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1. Introduction

In 1922, Stefan Banach [3] formulated the concept of contraction and proved the famous theorem called
Banach contraction mapping principle, which states that every self mapping T defined on a complete
metric space (X, d) satisfying

d(T (x), T (y)) ≤ t d(x, y),(1.1)

for all x, y ∈ X, where t ∈ (0, 1), has a unique fixed point and for every x0 ∈ X a sequence {T nx0}n≥1 is
convergent to the fixed point. Scientist and mathematicians around the world are publishing new results
that are related either to establish a generalization of metric space or to get a improvement of contractive
conditions.

In the literature, there are many generalizations of the metric space exists. One of such generalizations
is the generalized metric space or S-metric space. Sedghi et al. [24] (2012) introduced the notion of S-
metric space as a generalization of G-metric (Mustafa and Sims [16]) and D∗-metric (Sedghi et al. [23]).
They studied its some properties and also stated that S-metric space is a generalization of G-metric
space. But Dung et al. [8] (2014) showed by an example that an S-metric space is not a generalization
of G-metric space and conversely. Consequently, the class of S-metric spaces and the class of G-metric
spaces are different. Many results which were proved earlier in metric spaces are valid in the framework
of S-metric spaces.

Bhashkar and Lakshmikantham in [4] introduced the concepts of coupled fixed points and mixed mono-
tone property and illustrated these results by proving the existence and uniqueness of the solution for a
periodic boundary value problem. Later on, these results were further extended and generalized by Ćirić
and Lakshmikantham [7] to coupled coincidence and coupled common fixed point results for nonlinear
contractions in partially ordered metric spaces (see, also [5], [6], [15], [17], [18]).

Sabetghadam et al. [20] (2009) proved some coupled fixed point theorems in cone metric spaces for
contractive type conditions. Aydi [2] (2011) proved some coupled fixed point theorems for various con-
tractive type conditions in the setting of partial metric spaces and give some corollaries of the established
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results. Recently, Saluja [21] proved some coupled fixed point results for contractive type conditions in
the framework of complex partial metric spaces (see, also [22]).

Motivated by the works of Bhashkar and Lakshmikantham [4] and Sedghi et al. [24], the purpose of
this paper is to prove some coupled fixed point theorems for contractive type conditions in the setting of
S-metric spaces. As an an application of our main results we give some fixed point results for integral
type contractions. Our results in this paper extend, generalize and enrich several previously published
results from the existing literature.

2. Preliminaries

In this section, we need the following definitions, lemmas and auxiliary results to prove our main
results (see, [24]).

Definition 2.1. [24] Let X be a nonempty set and let S : X3 → [0,∞) be a function satisfying the
following conditions for all x, y, z, a ∈ X:

(S1) 0 < S(x, y, z) for all x, y, z ∈ X with x ̸= y ̸= z;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric space.

Example 2.2. [24]
(1) Let X = Rn and ∥ · ∥ be a norm on X, then S(x, y, z) = ∥y + z − 2x∥+ ∥y − z∥ is an S-metric on

X.
(2) Let X = Rn and ∥ · ∥ be a norm on X, then S(x, y, z) = ∥x− z∥+ ∥y − z∥ is an S-metric on X.

Example 2.3. [25] Let X = R be the real line. Then S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R is
an S-metric on X. This S-metric on X is called the usual S-metric on X.

Example 2.4. [13] Let X be a non-empty set and d be an ordinary metric on X. Then S(x, y, z) =
d(x, z) + d(y, z) for all x, y, z ∈ R is an S-metric on X.

Example 2.5. [26] Let X be a non-empty set and d1, d2 be two ordinary metrics on X. Then S(x, y, z) =
d1(x, z) + d2(y, z) for all x, y, z ∈ X is an S-metric on X.

Example 2.6. [24] Let X = R2 and d an ordinary metric on X. Put S(x, y, z) = d(x, y)+d(x, z)+d(y, z)
for all x, y, z ∈ R2, that is, S is the perimeter of the triangle given x, y, z. Then S is an S-metric on X.

Definition 2.7. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define the open ball BS(x, r)
and closed ball BS [x, r] with center x and radius r as follows, respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},

BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 2.8. [25] Let X = R. Denote by S(x, y, z) = |y + z − 2x|+ |y − z| for all x, y, z ∈ R. Then

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2),

and

BS [2, 4] = {y ∈ R : S(y, y, 2) ≤ 4} = {y ∈ R : |y − 2| ≤ 2}
= {y ∈ R : 0 ≤ y ≤ 4} = [0, 4].
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Definition 2.9. ([24], [25]) Let (X,S) be an S-metric space and A ⊂ X.
(Θ1) The subset A is said to be an open subset of X, if for every x ∈ A there exists r > 0 such that

BS(x, r) ⊂ A.
(Θ2) A sequence {yn} in X it converges to y ∈ X if S(yn, yn, y) → 0 as n→ ∞, that is, for each ε > 0,

there exists n0 ∈ N such that for all n ≥ n0 we have S(yn, yn, y) < ε. We denote this by limn→∞ yn = y
or yn → y as n→ ∞.

(Θ3) A sequence {yn} in X is called a Cauchy sequence if S(yn, yn, ym) → 0 as n,m→ ∞, that is, for
each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0 we have S(yn, yn, ym) < ε.

(Θ4) The S-metric space (X,S) is called complete if every Cauchy sequence in X is convergent in X.
(Θ5) Let τ be the set of all A ⊂ X with the property that for each x ∈ A and there exists r > 0 such

that BS(x, r) ⊂ A. Then τ is a topology on X (induced by the S-metric space).
(Θ6) A nonempty subset A of X is S-closed if closure of A coincides with A.

Definition 2.10. [24] Let (X,S) be an S-metric space. A mapping Q : X → X is said to be a contraction
if there exists a constant 0 ≤ α < 1 such that

S(Qx,Qy,Qz) ≤ αS(x, y, z),(2.1)

for all x, y, z ∈ X.

Remark 2.11. If the S-metric space (X,S) is complete then the mapping defined as above has a unique
fixed point (see [24], Theorem3.1).

Definition 2.12. [24] Let (X,S) and (Y, S′) be two S-metric spaces. A function P : X → Y is
said to be continuous at a point x0 ∈ X if for every sequence {xn} in X with S(xn, xn, x0) → 0,
S′(P (xn), P (xn), P (x0)) → 0 as n → ∞. We say that P is continuous on X if P is continuous at every
point x0 ∈ X.

Definition 2.13. Let X be a non-empty set and A,B : X → X be two self mappings of X. Then a point
z ∈ X is called

(1) a fixed point of operator A if A(z) = z.
(2) a common fixed point of A and B if A(z) = B(z) = z.

Definition 2.14. [1] Let A and B be single valued self-mappings on a set X. If z = Av = Bv for some
v ∈ X, then v is called a coincidence point of A and B, and z is called a point of coincidence of A and
B. We denote the coincidence point of A and B by C(A,B), that is, C(A,B) = {v ∈ X : Av = Bv}.

Definition 2.15. [11] Let A and B be single valued self-mappings on a set X. Mappings A and B are
said to be commuting if ABz = BAz for all z ∈ X.

Example 2.16. Let X = [0, 34 ] and define A,B : X → X defined by A(x) = x3

4 and B(x) = x4 for all

x, y ∈ X. Then the mappings A and B have two coincidence points 0 and 1
4 . Clearly, they commute at

0 but not at 1
4 .

Definition 2.17. [12] Let A and B be single valued self-mappings on a set X. Mappings A and B are
said to be weakly compatible if they commute at their coincidence points, i.e., if Az = Bz for some z ∈ X
implies ABz = BAz.

Definition 2.18. An element (x, y) ∈ X ×X is called:
(a) a coupled fixed point [2] of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y;
(b) a coupled coincidence point [7] of the mappings F : X ×X → X and A : X → X if F (x, y) = A(x)

and F (y, x) = A(y);
(c) a common coupled fixed point [14] of the mappings F : X×X → X and A : X → X if x = F (x, y) =

A(x) and y = F (y, x) = A(y).

Example 2.19. Let X = [0,+∞) and F : X ×X → X defined by F (x, y) = x+y
3 for all x, y ∈ X. One

can easily see that F has a unique coupled fixed point (0, 0).
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Example 2.20. Let X = [0,+∞) and F : X × X → X be defined by F (x, y) = x+y
2 for all x, y ∈ X.

Then we see that F has two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not
unique.

Lemma 2.21. ([24], Lemma 2.5) Let (X,S) be an S-metric space. Then, we have S(x, x, y) = S(y, y, x)
for all x, y ∈ X.

Lemma 2.22. ([24], Lemma 2.12) Let (X,S) be an S-metric space. If xn → x and yn → y as n → ∞,
then S(xn, xn, yn) → S(x, x, y) as n→ ∞.

Lemma 2.23. ([9], Lemma 8) Let (X,S) be an S-metric space and A be a nonempty subset of X. Then
A is said to be S-closed if and only if for any sequence {xn} in A such that xn → x as n → ∞, then
x ∈ A.

Lemma 2.24. ([24]) Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then the ball BS(x, r) is an
open subset of X.

Lemma 2.25. ([25]) The limit of a sequence {xn} in an S-metric space (X,S) is unique.

Lemma 2.26. ([24]) Let (X,S) be an S-metric space. Then any convergent sequence {xn} in X is
Cauchy.

In the following lemma we see the relationship between a metric and S-metric.

Lemma 2.27. [10] Let (X, d) be a metric space. Then the following properties are satisfied:
(i) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
(ii) xn → x in (X, d) if and only if xn → x in (X,Sd).
(iii) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).
(iv) (X, d) is complete if and only if (X,Sd) is complete.

We call the function Sd defined in Lemma 2.27 (i) as the S-metric generated by the metric d. It can
be found an example of an S-metric which is not generated by any metric in [10, 19].

Example 2.28. [10] Let X = R and the function S : X3 → [0,∞) be defined as

S(x, y, z) = |x− z|+ |x+ z − 2y|,
for all x, y, z ∈ R. Then the function S is an S-metric on X and (X,S) is an S-metric space. Now, we
prove that there does not exists any metric d such that S = Sd. On the contrary, suppose that there
exists a metric d such that

S(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ R. Hence, we obtain

S(x, x, z) = 2d(x, z) = 2|x− z|,
and

d(x, z) = |x− z|.
Similarly, we get

S(y, y, z) = 2d(y, z) = 2|y − z|,
and

d(y, z) = |y − z|,
for all x, y, z ∈ R. Hence, we have

|x− z|+ |x+ z − 2y| = |x− z|+ |y − z|,
which is a contradiction. Therefore, S ̸= Sd and (R, S) is a complete S-metric space.
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3. Main Results

In this section, we prove some unique coupled fixed point theorems for contractive type conditions in
the framework of S-metric spaces.

Theorem 3.1. Let (X,S) be a complete S-metric space. Let F : X × X → X be a mapping satisfying
the following contractive condition: for all x, y, u, v, z, w ∈ X:

[S(F (x, y), F (u, v), F (z, w))]2 ≤ p1 [S(x, u, z)]
2 + p2 [S(y, v, w)]

2

+p3 [S(F (x, y), F (x, y), x)]
2

+p4 [S(F (u, v), F (u, v), u)]
2

+p5 [S(F (z, w), F (z, w), z)]
2

+p6 [S(F (u, v), F (u, v), z)]
2(3.1)

where p1, p2, p3, p4, p5, p6 are nonnegative constants such that p1 + p2 + p3 + p4 + p5 + p6 < 1. If F is
continuous, then F has a unique coupled point in X.

Proof. Choose x0, y0 ∈ X. Set x1 = F (x0, y0) and y1 = F (y0, x0). Repeating this process, we obtain
two sequences {xn} and {yn} in X such that xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Assume that
un = [S(xn, xn, xn+1)]

2, vn = [S(yn, yn, yn+1)]
2 and tn = un + vn. Then, from equations (3.1), using

(S2) and Lemma 2.21, we have

un = [S(xn, xn, xn+1)]
2 = [S(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))]

2

≤ p1 [S(xn−1, xn−1, xn)]
2 + p2 [S(yn−1, yn−1, yn)]

2

+p3 [S(F (xn−1, yn−1), F (xn−1, yn−1), xn−1)]
2

+p4 [S(F (xn−1, yn−1), F (xn−1, yn−1), xn−1)]
2

+p5 [S(F (xn, yn), F (xn, yn), xn)]
2

+p6 [S(F (xn−1, yn−1), F (xn−1, yn−1), xn)]
2

= p1 [S(xn−1, xn−1, xn)]
2 + p2 [S(yn−1, yn−1, yn)]

2

+p3 [S(xn, xn, xn−1)]
2 + p4 [S(xn, xn, xn−1)]

2

+p5 [S(xn+1, xn+1, xn)]
2 + p6 [S(xn, xn, xn)]

2

= (p1 + p3 + p4) [S(xn−1, xn−1, xn)]
2

+p2 [S(yn−1, yn−1, yn)]
2 + p5 [S(xn, xn, xn+1)]

2

= (p1 + p3 + p4)un−1 + p2 vn−1 + p5 un.(3.2)

Similarly, one can show that

vn = [S(yn, yn, yn+1)]
2 = [S(F (yn−1, xn−1), F (yn−1, xn−1), F (yn, xn))]

2

≤ (p1 + p3 + p4) vn−1 + p2 un−1 + p5 vn.(3.3)

From equations (3.2) and (3.3), we obtain

tn = un + vn ≤ (p1 + p3 + p4)un−1 + p2 vn−1 + p5 un

+(p1 + p3 + p4) vn−1 + p2 un−1 + p5 vn

= (p1 + p3 + p4) (un−1 + vn−1) + p2 (un−1 + vn−1)

+p5 (un + vn))

= (p1 + p2 + p3 + p4) tn−1 + p5 tn.(3.4)
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This implies that

tn ≤
(p1 + p2 + p3 + p4

1− p5

)
tn−1

= ν tn−1,(3.5)

where ν =
(

p1+p2+p3+p4

1−p5

)
< 1, since p1 + p2 + p3 + p4 + p5 < 1.

Consequently, for each n ∈ N, we obtain

tn ≤ ν tn−1 ≤ ν2 tn−2 ≤ · · · ≤ νn t0.(3.6)

If t0 = 0, then S(x0, x0, x1) + S(y0, y0, y1) = 0. Hence, by condition (S2), we get x0 = x1 = F (x0, y0)
and y0 = y1 = F (y0, x0). Thus, (x0, y0) is a coupled fixed point of F . Now, we assume that t0 > 0. For
each m > n, where n,m ∈ N, and using (S3), we have

S(xn, xn, xm) + S(yn, yn, ym)

≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

+2S(yn, yn, yn+1) + S(ym, ym, yn+1)

= 2(S(xn, xn, xn+1) + S(yn, yn, yn+1))

+S(xm, xm, xn+1) + S(ym, ym, yn+1)

≤ . . .

≤ 2
(
tn + tn+1 + · · ·+ tm−1 + tm

)
≤ 2(νn + νn+1 + · · ·+ νm−1 + νm)t0

≤ 2νn(1 + ν + ν2 + . . . )t0

≤
( 2νn

1− ν

)
t0

→ 0 as n→ ∞,

since 0 < ν < 1. Thus, {xn} and {yn} are S-Cauchy sequences in X. Since X is complete, we get
{xn} and {yn} are S-convergent to some x ∈ X and y ∈ X respectively, that is, limn→∞ xn = x and
limn→∞ yn = y. Since F is continuous, then we have

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn)

= F
(

lim
n→∞

xn, lim
n→∞

yn

)
= F (x, y),(3.7)

and

y = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn)

= F
(

lim
n→∞

yn, lim
n→∞

xn

)
= F (y, x).(3.8)

This shows that (x, y) is a coupled fixed point of F .
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Now, we show the uniqueness of the coupled fixed point. Assume that (x1, y1) is another coupled fixed
point of F such that (x, y) ̸= (x1, y1). Then from equation (3.1), using (S2) and Lemma 2.21, we have

[S(x, x, x1)]
2 = [S(F (x, y), F (x, y), F (x1, y1)]

2

≤ p1 [S(x, x, x1)]
2 + p2 [S(y, y, y1)]

2

+p3 [S(F (x, y), F (x, y), x)]
2

+p4 [S(F (x, y), F (x, y), x)]
2

+p5 [S(F (x1, y1), F (x1, y1), x1)]
2

+p6 [S(F (x, y), F (x, y), x1)]
2

= p1 [S(x, x, x1)]
2 + p2 [S(y, y, y1)]

2

+p3 [S(x, x, x)]
2 + p4 [S(x, x, x)]

2

+p5 [S(x1, x1, x1)]
2 + p6 [S(x, x, x1)]

2

= (p1 + p6) [S(x, x, x1)]
2 + p2 [S(y, y, y1)]

2.(3.9)

Similarly, one can prove that

[S(y, y, y1)]
2 = [S(F (y, x), F (y, x), F (y1, x1)]

2

≤ (p1 + p6) [S(y, y, y1)]
2 + p2 [S(x, x, x1)]

2.(3.10)

Set

M = [S(x, x, x1)]
2, N = [S(y, y, y1)]

2, P = M+N .(3.11)

From equations (3.9)-(3.11), we obtain

P = [S(x, x, x1)]
2 + [S(y, y, y1)]

2

= M+N
≤ (p1 + p6) (M+N ) + p2 (M+N )

= (p1 + p2 + p6) (M+N ) = (p1 + p2 + p6)P,

which is a contradiction, since p1 + p2 + p6 < 1. Hence, we conclude that P = 0, that is, [S(x, x, x1)]
2 +

[S(y, y, y1)]
2 = 0 or S(x, x, x1) = 0 and S(y, y, y1) = 0 and so x = x1 and y = y1. This shows that the

coupled fixed point of F is unique. This completes the proof. □

Theorem 3.2. Let (X,S) be a complete S-metric space. Let F : X × X → X be a mapping satisfying
the following contractive condition: for all x, y, u, v, z, w ∈ X:

[S(F (x, y), F (u, v), F (z, w))]2

≤ λ max
{
[S(x, u, z)]2, [S(y, v, w)]2, [S(F (x, y), F (x, y), x)]2,

[S(F (u, v), F (u, v), u)]2, [S(F (z, w), F (z, w), z)]2,

[S(F (u, v), F (u, v), z)]2
}
,(3.12)

where λ ∈ [0, 1) is a constant. If F is continuous, then F has a unique coupled point in X.

Proof. Follows from Theorem 3.1 by noting that

p1 [S(x, u, z)]
2 + p2 [S(y, v, w)]

2 + p3 [S(F (x, y), F (x, y), x)]
2 + p4 [S(F (u, v), F (u, v), u)]

2

+p5 [S(F (z, w), F (z, w), z)]
2 + p6 [S(F (u, v), F (u, v), z)]

2
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≤ (p1 + p2 + p3 + p4 + p5 + p6) max
{
[S(x, u, z)]2, [S(y, v, w)]2, [S(F (x, y), F (x, y), x)]2,

[S(F (u, v), F (u, v), u)]2, [S(F (z, w), F (z, w), z)]2, [S(F (u, v), F (u, v), z)]2
}

= λ max
{
[S(x, u, z)]2, [S(y, v, w)]2, [S(F (x, y), F (x, y), x)]2, [S(F (u, v), F (u, v), u)]2,

[S(F (z, w), F (z, w), z)]2, [S(F (u, v), F (u, v), z)]2
}
,

where λ = p1 + p2 + p3 + p4 + p5 + p6 < 1.
□

Theorem 3.3. Let (X,S) be a complete S-metric space. Let F : X × X → X be a mapping satisfying
the following contractive condition: for all x, y, u, v, z, w ∈ X:

[S(F (x, y), F (u, v), F (z, w))]2 ≤ q1 max
{
[S(x, u, z)]2, [S(F (x, y), F (x, y), x)]2,

[S(F (x, y), F (x, y), u)]2
}

+q2 max
{
[S(F (u, v), F (u, v), z)]2,

[S(F (z, w), F (z, w), z)]2
}

+q3 S(F (x, y), F (x, y), z)S(F (z, w), F (z, w), u),

(3.13)

where q1, q2, q3 are nonnegative constants with q1 + q2 + q3 < 1. If F is continuous, then F has a unique
coupled point in X.

Proof. Choose x0, y0 ∈ X. Set x1 = F (x0, y0) and y1 = F (y0, x0). Repeating this process, we obtain
two sequences {xn} and {yn} in X such that xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Assume that
un = [S(xn, xn, xn+1)]

2, vn = [S(yn, yn, yn+1)]
2 and tn = un + vn. Then, from equations (3.13), using

(S2) and Lemma 2.21, we have

un = [S(xn, xn, xn+1)]
2 = [S(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))]

2

≤ q1 max
{
[S(xn−1, xn−1, xn)]

2, [S(F (xn−1, yn−1), F (xn−1, yn−1), xn−1)]
2,

[S(F (xn−1, yn−1), F (xn−1, yn−1), xn−1)]
2
}

+q2 max
{
[S(F (xn−1, yn−1), F (xn−1, yn−1), xn)]

2,

[S(F (xn, yn), F (xn, yn), xn)]
2
}

+q3 S(F (xn−1, yn−1), F (xn−1, yn−1), xn)S(F (xn, yn), F (xn, yn), xn−1)

= q1 max
{
[S(xn−1, xn−1, xn)]

2, [S(xn, xn, xn−1)]
2, [S(xn, xn, xn−1)]

2
}

+q2 max
{
[S(xn, xn, xn)]

2, [S(xn+1, xn+1, xn)]
2
}

+q3 S(xn, xn, xn)S(xn+1, xn+1, xn−1)

= q1 max
{
[S(xn−1, xn−1, xn)]

2, S(xn−1, xn−1, xn)]
2, S(xn−1, xn−1, xn)]

2
}

+q2 max
{
0, [S(xn, xn, xn+1)]

2
}
+ q3 .0

= q1 S(xn−1, xn−1, xn)]
2 + q2 S(xn, xn, xn+1)]

2

= q1 un−1 + q2 un.(3.14)
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Similarly, one can show that

vn = [S(yn, yn, yn+1)]
2

= [S(F (yn−1, xn−1), F (yn−1, xn−1), F (yn, xn))]
2

≤ q1 vn−1 + q2 vn.(3.15)

From equations (3.14) and (3.15), we obtain

tn = un + vn

≤ q1 (un−1 + vn−1) + q2 (un + vn)

= q1 tn−1 + q2 tn.(3.16)

This implies that

tn ≤
( q1
1− q2

)
tn−1 = µ tn−1,(3.17)

where µ =
(

q1
1−q2

)
< 1, since q1 + q2 < 1.

Consequently, for each n ∈ N, we obtain

tn ≤ µ tn−1 ≤ µ2 tn−2 ≤ · · · ≤ µn t0.(3.18)

If t0 = 0, then S(x0, x0, x1) + S(y0, y0, y1) = 0. Hence, by condition (S2), we get x0 = x1 = F (x0, y0)
and y0 = y1 = F (y0, x0). Thus, (x0, y0) is a coupled fixed point of F . Now, we assume that t0 > 0. For
each m > n, where n,m ∈ N, and using (S3), we have

S(xn, xn, xm) + S(yn, yn, ym)

≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

+2S(yn, yn, yn+1) + S(ym, ym, yn+1)

= 2(S(xn, xn, xn+1) + S(yn, yn, yn+1))

+S(xm, xm, xn+1) + S(ym, ym, yn+1)

≤ . . .

≤ 2
(
tn + tn+1 + · · ·+ tm−1 + tm

)
≤ 2(µn + µn+1 + · · ·+ µm−1 + µm)t0

≤ 2µn(1 + µ+ µ2 + . . . )t0

≤
( 2µn

1− µ

)
t0

→ 0 as n→ ∞,

since 0 < µ < 1. Thus, {xn} and {yn} are S-Cauchy sequences in X. Since X is complete, we get
{xn} and {yn} are S-convergent to some j ∈ X and k ∈ X respectively, that is, limn→∞ xn = j and
limn→∞ yn = k. Since F is continuous, then we have

j = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn)

= F
(

lim
n→∞

xn, lim
n→∞

yn

)
= F (j, k),(3.19)

and

k = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn)

= F
(

lim
n→∞

yn, lim
n→∞

xn

)
= F (k, j).(3.20)

This shows that (j, k) is a coupled fixed point of F .
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Now, we show the uniqueness of the coupled fixed point. Assume that (j1, k1) is another coupled fixed
point of F such that (j, k) ̸= (j1, k1). Then from equation (3.13), using (S2) and Lemma 2.21, we have

[S(j, j, j1)]
2 = [S(F (j, k), F (j, k), F (j1, k1)]

2

≤ q1 max
{
[S(j, j, j1)]

2, [S(F (j, k), F (j, k), j)]2,

[S(F (j, k), F (j, k), j)]2
}

+q2 max
{
[S(F (j, k), F (j, k), j1)]

2,

[S(F (j1, k1), F (j1, k1), j1)]
2
}

+q3 S(F (j, k), F (j, k), j1)S(F (j1, k1), F (j1, k1), j)

= q1 max
{
[S(j, j, j1)]

2, [S(j, j, j)]2, [S(j, j, j)]2
}

+q2 max
{
[S(j, j, j1)]

2, [S(j1, j1, j1)]
2
}

+q3 S(j, j, j1)S(j1, j1, j)

= q1 max
{
[S(j, j, j1)]

2, 0, 0
}
+ q2 max

{
[S(j, j, j1)]

2, 0
}

+q3 [S(j, j, j1)]
2

= (q1 + q2 + q3) [S(j, j, j1)]
2

< [S(j, j, j1)]
2,

which is a contradiction, since q1 + q2 + q3 < 1. Hence, we conclude that [S(j, j, j1)]
2 = 0, that is,

S(j, j, j1) = 0 and so j = j1. Similarly, we can show that k = k1. Thus, we have shown that (j, k) =
(j1, k1). Consequently, the coupled fixed point of F is unique. This completes the proof. □

Remark 3.4. Our results extend and generalize the corresponding results of Aydi [2] from partial metric
spaces to the setting of S-metric spaces.

4. Application

In this section, we state some applications of the main results of a self mapping which is involved in
an integral type contraction.

Let us denote a set Ω of all of functions ψ : [0,+∞) → [0,+∞) satisfying the following properties:
(i) Each ψ is a Lebesgue-integrable mapping on every compact subset of [0,+∞),
(ii) For any ε > 0 we have

∫ ε

0
ψ(t)dt > 0.

Theorem 4.1. Let (X,S) be a complete S-metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all x, y, u, v, z, w ∈ X:∫ [S(F (x,y),F (u,v),F (z,w))]2

0

ϕ(t)dt ≤ p1

∫ [S(x,u,z)]2

0

ϕ(t)dt+ p2

∫ [S(y,v,w)]2

0

ϕ(t)dt

+p3

∫ [S(F (x,y),F (x,y),x)]2

0

ϕ(t)dt+ p4

∫ [S(F (u,v),F (u,v),u)]2

0

ϕ(t)dt

+p5

∫ [S(F (z,w),F (z,w),z)]2

0

ϕ(t)dt+ p6

∫ [S(F (u,v),F (u,v),z)]2

0

ϕ(t)dt,(4.1)

where p1, p2, . . . , p6 are nonnegative constants with p1 + p2 + p3 + p4 + p5 + p6 < 1 and ϕ ∈ Ω. If F is
continuous, then F has a unique coupled fixed point.
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Theorem 4.2. Let (X,S) be a complete S-metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all x, y, u, v, z, w ∈ X:

∫ [S(F (x,y),F (u,v),F (z,w))]2

0

ϕ(t)dt ≤ λ

∫ Λ(x,y,u,v,z,w)

0

ϕ(t)dt,(4.2)

where

Λ(x, y, u, v, z, w) = max
{
[S(x, u, z)]2, [S(y, v, w)]2, [S(F (x, y), F (x, y), x)]2,

[S(F (u, v), F (u, v), u)]2, [S(F (z, w), F (z, w), z)]2,

[S(F (u, v), F (u, v), z)]2
}
,

λ ∈ [0, 1) is a constant and ϕ ∈ Ω. If F is continuous, then F has a unique coupled fixed point.

Theorem 4.3. Let (X,S) be a complete S-metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all x, y, u, v, z, w ∈ X:

∫ [S(F (x,y),F (u,v),F (z,w))]2

0

ϕ(t)dt ≤ q1

∫ Λ1(x,y,u,v,z,w)

0

ϕ(t)dt+ q2

∫ Λ2(x,y,u,v,z,w)

0

ϕ(t)dt

+q3

∫ Λ3(x,y,u,v,z,w)

0

ϕ(t)dt,(4.3)

where

Λ1(x, y, u, v, z, w) = max
{
[S(x, u, z)]2, [S(F (x, y), F (x, y), x)]2, [S(F (x, y), F (x, y), u)]2

}
,

Λ2(x, y, u, v, z, w) = max
{
[S(F (u, v), F (u, v), z)]2, [S(F (z, w), F (z, w), z)]2

}
,

Λ3(x, y, u, v, z, w) = S(F (x, y), F (x, y), z)S(F (z, w), F (z, w), u),

q1, q2, q3 are nonnegative constants such that q1 + q2 + q3 < 1 and ϕ ∈ Ω. If F is continuous, then F has
a unique coupled fixed point.

Now, we give an example to validate the result.

Example 4.4. Let X = [0, 1] and the function S : X3 → [0,∞) be defined as S(x, y, z) = |y − z|+ |y +
z − 2x| for all x, y, z ∈ X. Then the function S is an S-metric on X and (X,S) is an S-metric space.
Define the mapping F : X ×X → X by F (x, y) = x+y

5 . Then, we have

[S(F (x, y), F (u, v), F (z, w))]2
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= [|F (u, v) + F (z, w)− 2F (x, y)|
+|F (u, v)− F (z, w)|]2

=
[∣∣∣u+ v

5
+
z + w

5
− 2(x+ y)

5

∣∣∣
+
∣∣∣u+ v

5
− z + w

5

∣∣∣]2
=

[1
5
|u+ z − 2x|+ 1

5
|v + w − 2y|

+
1

5
|u− z|+ 1

5
|v − w|

]2
=

1

25

[(
|u+ z − 2x|+ |u− z|

)
+
(
|v + w − 2y|+ |v − w|

)]2
=

1

25

[
S(x, u, z) + S(y, v, w)

]2
≤ 1

12

(
[(S(x, u, z)]2 + [S(y, v, w)]2

)
≤ 1

12

(
[S(x, u, z)]2 + [S(y, v, w)]2

+[S(F (x, y), F (x, y), x)]2

+[S(F (u, v), F (u, v), u)]2

+[S(F (z, w), F (z, w), z)]2

+[S(F (u, v), F (u, v), z)]2
)
,

holds for all x, y, z, u, v, w ∈ X. It is easy to see that F satisfies all the conditions of Theorem 3.1 for
p1 = p2 = p3 = p4 = p5 = p6 = 1

12 with p1+p2+p3+p4+p5+p6 = 1
2 < 1. Thus F has a unique coupled

fixed point, namely F (0, 0) = 0.

5. Conclusion

In this paper, we prove some unique coupled fixed point theorems via contractive type conditions in
the setting of S-metric spaces and as an application of our main results we give some fixed point results
for integral type contractions. Our results extend and generalize several previously published results from
the existing literature.
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