otimes\left(a_{n}^{2}, b_{n}^{2}\right)
$$

with $\left\{\left(a_{n}^{1}, b_{n}^{1}\right),\left(a_{n}^{2}, b_{n}^{2}\right)\right\}_{n \in \mathbb{N}} \subseteq L$ and $\sum_{n=1}^{\infty}\left\|\left(a_{n}^{1}, b_{n}^{1}\right)\right\|_{L}\left\|\left(a_{n}^{2}, b_{n}^{2}\right)\right\|_{L}<\infty$. Thus, by Lemma 2.1,

$$
\phi\left[\left(s_{A} \circ p_{A}\right)\left(\hat{\pi}_{L}\left(j_{L}\right)\right)\right]=\sum_{n=1}^{\infty} \phi\left(a_{n}^{1} a_{n}^{2},-a_{n}^{1} a_{n}^{2}\right)=0 .
$$

As $\operatorname{Id}_{L}=s_{A} \circ p_{A}+\iota_{B} \circ r_{B}$ we have

$$
\begin{aligned}
\left\langle\hat{\pi}_{B}\left(j_{B}\right), \phi_{B}\right\rangle & \left.=\left(\hat{\pi}_{B} \circ\left(r_{B} \otimes r_{B}\right)\right)\left(j_{L}\right), \phi_{B}\right\rangle \\
& =\left\langle\left(r_{B} \circ \hat{\pi}_{L}\right)\left(j_{L}\right), \iota_{B}^{*}(\phi)\right\rangle \\
& =\left\langle\left(\iota_{B} \circ r_{B}\right)\left(\hat{\pi}_{L}\left(j_{L}\right)\right), \phi\right\rangle \\
& =\left\langle\hat{\pi}_{L}\left(j_{L}\right), \phi\right\rangle \\
& =1 .
\end{aligned}
$$

Given $\Theta \in(B \hat{\otimes} B)^{*}$ and $b \in B$ we see that

$$
\left(r_{B} \otimes r_{B}\right)^{*}(\Theta b)=\left(r_{B} \otimes r_{B}\right)^{*}(\Theta) b \text { and }\left(r_{B} \otimes r_{B}\right)^{*}(b \Theta)=b\left(r_{B} \otimes r_{B}\right)^{*}(\Theta)
$$

and so $\left\langle b j_{B}-j_{B} b, \Theta\right\rangle=0$, i.e. $b j_{B}=j_{B} b$.
(\Leftarrow) Let $j_{B} \in B \hat{\otimes} B$ be a ϕ_{B}-Johnson contractible element of B. We define $j_{L} \triangleq\left(\iota_{B} \otimes \iota_{B}\right)\left(j_{B}\right)$ in $L \hat{\otimes} L$. Now

$$
\begin{aligned}
\left\langle\hat{\pi}_{L}\left(j_{L}\right), \phi\right\rangle & =\left\langle\hat{\pi}_{L} \circ\left(\iota_{B} \otimes \iota_{B}\right)\left(j_{B}\right), \phi\right\rangle \\
& =\left\langle\iota_{B}\left(\hat{\pi}_{B}\left(j_{B}\right)\right), \phi\right\rangle \\
& =\left\langle\hat{\pi}_{B}\left(j_{B}\right), \phi_{B}\right\rangle \\
& =1 .
\end{aligned}
$$

Given $\Lambda \in(L \hat{\otimes} L)^{*}$ and $l \in L$ we have

$$
\begin{aligned}
& \left(\iota_{B} \otimes \iota_{B}\right)^{*}(\Lambda l)=\left(\iota_{B} \otimes \iota_{B}\right)^{*}(\Lambda) r_{B}(l), \\
& \left(\iota_{B} \otimes \iota_{B}\right)^{*}(l \Lambda)=r_{B}(l)\left(\iota_{B} \otimes \iota_{B}\right)^{*}(\Lambda) .
\end{aligned}
$$

Thus $\left\langle l j_{L}-j_{L} l, \Lambda\right\rangle=0$, i.e. $l j_{L}=j_{L} l$.
(2) Given a ϕ-Johnson contractible element j_{L} of L let

$$
j_{A}^{1} \triangleq\left(p_{1} \otimes p_{1}\right)\left(j_{L}\right), j_{A}^{2} \triangleq\left(p_{1} \otimes p_{2}+p_{2} \otimes p_{1}+p_{2} \otimes p_{2}\right)\left(j_{L}\right)
$$

in $A \hat{\otimes} A$. The claim now follows similarly to Th. 6.1(2).

8. ϕ-INNER AMENABILITY OF GMEBA'S

Theorem 8.1. Let $L=A \bowtie B$ be a ϕ-inner amenable GMEBA of Banach algebras A, B, and let us assume that B has an A-central unit e_{B}. Then $\left(0_{A}, e_{B}\right)$ is idempotent in L and $\phi\left(0, e_{B}\right) \in\{0,1\}$. Then,
(1) A is ϕ_{A}-inner amenable if $\phi\left(0_{A}, e_{B}\right)=0$.
(2) B is ϕ_{B}-inner amenable if $\phi\left(0_{A}, e_{B}\right)=1$.

Proof. (1) Let $\left\{l_{i}=\left(a_{i}, b_{i}\right): i \in I\right\}$ be a bounded net in $L^{* *}$ such that $l l_{i}-l_{i} l \xrightarrow{w} 0$ for all $l \in L$ and $\left\langle l_{i}, \phi\right\rangle \rightarrow 0$. Hence $\left\{a_{i}\right\}_{i \in I}$ becomes bounded in A. As $L^{*} \approx A^{*} \oplus_{\infty} B^{*}$ we have

$$
\begin{align*}
& a a_{i}-a_{i} a \xrightarrow{w} 0, \tag{8.1}\\
& \left(a b_{i}-b_{i} a\right)+\left(b a_{i}-a_{i} b\right)+\left(b b_{i}-b_{i} b\right) \xrightarrow{w} 0 \tag{8.2}
\end{align*}
$$

for all $a \in A$ and all $b \in B$. We know that $\phi=\phi_{A} \circ p_{A}$ and

$$
\left\langle a_{i}, \phi_{A}\right\rangle=\left\langle l_{i}, \phi\right\rangle \rightarrow 1
$$

So by (8.1) A becomes ϕ_{A}-inner amenable.
(2) Clearly $\left\{a_{i} e_{B}+b_{i}\right\}_{i \in I}$ becomes bounded in L. If $\phi\left(0_{A}, e_{B}\right)=1$ then

$$
\left\langle l_{i}, \phi\right\rangle=\left\langle\left(a_{i}, b_{i}\right)\left(0_{A}, e_{B}\right), \phi\right\rangle=\phi_{B}\left(a_{i} e_{B}+b_{i}\right) \rightarrow 1 .
$$

Choosing $a=0_{A}$ and $b \in B$ by (8.2) we see that

$$
b\left(a_{i} e_{B}+b_{i}\right)-\left(a_{i} e_{B}+b_{i}\right) b=\left(b a_{i}-a_{i} b\right)+\left(b b_{i}-b_{i} b\right) \xrightarrow{w} 0,
$$

i.e. B is ϕ_{B}-inner amenable.
(3) Let $\left\{b_{i}\right\}_{i \in I}$ be a bounded net in B such that $\left\langle b_{i}, \phi_{B}\right\rangle \rightarrow 0$ and $b b_{i}-b_{i} b \xrightarrow{w} 0$ for every $b \in B$. Then $\left\{\left(0_{A}, b_{i}\right)\right\}_{i \in I}$ is a bounded net in L,

$$
\left\langle\left(0_{A}, b_{i}\right), \phi\right\rangle=\left\langle b_{i}, \phi_{B}\right\rangle \rightarrow 0
$$

and given $(a, b) \in L$ we have

$$
(a, b)\left(0_{A}, b_{i}\right)-\left(0_{A}, b_{i}\right)(a, b)=\left(0_{A},\left(a e_{B}+b\right) b_{i}-b_{i}\left(a e_{B}+b\right)\right) \xrightarrow{w} 0,
$$

i.e. L becomes ϕ-inner amenable.

9. Some final Remarks and examples

(1) A generalized module extension Banach algebra $A \bowtie B$ is unital if and only if A is unital and there exists $b_{0} \in B$ such that $A b_{0}=b_{0} A=\left(0_{B}\right)$ and $b e_{A}+b b_{0}=e_{A} b+b_{0} b=b$ for every $b \in B$. Besides $A \bowtie B$ is commutative if and only A and B are commutative.
(2) Let G be a locally compact abelian group with Haar measure λ_{G}, and let w be a weight on G. Let ϕ_{w} be the corresponding augmentation character on $\mathrm{L}_{w}^{1}(G)$ (i.e. $\phi_{w}(x) \triangleq \int_{G} x(g) w(g) d \lambda_{G}(g)$ if $\left.x \in \mathrm{~L}_{w}^{1}(G)\right)$. Then $L \triangleq \mathrm{~L}_{w}^{1}(G) \bowtie \mathrm{L}_{w}^{1}(G)$ is $\left(\phi_{w}, \phi_{w}\right)$-Johnson contractible if and only if G is compact.
(\Rightarrow) By Th. 7.1(2) $A \in \phi_{w^{-}}$JC if $L \in\left(\phi_{w}, \phi_{w}\right)$-JC. Hence A becomes ϕ_{w}-biprojective and so G
must be compact (cf. [15], Th. 3.1).
(\Leftarrow) Let G be a normalized compact abelian group. If $x, y \in \mathrm{~L}_{w}^{1}(G)$ then $x *_{w} y=\frac{(x w) *(y w)}{w}$. Thus $x *_{w} w^{-1}=\phi_{w}(x) w^{-1}$ for all x. Let $j_{L} \triangleq\left(0_{\mathrm{L}_{w}^{1}(G)}, w^{-1}\right) \otimes\left(0_{\mathrm{L}_{w}^{1}(G)}, w^{-1}\right)$ in $L \hat{\otimes} L$. Then

$$
\begin{aligned}
(x, y) j_{L} & =\left(0_{\mathrm{L}_{w}^{1}(G)}, \phi_{w}(x) w^{-1}+\phi_{w}(y) w^{-1}\right) \hat{\otimes}\left(0_{\mathrm{L}_{w}^{1}(G)}, w^{-1}\right) \\
& =\left(\phi_{w}, \phi_{w}\right)(x, y) j_{L} \\
& =\left(0_{\mathrm{L}_{w}^{1}(G)}, w^{-1}\right) \hat{\otimes}\left(0_{\mathrm{L}_{w}^{1}(G)}, \phi_{w}(x) w^{-1}+\phi_{w}(y) w^{-1}\right) \\
& =j_{L}(x, y) .
\end{aligned}
$$

Further, as $\phi_{w}\left(w^{-1}\right)=\lambda_{G}(G)=1$ then

$$
\left(\phi_{w}, \phi_{w}\right)\left(\hat{\pi}_{L}\left(j_{L}\right)\right)=\left(\phi_{w}, \phi_{w}\right)\left(0_{\mathrm{L}_{w}^{1}(G)}, w^{-1}\right)=1
$$

(3) It is known that $\mathrm{L}_{w}^{1}(G)$ is biprojective (or biflat) if and only if G is compact (or amenable) [8]. By Th. 4.1 (or Th. 5.1) we infer that a locally compact group G is compact (or amenable) if $\mathrm{L}_{w}^{1}(G) \bowtie \mathrm{L}_{w}^{1}(G)$ is ϕ-biprojective (or biflat).
(4) Let G be a locally compact group. Then $L \triangleq \mathrm{C}_{0}(G) \bowtie \mathrm{C}_{0}(G) \in \phi$-BP if and only if G is discrete. For, it is well known that $\Delta\left(\mathrm{C}_{0}(G)\right)$ is homeomorphic to G. So, by Lemma 2.1,

$$
\Delta(L)=\left\{\phi_{g}=\left(\delta_{g}, \delta_{g}\right): g \in G\right\}
$$

with $\delta_{g}(x)=x(g)$ if $x \in \mathrm{C}_{0}(G)$ and $g \in G$. Besides, G is discrete if and only if $\mathrm{C}_{0}(G) \in \delta_{g}$-BP for all $g \in G$ (cf. [14], Corollary 3.5). Now, by Th. 4.1(2), $\mathrm{C}_{0}(G) \in \delta_{g}$-BP if $L \in\left(\delta_{g}, \delta_{g}\right)$-BP and the necessity follows.
On the other hand, if G is discrete given $g \in G$ then $\chi_{\{g\}} \in \mathrm{C}_{0}(G)$. We define

$$
\begin{aligned}
& \rho_{g}: L \rightarrow L \hat{\otimes} L \\
& \rho_{g}(x, y) \triangleq \phi_{g}(x, y) u_{g}
\end{aligned}
$$

with $x, y \in \mathrm{C}_{0}(G)$ and $u_{g}=\left({ }^{0} \mathrm{C}_{0(G)}, \chi_{\{g\}}\right) \otimes\left({ }^{0} \mathrm{C}_{0(G)}, \chi_{\{g\}}\right)$. As $\phi_{g} \in \Delta(L)$ and

$$
(x, y) u_{g}=u_{g}(x, y)=\phi_{g}(x, y) u_{g}
$$

for every $(x, y) \in L$ it follows that ρ_{g} becomes a morphism of Banach L-bimodules. Indeed,

$$
\begin{aligned}
\left(\phi_{g} \circ \hat{\pi}_{L} \circ \rho_{g}\right)(x, y) & =\left(\phi_{g} \circ \hat{\pi}_{L}\right)\left(\phi_{g}(x, y) u_{g}\right) \\
& =\phi_{g}(x, y) \phi_{g}\left(\hat{\pi}_{L}\left(u_{g}\right)\right) \\
& =\phi_{g}(x, y) \phi_{g}\left(0^{0} \mathrm{C}_{0}(G), \chi_{\{g\}}\right) \\
& =\phi_{g}(x, y)
\end{aligned}
$$

and the assertion follows.

References

[1] S. Barootkoob and M. Ramezanpour, Generalized module extension algebras: derivations and weak amenability, Quaestiones Mathematicae 40 (2017), 451-465.
[2] M. Ettefagh, Biprojectivity and biflatness of generalized module extension Banach algebras, Filomat 32(17) (2018), 5895-5905.
[3] B. E. Johnson, Cohomology in Banach algebras, Mem. Am. Math. Soc. 127 (1972).
[4] A. Ya. Helemskii, A method for calculating and estimating the global homological dimensions of Banach algebras, Mat. Sb. 87(129) (1972), 122-135. English transl. in Math. USSR Sb. 16 (1972).
[5] A. Ya. Helemskii, The global dimension of a functional Banach algebra is different from one, Funktional. Anal. i Priložen 6(2) (1972), 95-96. English transl. in Functional Anal. Appl. 6 (1972).
[6] A. Ya. Helemskii, Amenable Banach algebras, Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya 13(1) (1979), 42-48.
[7] A. Ya. Helemskii, Flat Banach modules and amenable algebras, Trudy MMO 47 (1984), 179-218. Trans. Moscow Math. Soc. (1985), 199-244
[8] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Mathematics and Its Applications (Soviet Series) 41, Kluwer, Dordrecht, (1989), xx+334. Translated from the russian by Alan West.
[9] Z. Hu, M. S. Monfared and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 85-96.
[10] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi (Kerman), On φ-inner amenable Banach algebras, Colloquium Mathematicum 122(1) (2011), 1-10.
[11] E. Kaniuth, A. T. Lau and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008), 85-96.
[12] M. S. Monfared, Character amenability of Banach algebras, Mathematical Proceedings of the Cambridge Philosophical Soc. 144(3) (2008), 697-706.
[13] A. Pourabbas and A. Sahami, On ϕ-biflat and ϕ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 789-801.
[14] A. Pourabbas and A. Sahami, On character biprojectivity of Banach algebras, U. P. B. Sci. Bull. Series A, 78(4) (2016), 163-174.
[15] A. Sahami, On homological notions of Banach algebras related to a character, U. P. B. Sci. Bull. Series A, 80(4) (2018), 117-124.
[16] Yu. V. Selivanov, Biprojective Banach algebras, Math. USSR Izvestija 15(2) (1980), 387-399.
[17] Yu. V. Selivanov, Biflat Banach algebras of weak homological bidimension one, Preprint (2001).
Departamento de Matemática. Núcleo Consolidado de Matemática Pura y Aplicada. Universidad Nacional Centro de la Provincia de Buenos Aires. Argentina.

Email address: ccpenia@gmail.com

[^0]: ${ }^{1}$ Or equivalently, there is a bounded net $\left(a_{i}\right)_{i \in I}$ in A such that $\phi\left(a_{i}\right) \rightarrow 1$ and $a a_{i}-\phi(a) a_{i} \rightarrow 0$ (resp. $\left.a_{i} a-\phi(a) a_{i} \rightarrow 0\right)$ for every $a \in A$.
 ${ }^{2}$ Here $\hat{\pi}_{A}^{* *}(J) \in A^{* *}$. As in forthcoming similar situations, $\left\langle\phi, \hat{\pi}_{A}^{* *}(J)\right\rangle \in \mathbb{C}$ denotes the evaluation of the functional $\hat{\pi}_{A}^{* *}(J)$ at the element $\phi \in A^{*}$.
 ${ }^{3}$ Or equivalently, there exists a bounded net $\left\{a_{i}\right\}_{i \in I}$ in A such that $a a_{i}-a_{i} a \xrightarrow{w} 0$ for every $a \in A$ and $\phi\left(a_{i}\right) \rightarrow 1$.

[^1]: ${ }^{4}$ Hence ρ_{L} is a two-sided bounded homomorphism between the Banach L-bimodules L and $L \hat{\otimes} L$.

