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Abstract. Employing an extrinsic average variational method in the calculus of vari-
ations ([45, 43]), we have found multiple large classes of new manifolds with geometric
and topological properties in the setting of varied, coupled, generalized types of energy
functionals and their associated harmonic maps u : (M, gM ) → (N, gN ). These newly
found manifolds that involved with elementary symmetric functions σi, i = 1, 2, 3 of
eigenvalues of the pullback metric u∗gN with respect to the domain metric gM have
their interactions with geometry, topology, analysis, partial differential equations, cal-
culus of variations, physics, and are briefly listed in Table 1. Whereas the method have
been used, extended or generalized to other situations such as minimal submanifolds and
rectifiable currents in a Riemannian manifold ([32, 26]), harmonic maps ([43, 25, 35]),
Yang-Mills Fields ([44, 30]), p-harmonic maps ([60]), F -harmonic maps ([2]), Finsler
geometry ([40]), etc, in this paper we illuminate the method and show how it works
for the energy functional E. Generalizing the author’s previous work that every stable
harmonic map from an arbitrary compact Riemannian manifold into Sn or Sn × Sk

for n > 2, k > 2 is constant and the work of R. Howard and S.W. Wei ([25]) on SU
manifolds, we prove two new results (Theorems 10.1 and 10.2) with a remark (Remark
10.3).
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1. Philosophical Background

An ancient wisdom goes “The Tao of Heaven is to diminish superabundance, so as to supplement defi-
ciency.” This is due to a legendary sage Lao Tzu in his book Tao Te Ching. It is a natural and precious
phenomenon that permeates or occurs in mathematics, astronomy, physics, engineering, psychology, real
life, natural sciences, and medical sciences. In daily life, it recommends use our strength to “supplement”
our limitation to achieve balance, optimality, harmony, or meeting challenges. In astronomy, it occurs
astonishingly the Kepler’s Second Law “equal time sweeps equal area”. In physics, it involves with con-
servation laws (cf. [13]), the law of conservation of energy, momentum, mass, angular momentum, etc. In
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mathematics it give rises to or interrelates the concept of average, balance, harmony, stable equilibrium,
mean value property, symmetry, the least action principle, duality, etc. (cf. [34, 26, 61]).

From geometric function theoretic point of view, a harmonic function on the Euclidean space can be
characterized as a function whose value at every point is equal to its average value around every ball
(resp. sphere) centered at that point with an arbitrary radius. We have the following elegant links.

Theorem 1.1. Let f : Rn C2

−→ R. Then for every point x0 ∈ Rn and every ball B(x0, r) ⊂ Rn ,

f(x0) =
1

Vol(B(x0, r))

∫
B(x0,r)

f(x) dx

⇐⇒
f(x0) =

1

Vol(∂B(x0, r))

∫
∂B(x0,r)

f(x) dS.

⇐⇒
On Rn, f is harmonic i.e., ∆f = 0

or f is a solution of the Laplace equation ∆f = Div(∇f) = trace(Hess f) =
∑n

i=1
∂2

∂x2
i
f = 0.

⇐⇒
f is a critical point of the energy functional E

with respect to any compactly supported variation, where E(f) =
∫
Rn |∇f |2dx.

This average process illuminates Noether’s Theorem and Conservation Laws: The Lagrangian
L(x, f,∇f) = |∇f |2 has a continuous symmetry, e.g., it is invariant under group of ”rotations”. A
solution f of the Euler-Lagrange equation of

∫
B(0,r)

L(x, f,∇f) dx, or a harmonic function has a con-

servation law: There arises a divergence-free vector field on the domain space, from a solution of a
variational problem, for example,

Div(∇f) = 0.

Amazingly and analogously, the energy density e(u) as defined in (2.1) has a continuous symmetry,
and a solution of the Euler-Lagrange equation of the energy functional E as in (2.2) has a conservation
law. P. Baird and J.Eells prove in particular

Theorem 1.2 (Baird-Eells[4]). A harmonic map u : (M, gM ) → (N, gN ) between Riemannian manifolds
has a conservation law. That is, there exists a divergence-free stress energy tensor S = 1

2 |du|
2 − u∗gN on

the domain space, from a solution of a variational problem:

(1.1) Div(S) = 0.

This can be further unified, simplified and generalized, whereas a harmonic map can be viewed as
Φ(1)-harmonic map. As an example, S.X. Feng, Y.B. Han, K. Jiang, and S.W. Wei prove in particular
the following.

Theorem 1.3 (Feng-Han-Jiang-Wei[16]). A Φ(3)-harmonic map u : (M, gM ) → (N, gN ) has a conserva-
tion law

(1.2) Div(SΦ(3)
) = 0,

where SΦ(3)
of u denotes the stress-energy tensor with respect to the functional EΦ(3)

(u), and is the
symmetric 2-tensor on Mm given by

SΦ(3)
= eΦ(3)

g − (d(3)u)
−1h.
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That is, for every smooth vector fields X,Y on M ,

SΦ(3)
(X,Y ) =

||d(3)u||2

6
g(X,Y )− h

(
d(3)u(X), du(Y )

)
.

(cf. Definition 8.1 and [16].)

Let F : [0,∞) → [0,∞) be a strictly increasing C2 function with F (0) = 0. In [13], Y.X. Dong and S.W.
Wei unify the concepts of F -harmonic maps, minimal hypersurfaces, maximal spacelike hypersurfaces,
and Yang-Mills Fields, and introduce F -Yang-Mills fields. When F (t) = t, 1

p (2t)
p
2 , e2t,

√
1 + 2t − 1, and

1−
√
1− 2t, the F -Yang-Mills field becomes an ordinary Yang-Mills field, p-Yang-Mills field, exponential

Yang-Mills fields, a generalized Yang-Mills-Born-Infeld field with the plus sign, and a generalized Yang-
Mills-Born-Infeld field with the minus sign on a manifold respectively. Y.X. Dong and S.W. WEi prove
in particular,

Theorem 1.4 (Dong-Wei[13], Theorem 3.1). Every F -Yang-Mills field R∇ satisfies an F -conservation
law,

(1.3) Div(SF,R∇) = 0,

where SF,R∇ denotes the stress-energy tensor associated with the F -Yang-Mills functional given by

SF,R∇(X,Y ) = F (
1

2
||R∇||2)g(X,Y )− F ′(

1

2
||R∇||2)⟨iXR∇, iY R

∇⟩,

for every smooth vector fields X,Y on M , in which ⟨ , ⟩ is the induced inner product on the space of
differential 1-form with values in the Adjoint bundle A1

(
Ad(P )

)
, and iXR∇ is the interior multiplication

by the vector field X given by

(1.4) (iXR∇)(Y1) = R∇(X,Y1) ,

for any vector fields Y1 on M .

2. An Extrinsic Average Variational Method in the Calculus of Variations ([43, 45])

Observing Mathematics and Nature are beautifully interwoven, frequently two sides of the same coin,
and Nature is uncompromizingly efficient, S.W. Wei proposed an extrinsic, average variational method in
the calculus of variations as an approach to confront and resolve problems in global, nonlinear analysis,
geometry and physics, by which the author pioneered the study of p-harmonic geometry (cf. e.g. [48, 52,
60]).

The method have been used, extended or generalized to other situations such as minimal submanifolds
and rectifiable currents in a Riemannian manifold ([32, 26]), harmonic maps ([43, 25, 35]), Yang-Mills
Fields ([5, 44, 30]), p-harmonic maps ([60, 48]), F -harmonic maps ([2]), Finsler geometry ([40]), etc.

More recently, employing the extrinsic average variational method ([45, 43]), we have found multiple
large classes of new manifolds with geometric and topological properties in the setting of varied, coupled,
generalized types of energy functionals and their associated harmonic maps u : (M, gM ) → (N.gN ). These
newly found manifolds that involved with elementary symmetric functions σi, i = 1, 2, 3 of eigenvalues of
the pullback metric u∗gN with respect to the domain metric gM have their interactions with geometry,
topology, analysis, partial differential equations, calculus of variations, physics, and are briefly listed in
Table 1.
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Let u : (M, gM ) → (N, gN ) be a smooth map between two Riemannian manifolds M and N . Denote
e(u) the energy density of u, (resp. ep(u) the p-energy density of u) which is given by

(2.1)

e(u) =
1

2

m∑
i=1

gN
(
du(ei), du(ei)

)
=

1

2
|du|2 ,

(resp. ep(u) =
1

p

m∑
i=1

gN
(
du(ei), du(ei)

) p
2 =

1

p
|du|p ),

where {e1, · · · , en} is a local orthonormal frame field on M , du is the differential of u, and |du| is the
Hilbert-Schmidt norm of du, determined by the metric gM of M and the metric gN of N . The energy of
u, denoted by E(u) and the p-energy of u, denoted by Ep(u) are defined to be

(2.2) E(u) =

∫
M

e(u) dvg and Ep(u) =

∫
M

ep(u) dvg, respectively.

A smooth map u : M → N is called harmonic (resp. p-harmonic) if u is a critical point of the energy
functional E (resp. the p-energy functional Ep) with respect to any compactly supported variation,
E-stable or stable harmonic if u is a local minimum of the energy functional E(u), and E-unstable or
unstable harmonic if u is not stable harmonic (resp. a stable p-harmonic map if u is a local minimum of
the p–energy functional Ep(u), unstable p-harmonic or p-unstable if u is not p-stable).

In this paper, we illuminate the method and show how it works for the energy functional E. Generaliz-
ing the author’s previous work that every stable harmonic map from any compact Riemannian manifold
into Sn or Sn × Sk for n > 2, k > 2 is constant. (cf. Theorem 2.4, or [43, Corollaries 3.1 and 3.2]), and
the work of R. Howard and S.W. Wei on SU manifols [25, Remarks 2.11 and 5.5], we prove

Theorem 10.1 Let Mm1
1 , · · · ,Mmℓ

ℓ be compact p-SSU manifolds (cf. Definition 4.1 ). Then (i) the
product manifold M = Mm1

1 ×· · ·×Mmℓ

ℓ is a p-SSU manifold of dimension m = m1+· · ·+mℓ. Hence, M is
p-SU. (ii) There is a neighborhood of the product metric g0 of the product manifold M = Mm1

1 ×· · ·×Mmℓ

ℓ

in the C2 topology (if M is not compact we must use the strong C2 topology (see [21] for the definition)
such that for every g in this neighborhood, the Riemannian manifold (M, g) is a p-SSU manifold of
dimension m = m1 + · · ·+mℓ. Hence, compact (M, g) is p-SU (cf. Definition 4.2).

Theorem 10.2 Let Mm1
1 , · · · ,Mmℓ

ℓ be compact X-SSU manifolds, where X-SSU denotes one of the
following: Φ(1)-SSU, ΦS-SSU, ΦS,p-SSU, Φ(2)-SSU, and Φ(3)-SSU. Then (i) The product manifold M =
Mm1

1 × · · · ×Mmℓ

ℓ is an X-SSU manifold of dimension m = m1 + · · ·+mℓ. Hence, M is X-SU, i.e. M
is the corresponding Φ(1)-SU, ΦS-SU, ΦS,p-SU, Φ(2)-SU, or Φ(3)-SU. (ii) There is a neighborhood of the

product metric g0 of the product manifold M = Mm1
1 ×· · ·×Mmℓ

ℓ in the C2 topology (if M is not compact
we must use the strong C2 topology) such that for every g in this neighborhood the Riemannian manifold
(M, g) is an X-SSU manifold of dimension m = m1 + · · ·+mℓ. Hence, compact (M, g) is X-SU.

The extrinsic average variational method in the calculus of variations also marks the birth of (i) the first
nonexistence theorem of stable Yang-Mills fields on product manifolds ([44]). (ii)) the first classification of
stable rectifialbe currents on product manifolds ([51]). (iii) the first nonexistence theorem of nonconstant
stable harmonic maps into product manifolds ([43]) (cf. Remark 10.3).

Approach I: Extrinsic Average Variations in the Target N

We assume M (resp. N) is isometrically immersed in the Euclidean space Rq. Let ∇ be the standard
flat connection on Rq, ∇ (resp. ∇N ) the Riemannian connection on M (resp. N) and B (resp. B) the
second fundamental form of M (resp. N) in Rq. These are related by

(2.3) ∇XY = ∇XY +B(X,Y )
(
resp .∇XY = ∇N

X Y + B(X,Y)
)
,
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where X,Y (resp. X,Y) are smooth vector fields on M (resp. N). Let M (resp. N and Rq) be equipped
with Reimannian metric ⟨ ⟩M (resp. ⟨ , ⟩N and ⟨ ⟩). Define a selfadjoint linear map

QM
x : TxM → TxM (resp. QN

y : TyN → TyN)

by

(2.4) ⟨QM
x (X), X⟩M =

m∑
i=1

2⟨B(X, ei), B(X, ei)⟩ − ⟨B(X,X), B(ei, ei)⟩,

where x ∈ M , {e1, · · · , em} is an orthonormal basis for the tangent space TxM to M at x.(
resp . (2.4′) ⟨QN

y (X),X⟩N =
n∑

i=1

2⟨B(X, ei),B(X, ei)⟩ − ⟨B(X,X),B(ei, ei)⟩,

where y ∈ N , {e1, · · · , en} is an orthonormal basis for the tangent space TyN to N at y.
)

Let {v1, . . . , vn, vn+1, . . . , vq} be an orthonormal basis of Rq and let x : Nn → Rq be an isometrically
immersion with second fundamental form B. As vℓ , 1 ≤ ℓ ≤ q , can be identified with a parallel and
concircular vector field in Rq (i.e. ∇Zvℓ = 0 · Z̃ = 0 for any Z̃ tangent to Rq, where Z = Z̃|N , cf. [8]),
this gives rise to a set of conservative vector fields

{vT1 , . . . , vTn , vTn+1, . . . , v
T
q } on N,

where vT1 , . . . , v
T
n , v

T
n+1, . . . , v

T
q denote orthogonal projections of v1, . . . , vn, vn+1, . . . , vq onto the tangent

bundle T (N) of N in Rq , and are given by vTℓ = grad (⟨vℓ,x⟩).
Clearly, each vector field vTℓ on N generates a flow or a one-parameter group of diffeomorphisms

φ
vTℓ
t : N → N. Further, given a smooth map u : Mm → Nn between two compact Riemannian manifolds,

we can deform u in vTℓ direction to obtain the variation ut = φ
vTℓ
t ◦ u of u with u0 = u.

Let us consider the energy of φ
vTℓ
t ◦ u :

E(φ
vTℓ
t ◦ u) =

∫
M

m∑
i=1

⟨d(φvTℓ
t ◦ u)ei, d(φ

vTℓ
t ◦ u)ei⟩N dVM

where d(φ
vTℓ
t ◦u) is the differential of φvTℓ

t ◦u , dVM is the volume element of M . Thus, to each direction vTℓ ,

the energy E(φ
vTℓ
t (u)) via the variation φ

vTℓ
t ◦u is a smooth real valued function of t, and there corresponds

to its rate of change of the energy in that direction vTℓ to the second order, i.e. d2

dt2E(φ
vTℓ
t (u))

∣∣
t=0

.

Therefore, to the set of the q vector fields {vT1 , . . . , vTn , vTn+1, . . . , v
T
q } on N , there correspond to the set

of q real numbers, i.e., q second variations given by{
d2

dt2
E(φ

vT1
t (u))

∣∣
t=0

, . . . ,
d2

dt2
E(φ

vTn
t (u))

∣∣
t=0

,

d2

dt2
E(φ

vTn+1

t (u))
∣∣
t=0

, . . . ,
d2

dt2
E(φ

vTq
t (u))

∣∣
t=0

}

and their average or sum:
∑q

ℓ=1
d2

dt2E(φ
vTℓ
t (u))

∣∣
t=0

.
Let {e1, . . . , en} be a local orthonormal frame field on N . It was shown by Howard and Wei in [25] that

if the map u is a non-constant harmonic map and the second fundamental form B of N in Rq satisfies
n∑

j=1

{
2⟨B(X, ej),B(X, ej)⟩ − ⟨B(X,X),B(ej , ej)⟩

}
< 0(2.5)
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for each tangent vector X to N at any point in N , then the average variation, or the sum satisfies

(2.6)

q∑
ℓ=1

d2

dt2
E(φ

vTℓ
t (u))∣∣

t=0

=

∫
M

m∑
i=1

n∑
j=1

{
2⟨B(du(ei), ej),B(du(ei), ej)⟩

− ⟨B(du(ei), du(ei)),B(ej , ej)⟩
}

< 0,

by applying (2.5) in which X = du(ei) and summing it from i = 1 to m. Hence one of the terms must
be < 0, Or the sum would be nonnegative, a contradiction, i.e.

(2.7)
d2

dt2
E(φ

vTℓ
t (u))

∣∣
t=0

< 0 for some 1 ≤ ℓ ≤ q.

This means that along one of the directions, vTℓ , the variation decreases the energy of u, and hence u is
not a local minimum of the energy functional E, i.e. u is not a nonconstant stable harmonic map into
N . Thus, we have shown, by the method of “Extrinsic Average Variations in the Target N”

Proposition 2.1 ([25]). Let N be a compact manifold satisfying (2.5). Then N cannot be the target of
any nonconstant stable harmonic map u.

Remark 2.2. If we only compute the the second variation of the energy along any single direction vTℓ ,
we do not know the sign of

d2

dt2E(φ
vTℓ
t (u))

∣∣
t=0

, because of some troublesome terms involved. However, if we average the result∑q
ℓ=1

d2

dt2E(φ
vTℓ
t (u))

∣∣
t=0

over the set of variation vector fields, then the troublesome terms are cancelled,

we get (2.6), from which we know the sign of the average is negative, under the above extrinsic condition
(2.5) on N , and hence (2.7) holds.

Remark 2.3. One way to interpret (2.6) is that by the extrinsic average variational method, the set of
“distingished” conservative vector fields

{vT1 , . . . , vTn , vTn+1, . . . , v
T
q } on N, “universally” decrease the energy E of “any” nonconstant map into

N.

Let N be a complete hypersurface in Rn+1 with principal curvature κ (resp. N ′ be a complete,
hypersurface in Rk+1 with principal curvature κ′) and Kmin be a function of N given by Kmin(x) =
the minimum of all sectional curvatures of N at x(resp. K ′

min be a function of N ′ given by K ′
min=the

minimum of all sectional curvature of N ′ at x′). In [43] S.W. Wei proved

Theorem 2.4 ([43]). If

κ2 < (n− 1)Kmin and (κ′)2 < (k − 1)K ′
min ,

then any (weakly) stable harmonic maps from an arbitrary Riemannian manifold M into N × N ′ is
constant.
In particular, any (weakly) stable harmonic maps from an arbitrary Riemannian manifold M into Sn×Sk

or Sn for n > 2, k > 2 is constant.

The case when the target manifold is a single sphere Sn, for n > 2 is also due to P.F. Leung ([31]).
Theorem 2.4 is generalized to Theorem 10.1 and extended to Theorem 10.2.

Approach II: Extrinsic Average Variations in the Domain M

Analogously, given a smooth map u : M → N between two compact Riemannian manifolds, we can

deform u in vTℓ direction to obtain the variation ut = u ◦ φvT
ℓ

t of u with u0 = u.
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Let us consider the energy of u ◦ φvT
ℓ

t :

E(u ◦ φvT
ℓ

t ) =

∫
M

q∑
i=1

⟨d(u ◦ φvT
ℓ

t )ei, d(u ◦ φvT
ℓ

t )ei⟩N dVM

where d(u ◦φvT
ℓ

t ) is the differential of u ◦φvT
ℓ

t , {e1, . . . , em} is a local orthonormal frame field on M , and

dVM is the volume element of M . Thus, to each direction vTℓ , the energy E
(
u(φ

vT
ℓ

t )
)
via the variation

u ◦φvT
ℓ

t is a smooth real valued function of t, and there corresponds to its rate of change of the energy in

that direction vTℓ to the second order, i.e. d2

dt2E
(
u(φ

vT
ℓ

t )
)∣∣

t=0
. Therefore, to the set of the q vector fields

{vT1 , . . . , vTm, vTm+1, . . . , v
T
q } on M , there correspond to the set of q second variations given by{

d2

dt2
E
(
u(φ

vT
1

t )
)∣∣

t=0
, . . . ,

d2

dt2
E
(
u(φ

vT
m

t )
)∣∣

t=0

d2

dt2
E
(
u(φ

vT
m+1

t )
)∣∣

t=0
, . . . ,

d2

dt2
E
(
u(φ

vT
q

t )
)∣∣

t=0

}

and their average or sum:
∑q

ℓ=1
d2

dt2E
(
u(φ

vT
ℓ

t )
)∣∣

t=0
. Let {e1, . . . , em} be a local orthonormal frame field

on M . It was shown by Howard and Wei in [25] that if the map u is non-constant and the second
fundamental form B of M in Rq satisfies

m∑
j=1

{
2⟨B(X, ej), B(X, ej)⟩ − ⟨B(X,X), B(ej , ej)⟩

}
< 0(2.8)

for each tangent vector X to M at any point in M , then the average variation, or the sum satisfies

(2.9)

q∑
ℓ=1

d2

dt2
E
(
u(φ

vT
ℓ

t )
)∣∣

t=0

=

∫
M

m∑
i=1

m∑
j=1

|du(ei)|2{2⟨B((ei), ej), B(ei, ej)⟩

− ⟨B(ei, ei), B(ej , ej)⟩
}

< 0,

Hence one of the terms must be < 0, Or the sum would be nonnegative, a contradiction, i.e.

(2.10)
d2

dt2
E
(
u(φ

vT
ℓ

t )
)∣∣

t=0
< 0 for some 1 ≤ ℓ ≤ q.

This means that along one of the directions, vTℓ , the variation decreases the energy of u, and hence u is
not a local minimum of the energy functional E, i.e. u : M → N is not a nonconstant stable harmonic
map. Thus, we have shown, by the method of “Extrinsic Average Variations in the Domain M”

Proposition 2.5 ([25]). Let M be a compact manifold satisfying (2.5). Then M cannot be the domain
of any nonconstant stable harmonic map.

Remark 2.6. If we only compute the the second variation of the energy along any single direction vTℓ ,
we do not know the sign of

d2

dt2E
(
u(φ

vT
ℓ

t )
)∣∣

t=0
, because of some troublesome terms involved. However, if we average the result∑q

ℓ=1
d2

dt2E
(
u(φ

vT
ℓ

t )
)∣∣

t=0
over the set of variation vector fields, then the troublesome terms are cancelled,

we get (2.9), from which we know the sign of the average is negative, under the above extrinsic condition
(2.8), on M and hence (2.10) holds.
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Remark 2.7. One way to interpret (2.9) is that by the extrinsic average variational method, the set of
“distinguished” conservative vector fields

{vT1 , . . . , vTn , vTn+1, . . . , v
T
q } on M, “universally” decrease the energy E of “any” nonconstant map

from M.

Corollary 2.8 (Y.L. Xin [62]). Every (weakly) stable harmonic maps from Sm,m > 2 into an any
compact Riemannian manifold N is constant.

Proof. We choose diagonalized orthonormal basis {e1, . . . , em} at a point in Sm, then

m∑
j=1

{
2⟨B(X, ej), B(X, ej)⟩ − ⟨B(X,X), B(ej , ej)⟩

}
= 2−m < 0.

Hence, (2.9) holds, and the result follows. □

This result is generalized to Theorem 10.1 and extended to Theorem 10.2.

3. Averaging Second Variations ([25])

By an extrinsic average variational method, we derive the following average second variation formulas of
the energy functional E:

An average second variational formula on the target for the energy of u : Mn → Nk ( u is not
necessarily harmonic)

(3.1)

∑q
ℓ=1

d2

dt2E(ϕ
vT
ℓ

t ◦ u)
∣∣∣∣
t=0

=
∫
M

∑m
i=1⟨QN

(
du(ei)

)
, du(ei)⟩N dv,

where QN is as in (2.4).

An average second variational formula on the domain for the energy of a map u : Mm → Nn

( u is harmonic)

(3.2)

∑q
ℓ=1

d2

dt2E(u ◦ ϕvTℓ
t )

∣∣∣∣
t=0

=
∫
M

∑m
i=1⟨du

(
QM (ei)

)
, du(ei)⟩N dv,

where QM is as in (2.4′).

4. Superstrongly Unstable (SSU) Manifolds ([46])

In contrast to an average method in PDE that we applied in [7] to obtain sharp growth estimates for
warping functions in multiply warped product manifolds, we employ an extrinsic average variational
method in the calculus of variations ([45, 43]), find a large class of manifolds of positive Ricci curvature
that enjoy rich properties ([47, 44, 46, 60]).

Definition 4.1. A Riemannian manifold M with its Riemannian metric ⟨ , ⟩M is said to be a super-
strongly unstable (SSU) manifold, if there exists an isometric immersion of M in (Rq, ⟨ · ⟩) with its
second fundamental form B, such that for every unit tangent vector v to M at every point x ∈ M , the
following symmetric linear operator QM

x is negative definite.

(4.1) ⟨QM
x (v), v⟩M =

m∑
i=1

(
2⟨B(v, ei), B(v, ei)⟩ − ⟨B(v, v), B(ei, ei)⟩

)
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and M is said to be a p-superstrongly unstable (p-SSU) manifold for p ≥ 2 if the following functional
is negative valued.

(4.2) Fp,x(v) = (p− 2)⟨B(v, v), B(v, v)⟩+ ⟨QM
x (v), v⟩M ,

where {e1, . . . , em} is a local orthonormal frame on M .

Employing the extrinsic average variational method, we find the following.

Proposition 4.2. A compact SSU manifold M cannot be the domain of any nonconstant stable harmonic
map into any manifold. And a compact SSU manifold N cannot be the target of any nonconstant stable
harmonic maps from any manifold.

Proof. These follow at once from (2.9) (or (3.2)) and (2.6) (or (3.1)) respectively. □

Howard and Wei ([25])
(
resp. Wei and Yau ([60])

)
introduce the following notions:

Definition 4.3. A Riemannian manifold M is said to be strongly unstable (SU)
(
resp. p-strongly unstable

(p-SU)
)
if M is neither the domain nor the target of any nonconstant smooth stable harmonic map, (resp.

stable p-harmonic map), and the homotopic class of maps from or into M contains a map of arbitrarily
small energy E (resp. p-energy Ep).

This concept leads to

Theorem 4.4. Every compact superstrongly unstable (SSU)-manifold
(
resp. p-superstrongly unstable

(p-SSU)
)
manifold is strongly unstable (SU)

(
resp. p-strongly unstable (p-SU)

)
.

Proof. (SSU ⇒ SU) This follows from Proposition 4.2 and [25].

(resp. p-SSU ⇒ p-SU) This follows from [60, 48] □

Theorem 4.5 (Topological Vanishing Theorem). Suppose that M is a compact SSU(resp. p-SSU ) man-
ifold. Then M is SU and

(4.3)
π1(M) = π2(M) = 0(

resp. π1(M) = · · · = π[p] = 0, where [p] is the greatest integer of p
)
.

Furthermore, the following three statements are equivalent:

(4.4)

(a) π1(M) = π2(M) = 0 .

(b) the infimum of the energy E is 0 among maps homotopic to the identity onM .

(c) the infimum of the energy E is 0 among maps homotopic to a map fromM .

That is,

(4.5)
π1(M) = π2(M) = 0

[56]⇐⇒ inf{E(u′) : u′is homotopic to Id onM} = 0,

[14]⇐⇒ inf{E(u′) : u′is homotopic tou : M → •} = 0.

Theorem 4.6 (Sphere Theorem). Suppose that M is a compact SSU(resp. p-SSU ) manifold of dimension
m ≤ 5(resp. m ≤ 2p + 1). Then m > 2 and M is homeomorphic to Sm (resp. m > p and M is
homeomorphic to Sm). Furthermore, if m = 3, then M is deffeomorphic to S3.

Remark 4.7. The dimensions in Theorem 4.6 are sharp, as S2 is not an SSU manifold and the identity
map IdS2 : S2 → S2 on S2 is a stable harmonic map, and the identity map IdSp : Sp → Sp on Sp is a
stable p-harmonic map.
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Theorem 4.8 (SSU Homogeneous Spaces). Let Mm be a compact m-dimensional irreducible homoge-

neous space with scalar curvature ScalM and the smallest positive eigenvalue λ1 of ∆ on functions. Then
the following statements are equivalent:

M is an SSUmanifold. ⇐⇒ M is SU . ⇐⇒ M is U i.e. IdM is an unstable harmonicmap.

⇐⇒ λ1 <
p

p− 1

ScalM

k
.

Theorem 4.9 (Classification Theorem [35, 25]). Let M be a compact irreducible symmetric space. The
following statements are equivalent:

(1) M is SSU.
(2) M is SU.
(3) M is U; i.e. IdM is an unstable harmonic map.
(4) M is one of the following:

(4.6)

(i) the simply connected simple Lie groups (Al)l≥1, B2 = C2 and (Cl)l≥3;

(ii) SU(2n)/Sp(n), n ≥ 3;

(iii) Spheres Sk, k > 2;

(iv) Quaternionic Grassmannians Sp(m+ n)/Sp(m)× Sp(n),m ≥ n ≥ 1;

(v) E6/F4;

(vi) Cayley Plane F4/Spin(9) .

5. Varied Energy, Harmonicity, and Symmetry Invariants

We recall at any fixed point x0 ∈ M , a symmetric 2-covariant tensor field α on (M, gM ) in general, or
the pullback metric u∗gN in particular, has the eigenvalues λ relative to the metric gM of M ; i.e., the m
real roots of the algebraic equation

det(gijλ− αij) = 0 where gij = gM (ei, ej), αij = α(ei, ej) ,

and {e1, · · · em} is a basis for Tx0
(M) . This gives rise to,

The algebraic invariants - the k-th elementary symmetric function of the eigenvalues of α at x0,
denoted by σk(αx0

), 1 ≤ k ≤ m frequently have geometric meaning of the manifold M or the map u on
M with analytic, topological and physical impacts.

Indeed, if we take α to be the second fundamental form ofM in Rm+1, then 1
mσ1(α),

2
m(m−1)σ2(α), and

σm(α) are the mean curvature, scalar curvature, and the Gauss-Kronecker curvature of M respectively
and are central themes of Yamabi problem ([1, 27, 37, 41]), special Lagrangian graphs ([23]), geometric
aspects of the theory of fully nonlinear elliptic equations (e.g., [39]), and conformal geometry (e.g. [10],
[12]), etc. If we take α to be Schoulten tensor, then a study of σ2(α) leads to a generalized Yamabe
problem ([6]). In the study of prescribed curvature problems in PDE, the existence of closed starshaped
hypersurfaces of prescribed mean curvature in Euclidean space was proved by A.E. Treibergs and S.W.
Wei [42], solving a problem of F. Almgren and S.T. Yau [64]. While the case of prescribed Guass-
Kronecker curvature was studied by V.I. Oliker [36] and P. Delanoë [11], the case of prescribed k-th mean
curvature, in particular the intermediate cases, 2 ≤ k ≤ m− 1 were treated by L. Caffarelli, L. Nirenberg
and J. Spruck [9].

These motivate us from the viewpoint of geometric mapping theory u : (Mm, g) → (Nn, h), taking
α = u∗h, to extend the study of harmonic maps or Φ(1)-harmonic maps (cf [15]), Φ-harmonic maps or
Φ(2)-harmonic maps (cf. [24]), and Φ(3)-harmonic maps by unified geometric analytic methods.
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(i) The first symmetric function σ1, and

(
harmonic map u : (M, gM ) → (N, gN ) can be viewed

as

)
Φ(1)-harmonic map.

A harmonic map u or a Φ(1)-harmonic map is a critical point of the energy functional, given by
the integral of a half of an algebraic invariant - the first elementary symmetric function σ1 , of
engenvalues relative to the metric gM , or the trace of the pullback metric tensor u∗gN , with respect
to gM , where {e1, · · · , em} is an local orthonormal frame field on M . More precisely,

(5.1) E(u) =

∫
M

1

2

m∑
i=1

gN
(
du(ei), du(ei)

)
dv =

∫
M

1

2

(
σ1(u

∗)
)
dv.

A p-harmonic map can be viewed as a critical point of the p-energy functional Ep(u), given by the integral
of 1

p times σ1 or the trace of the pullback metric tensor to the power p
2 , i.e.,

(5.2) Ep(u) =

∫
M

1

p

( m∑
i=1

gM
(
du(ei), du(ei)

)) p
2

dv =

∫
M

1

p

(
σ1(u

∗)
) p

2 dv.

(ii) The 2nd symmetric function σ2 and

(
Φ-Harmonic Map [24] can be viewed as

)
Φ(2)-

Harmonic Map.

In [24], Y.B. Han and S.W. Wei introduce the notions of Φ-energy density, Φ-energy, Φ-harmonic maps
and stable Φ-harmonic maps that arise from the second symmetric function σ2 of of engenvalues of a
symmetric 2-covariant tensor field α on (M, gM ) relative to the metric gM , where α is the pullback metric
u∗gN .

Let u : (M, gM ) → (N, gN ) be a smooth map between two Riemannian manifolds M and N .

Definition 5.1. The Φ-energy density of u, denoted by eΦ(u) is a quarter of the second symmetric
function σ2 of the engenvalues of the pullback metric u∗gN , given by

(5.3)

eΦ(u) =
1

4
σ2(α), where α = u∗gN

=
1

4

m∑
i,j=1

(
gN

(
du(ei), du(ej)

))2

.

Thus, the Φ-energy density, similarly to the energy density depends on the metric gM of M and the metric
gN of N .
The Φ-energy of u, denoted by EΦ(u) is defined to be

(5.4) EΦ(u) =

∫
M

eΦ(u) dvg.

A smooth map u : M → N is called Φ-harmonic if u is a critical point of the Φ-energy functional EΦ with
respect to any compactly supported variation, Φ-stable if u is a local minimum of the Φ-energy functional
EΦ(u), and Φ-unstable if u is not Φ-stable.

We show that the extrinsic average variational method in the calculus of variations employed in the
study of harmonic maps, p-harmonic maps, F -harmonic maps and Yang-Mills fields can be extended to
the study of Φ-harmonic maps, and find Φ-superstrongly unstable (Φ-SSU) manifold.
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Definition 5.2. A Riemannian manifold Mm is said to be Φ-superstrongly unstable (Φ-SSU) if there
exists an isometric immersion of Mm in Rq with its second fundamental form B such that, for all unit
tangent vectors v to Mm at every point x ∈ Mm, the following functional is always negative:

(5.5) FΦx(v) =
m∑
i=1

(
4⟨B(v, ei), B(v, ei)⟩ − ⟨B(v, v), B(ei, ei)⟩

)
,

where {e1, · · · , em} is a local orthonormal frame on M near x.

Examples of Φ-SSU manifolds include hypersurfaces in Euclidean space with principal curvatures satis-
fying

0 < λ1 ≤ λ2 ≤ · · · ≤ λm < 1
3 (λ1+· · ·+λm−1),m-dimensional elliptic paraboloid in Rm+1, {(x1, · · · , xm, y) :

y = x2
1 + · · · + x2

m} , the standard m-sphere Sm, for m > 4, certain ellipsoids, minimal submanifolds in
ellipsoids and in convex hypersurfaces, arbitrary finite product of compact or noncompact manifolds (cf.
[24, Theorems 5.1-5.4, Corollaries 5.1-5.2, and 5.4]). Indeed, examples of Φ-SSU manifolds are not limited
to topological spheres or some unstable Yang-Mills fields in the sense of Bourguignon-Lawson-Simons
[5, 32], Wei [44, 59], Kobayashi-Ohnita-Takeuchi (cf. [30]), (cf. also [24, Theorem 5.2]).

In [24] Y.B. Han and S.W. Wei introduced

Definition 5.3. A manifold M is said to be Φ-Strongly Unstable (Φ-SU) if (a) M cannot be the target of
any nonconstant stable Φ-harmonic map, (b) The homotopic class of any map into M contains elements
of arbitrarily small Φ-energy, (c) M cannot be the domain of any nonconstant stable Φ-harmonic map,
and (d) The homotopic class of any map from manifold M contains elements of arbitrarily small Φ-energy.

and proved that

Theorem 5.4 ([24]). Every compact Φ-superstrongly unstable (Φ-SSU) manifold must be Φ-strongly
unstable (Φ-SU).

Remark 5.5. That a compact Φ-SSU manifold is Φ-SU is an analog of a compact SSU manifold being
SU This can be viewed as a compact Φ(2)-SSU manifold being Φ(2)-SU or a compact Φ(1)-SSU manifold
being Φ(1)-SU.

6. ΦS-harmonic maps, extended σ2, and ΦS-SSU manifolds ([17])

For a given map u : (M, gM ) → (N, gN ), the stress energy tensor S given by

(6.1) S = e(u)gM − u∗gN

plays an important role in unifying the theory of harmonic maps and their generalizations. The norm of
the stress energy tensor S given by

(6.2) ||S||2 = Σm
i,j=1

(
e(u)gM (ei, ej)− u∗gN (ei, ej)

)2

=
m− 4

4
|du|4 + σ2(u

∗gN ) .

Associated with the stress energy tensor S, S.X. Feng, Y.B. Han, X. Li and S.W. Wei in [17], introduce
the notion of the ΦS-energy density eΦS

(u) of u , ΦS-energy EΦS
(u) of u and ΦS-harmonic maps, which

are σ2 version of the stress energy tensor S.

Definition 6.1. The ΦS-energy density eΦS
(u) of u is given by

(6.3) eΦS
(u)

(
=

1

4
||S||2

)
=

m− 4

16
|du|4 + 1

4
σ2(u

∗gN ) =
m− 4

4
e4(u) + eΦ(u)

and the ΦS-energy EΦS
(u) of u is defined to be the integral of ΦS-energy density eΦS

(u) over M . Namely,
(6.4)

EΦS
(u) =

∫
M

eΦS
(u) dv =

m− 4

4
E4(u) + EΦ(u) ,

where E4(u) and EΦ(u) are 4 -energy of u and Φ -energy of u respectively .
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A smooth map u is said to be a ΦS-harmonic map if it is a critical point of the ΦS-energy functional
EΦS

with respect to any smooth compactly supported variation of u , stable ΦS-harmonic or simply
ΦS-stable if u is a local minimum of EΦS

(u) , and ΦS-unstable if u is not ΦS-stable.

In [17], using the extrinsic average variational method in the calculus of variations, S.X. Feng, Y.B. Han,
X. Li and S.W. Wei find a large class of manifolds, ΦS-superstrongly unstable (ΦS-SSU) manifolds,

Definition 6.2. A Riemannian manifold N with dimN > 4 is said to be a ΦS-superstrongly unstable
(ΦS-SSU) manifold if there exists an isometric immersion of N into Rq with its second fundamental form
B such that, for all unit tangent vectors x to N at every point y ∈ Nn, the following functional is always
negative:

(6.5) FΦSy
(x) =

n∑
β=1

(
4⟨B(x, ei),B(x, ei)⟩Rq − ⟨B(x,x),B(ei, ei)⟩Rq

)
,

where B is the second fundamental form of Nn in Rq, and {e1, · · · , en} is a local orthonormal frame on
N near y,

and introduce the notion of ΦS-strongly unstable (ΦS-SU) manifolds,

Definition 6.3. A manifold M is said to be ΦS-Strongly Unstable (ΦS-SU) if (a) M is not the target of
any nonconstant stable ΦS-harmonic map, (b) The homotopic class of any map into M contains elements
of arbitrarily small ΦS-energy, (c) M is not the domain of any nonconstant stable ΦS-harmonic map,
and (d) The homotopic class of any map from M contains elements of arbitrarily small ΦS-energy,

and prove

Theorem 6.4. Every compact ΦS-superstrongly unstable (ΦS-SSU) manifold is ΦS-strongly unstable
(ΦS-SU) .

Remark 6.5. This compact ΦS-SSU manifold being ΦS-SU is an analog of compact SSU manifold being
SU, i.e., compact Φ(1)-SSU manifold being Φ(1)-SU.

7. ΦS,p-harmonic maps, coupled σ2 with σ1, and ΦS,p-SSU Manifolds ([18])

We introduce the notion of ΦS,p-harmonic maps, which is a coupled generalized σ2 version of the stress
energy tensor S, and a σ1 version of the pullback u∗gN .

Just as we define the ΦS-energy density eΦS
(u) and ΦS-energy EΦS

(u) of a map u : M → N , ΦS-
harmonic map, stable ΦS-harmonic map, and unstable ΦS-harmonic map that are associated with the
stress energy tensor S, so do we introduce the notions of the ΦS,p-energy density eΦS,p

(u) and the ΦS,p-
energy EΦS,p

(u) of a map u : M → N , ΦS,p-harmonic map, stable ΦS,p-harmonic map, and unstable
ΦS,p-harmonic map. Recall for a given map u : (M, gM ) → (N, gN )),

Sp = ep(u)gM − |du|p−2u∗gN

with the norm given by

(7.1) ||Sp||2 = Σm
i,j=1

(
|du|p

p
δi,j − |du|p−2u∗gN (ei, ej)

)2

.

Definition 7.1. The ΦS,p-energy density eΦS,p
(u) of u is given by

(7.2) eΦS,p
(u) =

m− 2p

2p3
|du|2p + 1

2p
m

p
2−1|u∗gN |p =

m− 2p

p2
e2p(u) +m

p
2−1eΦp(u)
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The ΦS,p-energy EΦS,p
(u) of u is given by

(7.3)
EΦS,p

(u) =

∫
M

eΦS,p
(u) dv =

m− 2p

p2
E2p(u) +m

p
2−1EΦp

(u)

where E2p(u) and EΦp
(u) are 2p -energy of u and Φp -energy of u respectively .

Definition 7.2. A smooth map u is said to be a ΦS,p-harmonic map (or a stress-energy stationary map )
if it is a critical point of the ΦS,p-energy functional EΦS,p

with respect to any smooth compactly supported
variation of u , stable ΦS,p-harmonic or simply ΦS,p-stable if u is a local minimum of EΦS,p

(u) , and
ΦS,p-unstable if u is not ΦS,p-stable.

This is a natural L2 version that involves with the p-th power of the norm of the the induced (0,
2)-tensor u∗gN . When p = 2 , eΦS,p

, EΦS,p
, ΦS,p-harmonic maps and stable ΦS,p-harmonic maps become

eΦS,
, EΦS,

, ΦS-harmonic maps and stable ΦS–harmonic maps respectively.
In [18], S.X. Feng, Y.B. Han, and S.W. Wei show that the extrinsic average variational method in the

calculus of variations employed in the study of σ1 and σ2 versions of the pullback metric u∗gN on M and
stress-energy tensor can be extended to the study of a combined extended second symmetric function σ2

version. In fact, we find a large class of manifolds, ΦS,p-superstrongly unstable (ΦS,p-SSU) manifolds,

Definition 7.3. A Riemannian n-manifold N is said to be ΦS,p-supersrongly unstable (ΦS,p-SSU) if
there exists an isometric immersion of N in Rq with its second fundamental form B such that, for all
unit tangent vectors x to N at every point y ∈ N , the following functional is always negative-valued:

(7.4)

FΦS,p,y(x) =2(p− 2)⟨B(x, x),B(x, x)⟩

+

n∑
β=1

(
4⟨B(x, eβ),B(x, eβ)⟩Rq − ⟨B(x, x),B(eβ , eβ)⟩Rq

)
,

introduce the notion of ΦS,p-strongly unstable (ΦS,p-SU) manifolds

Definition 7.4. A manifold M is said to be ΦS,p-Strongly Unstable (ΦS,p-SU) if (a) M is not be the
target of any nonconstant stable ΦS,p-harmonic map, (b) The homotopic class of any map into M contains
elements of arbitrarily small ΦS,p-energy, (c) M is not the domain of any nonconstant stable ΦS,p-
harmonic map, and (d) The homotopic class of any map from M contains elements of arbitrarily small
ΦS,p-energy,

and prove

Theorem 7.5. Every compact ΦS,p-superstrongly unstable (ΦS,p-SSU) manifold is ΦS,p-strongly unstable
(ΦS,p-SU) .

Remark 7.6. This compact ΦS,p-SSU manifold being ΦS,p-SU is an analog of a compact ΦS-SSU
manifold being ΦS-SU , or a compact Φ(2)-SSU manifold being Φ(2)-SU.

8. Φ(3)-harmonic maps, σ3-symmetric functions, and Φ(3)-SSU manifolds([16])

We introduce unified notations and concepts of Φ(i)-harmonic maps which are σi version of the pullback
u∗gN , for i = 1, 2, 3.
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Definition 8.1. Let d(1)u, d(2)u and d(3)u be 1-forms with values in the pullback bundle u−1TN given by

(8.1)

d(1)u(X) = du(X) ,

d(2)u(X) =
m∑
j=1

h
(
du(X), du(ej)

)
du(ej) , and

d(3)u(X) =
m∑

j,k=1

h
(
du(X), du(ej)

)
h
(
du(ej), du(ek)

)
du(ek) ,

respectively, for any smooth vector field X on (M, g), where {ei} is a local orthonormal frame field on
(M, g), with the following corresponding norms

||d(1)u||2 =
m∑
i=1

h
(
d(1)u(ei), du(ei)

)
=

m∑
i=1

h
(
du(ei), du(ei)

)
,

||d(2)u||2 =
m∑
i=1

h
(
d(2)u(ei), du(ei)

)
=

m∑
i,j=1

h
(
du(ei), du(ej)

)
h
(
du(ej), du(ei)

)
, and

||d(3)u||2 =
m∑
i=1

h
(
d(3)u(ei), du(ei)

)
=

m∑
i,j,k=1

h
(
du(ei), du(ej)

)
h
(
du(ej), du(ek)

)
h
(
du(ek), du(ei)

)
.

The Φ(1)-energy density eΦ(1)
(u), Φ(2)-energy density eΦ(2)

(u), and Φ(3)-energy density eΦ(3)
(u) of u

are given by

(8.2)

eΦ(1)
(u) =

||d(1)u||2

2
,

eΦ(2)
(u) =

||d(2)u||2

4
, and

eΦ(3)
(u) =

||d(3)u||2

6
, respectively .

The Φ(1)-energy EΦ(1)
(u), Φ(2)-energy EΦ(2)

(u), and Φ(3)-energy EΦ(3)
(u) of u are given by

(8.3)

EΦ(1)
(u) =

∫
M

eΦ(1)
(u)dvg,

EΦ(2)
(u) =

∫
M

eΦ(2)
(u)dvg, and

EΦ(3)
(u) =

∫
M

eΦ(3)
(u)dvg, respectively .

Definition 8.2. For i = 1, 2, 3, a smooth map u is said to be a Φ(i)-harmonic map if it is a critical point
of the Φ(i)-energy functional EΦ(i)

with respect to any smooth compactly supported variation of u, stable

Φ(i)-harmonic or simply Φ(i)-stable, if u is a local minimum of EΦ(i)
(u), and Φ(i)-unstable if u is not

Φ(i)-stable.

Remark 8.3. (i) The norm ||d(1)u|| is the Hibert-Schmid norm of the differential du, i.e., ||d(1)u|| = |du| .
(ii) The Φ(1)-energy density eΦ(1)

(u) = e(u) is the energy density of u. (iii) Φ(1)-harmonic map is

ordinary harmonic map (cf. [15] ). (iv) The Φ(2)-energy density eΦ(2)
(u) = eΦ(u) is the Φ-energy density

of u. (v) Φ(2)-harmonic map is Φ-harmonic map (cf. [24] ). (vi) Definition 8.2 can be extended to
4 ≤ i ≤ m = dimM . Hence, for any integer 1 ≤ i ≤ m, a smooth map u is said to be a Φ(i)-harmonic
map if it is a critical point of the Φ(i)-energy functional EΦ(i)

with respect to any smooth compactly

supported variation of u, stable Φ(i)-harmonic or simply Φ(i)-stable, if u is a local minimum of EΦ(i)
(u),

and Φ(i)-unstable if u is not Φ(i)-stable.
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In fact, S.X. Feng, Y.B. Han, K. Jiang, and S.W. Wei show that the extrinsic average variational
method in the calculus of variations employed in the study of σ1 and σ2 versions of the pullback metric
u∗gN on M can be extended to the study of the third symmetric function σ3 version. The “distinguished”
conservative vector fields on SSU manifolds “universally decrease” the the energy E also works on p-SSU,
Φ-SSU, Φ(2)-SSU, ΦS-SSU, ΦS,p-SSU, and Φ(3)-SSU manifolds to “universally decrease” p-energy, Φ-
energy, Φ(2)-energy, ΦS-energy, ΦS,p-energy, and Φ(3)-energy respectively.

We introduce the notion of a Φ(3)-harmonic map and find a large class of manifolds, Φ(3)-superstrongly
unstable (Φ(3)-SSU) manifolds,

Definition 8.4. A Riemannian manifold Mm is said to be Φ(3)-superstrongly unstable (Φ(3)-SSU) if
there exists an isometric immersion of Mm in Rq with its second fundamental form B such that for all
unit tangent vectors v to Mm at every point x ∈ Mm, the following functional is negative valued.

(8.4) FΦ(3),x(v) =
m∑
i=1

(
6⟨B(v, ei), B(v, ei)⟩Rq − ⟨B(v, v), B(ei, ei)⟩Rq

)
,

where {e1, · · · , em} is a local orthonormal frame field on Mm near x.

We introduce

Definition 8.5. A Riemannian manifold M is Φ(3)-strongly unstable (Φ(3)-SU) if M is neither the
domain nor the target of any nonconstant smooth Φ(3)-stable harmonic map (into or from any compact
Riemannian manifold), and the homotopic class of maps from or into M contains a map of arbitrarily
small Φ(3)-energy EΦ(3)

,

and prove

Theorem 8.6 ([16]). Every compact Φ(3)-superstrongly unstable (Φ(3)-SSU) manifold is Φ(3)-strongly
unstable (Φ(3)-SU) .

Remark 8.7. This compact Φ(3)-SSU manifold being Φ(3)-SU is an analog of a compct SSU manifold
being SU.

9. Varied, Coupled, Generalized Harmonic maps, -Energy, with corresponding -SSU and
-SU Manifolds

As in the philosophy of Lao-Tzu (Chapter 42 of Tao Te Ching),
“TenThousands things embrace polar opposites: Yin andYang.
Integrating and balancing them through their generated “flow” achieve harmony”.
(where “flow” is in English “Qi”, which is pronounced the first syllable of “cheese”)

Employing the extrinsic average variational method in [45, 43], we have found multiple large classes
of new manifolds with geometric and topological properties in the setting of varied, coupled, generalized
type of harmonic maps.

These newly found manifolds have their interactions with geometry, topology, analysis, partial differ-
ential equations, calculus of variations, physics, and are briefly listed in the following table. For more
details, related ideas, techniques, we refer to [7], [17]-[16], [34]-[43], [55], [58], [60] and references within.

10. Product Manifolds

In Theorem 2.4 ([43]) we prove that in particular Sn or Sn×Sk, for n > 2, k > 2 cannot be the target
of any nonconstant stable harmonic maps.

The extrinsic average variational method can carry this idea and result to more general settings, These
include from spheres, hypersurfaces in the Euclidean space, etc. to SSU manifolds, and the extension
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Table 1. An Extrinsic Average Variational Method

Mappings Functionals New manifolds found Geometry Topology

harmonic map or energy functional E or SSU manifolds or SU or π1 = π2 = 0

Φ(1)-harmonic map Φ(1)-energy functional EΦ(1)
Φ(1)-SSU manifolds Φ(1)-SU π1 = π2 = 0

p − harmonic map p−energyfunctional Ep p − SSU manifolds p − SU π1 = · · · = π[p] = 0

Φ-harmonic map or Φ-energy functional EΦ or Φ-SSU manifolds or Φ-SU or π1 = · · · = π4 = 0

Φ(2)-harmonic map Φ(2)-energy functional EΦ(2)
Φ(2)-SSU manifolds Φ(2)-SU π1 = · · · = π4 = 0

ΦS -harmonic map ΦS -energy functional EΦS
ΦS -SSU manifolds ΦS -SU π1 = · · · = π4 = 0

ΦS,p-harmonic map ΦS,p-energy functional EΦS,p
ΦS,p-SSU manifolds ΦS,p-SU π1 = · · · = π[2p] = 0

Φ(3)-harmonic map Φ(3)-energy functional EΦ(3)
Φ(3)-SSU manifolds Φ(3)-SU π1 = · · · = π6 = 0

from the instability of a map to the infimum of variant energy of the map in its homotopy class. For
example, we have the following

Theorem 10.1. Let Mm1
1 , · · · ,Mmℓ

ℓ be compact p-SSU manifolds. Then (i) The product manifold M =
Mm1

1 ×· · ·×Mmℓ

ℓ is a p-SSU manifold of dimension m = m1+ · · ·+mℓ. Hence, M is p-SU. (ii) There is
a neighborhood of the product metric g0 of the product manifold M = Mm1

1 ×· · ·×Mmℓ

ℓ in the C2 topology
(if M is not compact we must use the strong C2 topology) such that for every g in this neighborhood the
Riemannian manifold (M, g) is a p-SSU manifold of dimension m = m1 + · · · + mℓ. Hence, compact
(M, g) is p-SU.

Proof. (i) By assumption, for each 1 < i < ℓ we have an isometric immersion of Mmi
i into Rqi with the

second fundamental for BMi in such a way that each functional as in (4.2),

(4.2′) FMi
p,xi

(v) = (p− 2)⟨BMi(v, v), BMi(v, v)⟩+ ⟨QMi
xi

(v), v⟩Mi
,

is negative valued. It follows that for the product immersion of M = Mm1
1 × · · · × Mmℓ

ℓ into Rq (q =
q1 + · · ·+ qℓ), Fp,x(v) is also negative valued. This proves that M is a p-SSU manifold of dimension m.
M is p-SU follows from Theorem 4.4.

To prove (ii), it is enough to show there is a neighborhood U of g0 in the C2 topology such that for
every g ∈ U the set {V1, · · ·Vℓ} is still universally p-energy Ep decreasing on (M, g). Let M(M) be the
space of smooth Riemannian metrics on M with the strong C2 topology and let C∞(•,M) be the space
of smooth maps into M . Consider the function on C∞(•,M)×M(M) given by

(10.1) (u, g) 7→
ℓ∑

i=1

Ep(Vi, u, g) :=
1

p

ℓ∑
i=1

d2

dt2

∣∣∣∣
t=0

||d(ϕvTi
t ◦ u

)
X||p.

If this is continuous then

U = {g ∈ M(M) :
ℓ∑

i=1

Ep(Vi, u, g) < 0 for all u ∈ C∞(•,M)}

is the required neighborhood of g0. To show that the function given by (10.1) is continuous it is enough
to show that for any smooth vector field V the function (g, u) 7→ Ep(V, u, g) is continuous.

We define a tensor field of type (1, 1) (i.e. a field of linear endomorphisms of tangent spaces) AV ∈
Hom(TM, TM) for any smooth vector field V on M , given by

(10.2) AV X = ∇XV, where ∇ is the Riemannian connection on M.

We note Ep(V, u, g) involves with AV and ∇V AV . When p = 2, Ep(V, u, g) becomes

E(V, u, g) = g(AV AV X,X) + g(AV X,AV X) + g(∇V AV , X) .
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Let x1, . . . xn be local coordinates onM and let gij = g( ∂
∂xi ,

∂
∂xj ) be the components of g in this coordinate

system. Let the Christoffel symbols Γk
ij be given as usual by ∇ ∂

∂xi

∂
∂xj =

∑n
k=1 Γ

k
ij

∂
∂xk . Then by a well

known formula

(10.3) Γk
ij =

1

2

n∑
ℓ=1

gkℓ(
∂gℓj
∂xi

+
∂gℓi
∂xj

− ∂gij
∂xℓ

) .

(where [gij ] is the inverse of the matrix [gij ]). If the vector field V is locally given by V =
∑n

i=1 v
i ∂
∂xi

and the components (AV )ji and (∇V AV )ji are given by

(AV )
∂

∂xi
=

n∑
j=1

(AV )ji
∂

∂xj
, (∇V AV )

∂

∂xi
=

n∑
j=1

(∇V AV )ji
∂

∂xj

then a little calculation shows that

(10.4) (AV )ji =
∂vj

∂xi
+

n∑
k=1

vkΓj
ik .

(10.5) (∇V AV )ji =

n∑
k=1

vk
∂aji
∂xk

+

n∑
k,ℓ=1

(aℓiv
kΓj

kℓ − ajℓv
kΓℓ

ki) ,

where aji = (AV )ji . Indeed,

(∇V AV )
∂

∂xi
= ∇V

(
AV (

∂

∂xi
)
)
−AV (∇V

∂

∂xi
)

= ∇∑n
k=1 vk

∂

∂xk
(

n∑
j=1

aji
∂

∂xj
)−∇∇∑n

k=1
vk

∂
∂xk

∂

∂xi
V )

=

n∑
j,k=1

vk
∂aji
∂xk

∂

∂xj
+

n∑
k,ℓ=1

(ajiv
kΓℓ

kj

∂

∂xℓ
− vkΓℓ

ki∇ ∂

∂xℓ
V ) ,

=
n∑

j=1

( n∑
k=1

vk
∂aji
∂xk

+
n∑

k,ℓ=1

(aℓiv
kΓj

kℓ − ajℓv
kΓℓ

ki)

)
∂

∂xj
,

Putting (10.3) into (10.4) and (10.5) and the result of that into (10.1) gives Ep(V, u, g) as a rational
function of the gij and their first two derivatives. Thus Ep(V, u, g) is clearly a continuous function of g in
the strong C2 topology. Analogously, we can show the function

(10.6) (u, g) 7→ 1

p

ℓ∑
i=1

d2

dt2

∣∣∣∣
t=0

||d
(
u ◦ ϕvTi

t

)
X||p

is a continuous function of g in the strong topology. This completes the proof.
□

There is an analog of a neighborhood of g0 in the C2 topology in unstable rectifiable currents (cf. [26,
Theorem 2.1]). Proceed in the same spirit, by a continuous function of metric g in the strong topology
as in the proof of Theorem 10.1, we obtain

Theorem 10.2. Let Mm1
1 , · · · ,Mmℓ

ℓ be compact X-SSU manifolds, where X- denotes one of the fol-
lowing: Φ(1)-, ΦS-, ΦS,p-, Φ(2)-, Φ(3)-.Then (i) The product manifold M = Mm1

1 × · · · × Mmℓ

ℓ is an
X-SSU manifold of dimension m = m1 + · · · + mℓ. Hence, M is X-SU, i.e. M is the corresponding
Φ(1)-SU, ΦS-SU, ΦS,p-SU, Φ(2)-SU, or Φ(3)-SU. (ii) There is a neighborhood of the product metric g0
of the product manifold M = Mm1

1 × · · · × Mmℓ

ℓ in the C2 topology (if M is not compact we must use
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the strong C2 topology) such that for every g in this neighborhood the Riemannian manifold (M, g) is an
X-SSU manifold of dimension m = m1 + · · ·+mℓ. Hence, compact (M, g) is X-SU.

Remark 10.3. The extrinsic average variational method in the calculus of variations also marks the
birth of

(i) the first nonexistence theorem of stable Yang-Mills fields on product manifolds ([44]).
(ii) the first classification of stable rectifialbe currents on product manifolds ([51]).
(iii) the first nonexistence theorem of nonconstant stable harmonic maps into product manifolds ([43]).

11. Liouville type theorems for stable harmonic maps into SSU manifolds ([46])

We extended our study on the nonexistence of stable harmonic maps between compact manifolds ([25])
to that between complete, non-compact ones. Thus, employing the extrinsic average variational method
in the calculus of variations, S.W. Wei established the first Liouvile-type theorem of stable harmonic
maps into SSU manifolds.

We recall a manifold M is said to be parabolic if M admits no nonconstant positive superharmonic
function. Whereas a complete noncompact manifold with quadratic volume growth is parabolic, Wei-Li-
Wu constructed examples of p-parabolic manifolds with exponential volume growth (cf. [58]).

Theorem 11.1 ([46]). Every smooth, stable harmonic map u : M → N from a parabolic manifold M
into any SSU-manifold N is constant.

Using the extrinsic average variational method in the calculus of variations, S.W. Wei and C.M. Yau
([60]) extend and generalize the above results to Liouville Theorems for stable p-harmonic maps into
p-SSU manifolds

In contrast to vanishing theorems for differential forms with values in vector bundles ([13, 12]), Li-
ouville theorems for Φ(1)-harmonic maps, (resp. Φ(3)-harmonic maps, and ΦS,p-harmonic maps), by us-
ing techniques of Φ(1)-stress-energy tensor, Φ(1)-conservation law, monotonicity formula for Φ(1)-energy(
resp. Φ(3)-stress-energy tensor, Φ(3)-conservation law, monotonicity formula for Φ(3)-energy, and ΦS,p-

stress-energy tensor, ΦS,p-conservation law, and monotonicity formula for ΦS,p-eneergy
)
are derived in

([28, 16, 18]).

12. Regularity of Energy-Minimizing Maps and SSU-index ([46])

For a given SSU manifold, S.W. Wei found the first SSU-index w. From a viewpoint of geometric
measure theory, this index w serves as an indication of the regularity of L2

1 energy minimizing harmonic
maps into SSU manifolds.

We recall a map u : Rj+1 → N is said to be a p-enegy-minimizing tangent map if u is p-energy
minimizing on every compact subset of Rj+1 and is a homogeneous extension of u : Sj → N of degree-zero,
i.e., u(x) = u( x

|x| ) for every x ∈ Rj+1\{0}.

Theorem 12.1 (Hardt-Lin [22], Theorem 4.5, p.573). Suppose ℓ is the largest integer such that any
p-energy minimizing tangent map from the unit ball in Rj into N is a constant map for each j = 1, · · · , ℓ.
Then the interior singular set of any p-energy minimizing tangent map u ∈ Lp

1(Ω, N) is empty in case
n < ℓ + 1, is a discrete set in case n = ℓ + 1, and has Hausdorff dimension n − ℓ − 1 in case n ≥ ℓ + 1
(Where Ω is a C2 bounded open subset of Rn with the Euclidean metric).

In applying Theorem 12.1, we find SSU-index w is a number between 0 < w < 1, the higher the index
w is (or the closer w is to 1), the higher dimension ℓ of the domain of trivial minimizing tangent map u
is (or the easier Liouville theorem for minimizing tangent map u holds), and hence the smaller the size
of the Hausdorff dimension of the singular set = n− ℓ− 1 is (or the smoother of L1,2- energy minimizing
map into SSU-manifold is, in terms of SSU-index (cf. [46]).
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This result is extended to the regularity of p-energy minimizing L1,p map into p-SSU manifolds in
terms of p-SSU-index by Wei-Yau. ([60]).

On the other hand, the following regularity theorem is attained.

Theorem 12.2 (Wei-Yau [60], Theorem 1.4). Every p-energy minimizing L1,p- map into a manifold N
with sectional curvature RiemN ≤ 0 or into a domain of a convex function is C1,α.

Proof. By the first variation formula for p-energy Ep formula ([60] p.249), any p-energy minimizing
tangent map u from the unit ball in Rj into a N is a constant map, for every integer j. Hence, n < ℓ+1.
In view of Theorem 12.1, the singular set of L1,p map u is then empty. It follows from the regularity
theorem ([22, 33]) that u is C1,α . □

13. Existence Theorem by Direct Method and Regularity Theory

Regularity Theorem 12.2 of p-energy minimizing L1,p maps is used to represent components of the
space C0(M,N)∩Lp

1(M,N) by p-harmonic maps (cf. [47]). Indeed, S.W. Wei uses the direct method in
the Calculus of Variations [3, 57] and the regularity theorey [22, 60] to obtain an existence theorem for
p-harmonic maps, generalizing the work of Eells-Sampson [15], Schoen-Yau [38] and Burstall [3] which
treat the case p = 2.

Theorem 13.1 (Existence Theorem, Wei [47], Theorem 2.2 ). Let M be a complete Riemannian n-

manifold and N be a compact Riemannian manifold with a contractible universal cover Ñ and assume
that N has no non-trivial p-minimizing tangent map of Rℓ for ℓ ≤ n. Then any continuous (or more
generally Lp

1−) map u from M into N of finite p-energy can be deformed to a C1,α p-harmonic map u0

minimizing p-energy in the homotopic class, where 1 < p < ∞.

14. Dirichlet boundary value problems

Regularity Theorem 12.2 of p-energy minimizing L1,p maps is also used to solve Dirichlet boundary
value problem for p-harmonic maps into manifolds with nonpositive sectional curvature, generalizing the
case p = 2 for harmonic maps due to R. S. Hamilton ([19]). Indeed,

Theorem 14.1 (Existence Theorem, S.W. Wei ([48])). Let M be a compact Riemannian n-manifold

with boundary ∂M and N be a compact Riemannian manifold with a contractible universal cover Ñ and
assume that N has no non-trivial p-minimizing tangent map of Rℓ for ℓ ≤ n. Then any u ∈ Lip(∂M,N)∩
C0(M,N) of finite p-energy can be deformed to a p-harmonic map u0 ∈ C1,α(M − ∂M,N) ∩ Cα(M,N)
minimizing p-energy in the homotopy class with u0|∂M = u|∂M , where 1 < p < ∞. In particular, every
u ∈ C1(M,N) can be deformed to a C1,α p-harmonic map u0 in M − ∂M minimizing p-energy in the
homotopy class with Hölder continuous u0|∂M = u|∂M .

Furthermore, S.W. Wei proves, in particular the uniqueness of solutions of Dirichlet boundary value
problem for p-harmonic maps into manifolds with nonpositive sectional curvature ([48]). The case p = 2
is due to P. Hartman ([20]), where the heat flow method is used.

Theorem 14.2 (Uniqueness Theorem, S.W. Wei ([48])). If u0 and u1 are homotopic p-harmonic maps
from a compact manifold M with possible empty boundary into a compact manifold N with sectional
curvature RiemN ≤ 0 (and a homotopy F : M × [0, 1] → N between u0 and u1 ), then they are homotopic
through p-harmonic maps us(·)(= G(·, s) ,where G : M×[0, 1] → N with s 7→ G(x, s) as a unique geodesic
arc in N connecting u0(x) to u1(x) and homotopic to the curve t 7→ F(x, t) for each x ∈ M) , and the
p-energy is constant on any arcwise connected set of p-harmonic maps, i.e. Ep(us) = Ep(u0) = Ep(u1)
for ∀s ∈ (0, 1). Furthermore, each path s 7→ G(x, s) has length independent of x ∈ M .

In particular, (1) Every homotopy class of a p-harmonic map from M to N which agree on an nonempty
∂M with RiemN ≤ 0 contains a unique p-harmonic map.
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(2) If u0 : M → N is a p-harmonic map with ∂M = ϕ and RiemN ≤ 0. Assume that there is some point
of u0(M) at which RiemN < 0. Then u0 is unique in its homotopy class unless it is constant or maps
M onto a closed geodesic σ in N . In the latter case, we have uniqueness up to rotations of σ.

Hence every homotopy class of a p-harmonic map from M into N of rank greater than one at some
point of M with ∂M = ϕ and RiemN < 0 contains a unique p-harmonic map.

14.1. Dirichlet Boundary Value Problem for differential 1-form (e.g., [29, 13, 54]). Let F :
[0,∞) → [0,∞) be a C2 function such that F ′ > 0 on [0,∞) , and F (0) = 0 (as stated in §1, unifying
F -harmonic maps and F -Yang-Mills fields). We recall The F -degree dF is defined to be

(14.1) dF = sup
t≥0

tF ′(t)

F (t)
.

F -lower degree lF is defined to be

(14.2) lF = inf
t≥0

tF ′(t)

F (t)
.

A bounded domain D ⊂ M with C1 boundary is called starlike ( relative to x0 ) if there exists an inner
point x0 ∈ D such that

(14.3) ⟨ ∂

∂rx0

, ν⟩|∂D ≥ 0 ,

where ν is the unit outer normal to ∂D , and for any x ∈ D\{x0} ∪ ∂D , ∂
∂rx0

(x) is the unit vector field

tangent to the unique geodesic emanating from x0 to x.

It is obvious that any disc or convex domain is starlike. Let r be the distance function on M relative
to x0 , D(x0) = M\(Cut(x0) ∪ {x0}) , Bt(x0) = {x ∈ M : r(x) < t} , and a punctured geodesic ball
◦
Bt(x0) = Bt(x0)\{x0}.

Theorem 14.3 (Dirichlet Boundary Value Problem for differential 1-form, S.W.Wei [54]). Let D be a
bounded starlike domain (relative to x0) with C1 boundary in a complete Riemannian n-manifold M . Let
ξ : E → M be a Riemannian vector bundle on M and ω ∈ A1(ξ) . Assume that the radial curvature K(r)
of M satisfies one of the following seven conditions:

(i) −A(A−1)
r2 ≤ K(r) ≤ −A1(A1−1)

r2 where A ≥ A1 ≥ 1 on M\{x0} ,with 1 + (n− 1)A1 − 2dFA > 0;

(ii) − A
r2 ≤ K(r) ≤ −A1

r2 where 0 ≤ A1 ≤ A on M\{x0}.
with 1 + (n− 1) 1+

√
1+4A1

2 − dF (1 +
√
1 + 4A) > 0;

(iii) B1(1−B1)
r2 ≤ K(r) ≤ B(1−B)

r2 , 0 ≤ B ,B1 ≤ 1 on
◦
Bτ (x0) ⊂ D(x0) ,

with 1 + (n− 1)
(
|B − 1

2 |+
1
2

)
− dF

(
1 +

√
1 + 4B1(1−B1)

)
> 0;

(iv) B1

r2 ≤ K(r) ≤ B
r2 where 0 ≤ B1 ≤ B ≤ 1

4 on
◦
Bτ (x0) ⊂ D(x0) ,

with 1 + (n− 1) 1+
√
1−4B
2 − dF (1 +

√
1 + 4B1) > 0;

(v) −α2 ≤ K(r) ≤ −β2 with α > 0, β > 0 and (n− 1)β − 2αdF ≥ 0;
(vi) K(r) = 0 with n− 2dF > 0;

(vii) − A
(1+r2)1+ϵ ≤ K(r) ≤ B

(1+r2)1+ϵ with ϵ > 0 , A ≥ 0 , 0 < B < 2ϵ andn− (n− 1)B2ϵ − 2e
A
2ϵ dF > 0.

(14.4)

Assume that lF ≥ 1
2 . If ω ∈ A1(ξ) satisfies F -conservation law and annihilates any tangent vector η of

∂D, then ω vanishes on D.
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14.2. Dirichlet problems for F -harmonic maps. As an application of Theorem 14.3, we solve the
following

Theorem 14.4 (S.W. Wei( [54] ) Dirichlet problems for F -harmonic maps). Let M , D, and ξ be as
in Theorem 14.3. Assume that the radial curvature K(r) of M satisfies one of the seven conditions in
(14.4). Let u : D → N be an F -harmonic map with lF ≥ 1

2 into an arbitrary Riemannian manifold N .
If u|∂D is constant, then u|D is constant.

Proof. Take ω = du. Then ω|∂D = 0. Hence ω satisfies an F -conservation law and annihilates any
tangent vector η of ∂D . The result follows at once from Theorem 14.3 and [13, Theorem 6.1]. □

14.3. Dirichlet problems for p-harmonic maps. As an application of Theorem 14.4, we solve the
following

Corollary 14.5 ( [54] Dirichlet problems for p-harmonic maps). Suppose M and D satisfy the same
assumptions of Theorem 14.4. Assume that the radial curvature K(r) of M satisfies one of the seven
conditions in (14.4). Let u : D → N be a p-harmonic map (p ≥ 1) into an arbitrary Riemannian manifold
N . If u|∂D is constant, then u|D is constant.

Proof. For a p-harmonic map u, we have F (t) = 1
p (2t)

p
2 . Obviously dF = lF = p

2 . Take ω = du. This

corollary follows immediately from Theorem 14.4. □
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